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Abstract— The smooth pursuit gain (SPG) is defined as the
ratio of the angular velocity of the eye to that of the moving
target. Being evaluated at a certain frequency of harmonic
visual stimuli, it has been widely used in medicine as a
measure of oculomotor system performance. In this study,
the smooth pursuit system (SPS) is modeled as a dynamical
system whose output signal is the angular velocity of the eye
and the input is the angular velocity of a moving stimulus.
Then, by means of system identification, the entire dynamics of
SPS can be estimated, provided the visual stimuli are properly
designed. This technique is referred to as the dynamic SPG
(DSPG). Systems appearing equivalent in terms of SPG, can
therefore be distinguished between using DSPG. Modern eye
tracking techniques register gaze direction over time, but do
not measure gaze velocity. Hence, to estimate the SPG/DSPG,
differentiation must be applied to the output of the eye tracker.
Four approaches to differentiation of eye-tracking data are
evaluated in this paper with respect to the estimation of DSPG,
out of which the method based on Laguerre functions stands out
as the most reliable technique for this particular application.

I. INTRODUCTION

In studies of the human smooth pursuit system (SPS), the
smooth pursuit gain (SPG) is a quantity which is often used
for the characterization of system performance, see e.g. [1],
[2], [5] and [7]. The SPG is then given as a single value
constituting the ratio of the angular velocity of the eye to
that of the target. Hence, the SPG can be seen as the static
gain of a dynamic system relating gaze velocity to target
velocity. For a mono-harmonic visual stimuli, SPG is still
just a point on the frequency characteristics of SPS and thus
constitutes an uncertain measure of system performance. In
this study, the dynamical nature of SPS is stressed and its
entire frequency response is modeled to gain more insight
into the system properties. The frequency response of SPS is
therefore referred to as dynamic SPG (DSPG), indicating that
the system gain is evaluated over all frequencies available in
the visual stimuli spectrum.

Modern eye tracking techniques, both video (see e.g. [8])
and electrooculography-based (see e.g. [3]) ones, only allow
for the registration of gaze direction and not gaze velocity.
Hence, methods for differentiation of measured (i.e. noisy)
signals must be utilized in order to obtain the output data to
identify a DSPG model. Estimates of gaze velocity are also
sought by neurologists and neurophysiologists for studies
of various diseases such as Huntington’s disease ([4]) and
Parkinson’s disease ([7]).

In this paper, four signal differentiation techniques are
investigated and evaluated for the identification of DSPG
from eye tracking data. An observer-based method, a method

involving the projection of the signal onto Laguerre func-
tions, analytical differentiation of the model output and,
finally, simple three-point numerical differentiation are con-
sidered. The methods are evaluated on both simulated and
experimental data.

The paper is composed as follows: In Section II, a
mathematical model of SPS is proposed. Signal differenti-
ation techniques are then summarized in Section III. This is
followed by the identification results on both simulated and
real data in Section IV. Finally, the results and methods are
discussed in Section V.

II. MATHEMATICAL MODEL

A block diagram of the SPS model adopted in this paper
is presented in Fig. 1. It is a linear feedback model. The
eye plant is modeled by a first order dynamics with the
transfer function G(s) = Ke

s+a . The transfer function of
the controller is F (s) = Kp +

Ki

s+b , feeding back a signal
comprising a proportional and a low-pass filtered angular
velocity error terms. More sophisticated nonlinear models of
SPS are available ([9], [10]), but this highly simplified one
will be shown to suffice for the purpose of DSPG estimation.

Let y(t) be the output of the model at time t with r(t) as
input. In physical terms, y(t) is the angular velocity of the
eye and r(t) is the angular velocity of the visual stimulus.
Notice that y(t) is not accessible for measurement and has
to be estimated from its integral, the gaze direction, in order
to identify the parameters of this model. The observability
canonical form of the system is[

ẋ1
ẋ2

]
=

[
−(a+ b+KeKp) 1
−(ab+KeKpb+KeKi) 0

] [
x1
x2

]

+

[
KeKp

(KeKi +KeKpb)

]
r

y =
[
1 0

] [ x1
x2

]
(1)

or more compactly

ẋ = Ax+Br
y = Cx

.

System (1) has five unknown parameters. However, since
the static gain of G(s) and that of F (s) are indistinguishable
in an input-output experiment, the parameter vector is chosen
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Fig. 1. Block diagram of the SPS model. r(t) is the target angular velocity,
e(t) is the angular velocity error and y(t) is the modeled angular velocity
of the eye.

as

θ =
[
a KeKi KeKp b

]
to uniquely parameterize system (1).

III. NUMERICAL DIFFERENTIATION

Differentiation of measured signals has been the topic
of countless publications and many methods have been
proposed. In this paper, four differentiation techniques are
selected and evaluated for the purpose of DSPG estimation
by applying them to both simulated and real data.

A. The observer method

The first state variable of (1) is the angular velocity of the
eye and has to be estimated from eye tracking gaze direction
data. Therefore, a new model where gaze direction is the
measured output is needed. Such a model can be obtained
by augmenting (1) with the equation ẋ3 = x1 and letting the
output of the system be the gaze direction yp = x3. The state
vector in the augmented model is then xTp = [x1 x2 x3].
For the augmented plant

ẋp = Apxp +Bpr
yp = Cpxp

(2)

introduce a linear observer
˙̂xp = Apx̂p +Bpr +K(yp − Cpx̂p)
ŷp = Cpx̂p

(3)

where

KT =
[
K1 K2 K3

]
,

Cp =
[
0 0 1

]
.

and Ap and Bp are the augmented versions of A and
B. The gain K should be chosen so that the observer state
estimation error dynamics are significantly faster than those
of the actual system, but slower than the noise dynamics.

Provided the vector θ is known, observer (3) can be used
to estimate the gaze velocity. However, parameter estimates
are the purpose of identification and the latter requires the
gaze velocity. This hints to the use of an iterative estimation
approach. An initial guess for the model parameters in (1) is
made and utilized in the observer to estimate gaze velocity.
The obtained velocity estimate is used to identify the model
parameters anew and re-design the observer. This is repeated
until the parameter estimations converge. A rigorous exami-
nation of the convergence properties of this iterative process
will not be dealt with here. The process converged for all
eye tracking data sets used in this study.

B. The Laguerre functions method

The Laguerre functions form an orthonormal basis which
is complete in the L2 function space. In Laplace domain,
the Laguerre functions are rational in the Laplace operator,
with all poles at the same point on the negative real axis.
In time domain, the functions are polynomials multiplied by
decaying exponentials. Consequently, Laguerre functions can
be used to approximate transfer functions or the output of
linear dynamic systems, see for example [11].

Laguerre functions The k:th time domain Laguerre func-
tion is given by

Lk(t) = pe−pt/2
k+1∑
n=1

k!(−pt)n−1

((n− 1)!)2(k − n+ 1)!
, (4)

where p is the Laguerre (user-defined) parameter determining
the decay rate of the function. The set of Laguerre functions
is orthonormal so that

〈Lm(t), Ln(t)〉 = δmn, (5)

where δmn is the Kronecker delta and the inner product is
given by

〈f(t), g(t)〉 =
∫ ∞
0

f(t)g(t)dt. (6)

A function f(t) ∈ L2 can be expressed in terms of Laguerre
functions by

f(t) =

∞∑
k=0

akLk, (7)

where

ak = 〈f(t), Lk(t)〉, (8)

are the Laguerre coefficients.

One feasible way of approximating the derivative of a
noisy signal is by projecting the signal onto a finite set
of Laguerre functions and then using analytically differenti-
ated Laguerre functions to give an estimation of the signal
derivative. However, if the signal variance is large, high order
Laguerre functions are required in the approximation which
may cause numerical problems. A way of bypassing this is by
performing Laguerre approximation within a sliding window.

Assume the signal to be differentiated is sampled and
stored in a vector

y =
[
y1 y2 . . . yN

]
, (9)

with N samples. Choose a suitable window-length L and
create M = N − L + 1 new vectors ym of length L such
that

ym =
[
ym ym+1 . . . ym+L−1

]
. (10)

An approximation of the derivative of ym can then be
found by

ˆ̇ym =
∑̀
k=0

〈ym,Lk〉L̇k, (11)
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where Lk are sampled versions of the Laguerre functions, L̇k
are the sampled versions of the Laguerre function derivatives
and ` is the highest order of the Laguerre functions used. The
integral in (11) is evaluated numerically.

Now form the M -by-N -matrix

ˆ̇Y = diag
[
ˆ̇y1

ˆ̇y2 . . . ˆ̇y
]

(12)

and let Vm be the number of non-zero elements in column
m of ˆ̇Y. The estimated derivative of the signal, ˆ̇y, is finally
given by

ˆ̇y =
[
ˆ̇y1 ˆ̇y2 . . . ˆ̇yN

]
, (13)

where

ˆ̇yi =
1

Vi

M∑
j=1

ˆ̇Yij . (14)

Hence, the approximation of the signal derivative is the
average of the approximations obtained within each window.

C. The analytical model output differentiation method

The solution to (2) is given by

y(t) = Cpe
AptBpxp0 +

∫ t

0

Cpe
Ap(t−τ)Bpu(τ)dτ (15)

where xp0 is the initial state vector. Differentiating this
expression with respect to t gives

ẏ(t) = Cp

[
Ape

Aptxp0 +

∫ t

0

Ape
Ap(t−τ)Bpu(τ)dτ +Bpu(t)

]
.

(16)
Since this method relies on the model, the model parameters
must be known beforehand. The model parameters for eye
tracking data are un known and, therefore, have to be
estimated using recorded gaze direction data. The angular
velocity is a state variable in (1) and could be evaluated
without derivation, directly from the solution of the state
equation. However, for SPS models, where the angular
velocity is not a state variable, (16) can be used.

D. Three-point method

Assume the signal to be differentiated is sampled with
sampling time Ts and stored in a vector

y =
[
y1 y2 . . . yN

]
, (17)

with N samples. The approximation of the signal derivative
is a vector

ẏ =
[
ẏ1 ẏ2 . . . ẏN

]
, (18)

of length N where

ẏi =


yi+1 − yi

Ts
i = 1

yi − yi−1
Ts

i = N

yi+1 − yi−1
2Ts

otherwise

(19)

IV. EXPERIMENTS AND RESULTS

Experimental gaze direction data of test subjects attempt-
ing to track a moving dot on a computer monitor was
gathered using a video-based eye tracker, described in [8].
Data was sampled with a sampling frequency of 60 Hz.
Simulated data was generated by adding simulated zero mean
white Gaussian noise to the output of the model in Fig. 1
for a given set of model parameters and input signals. The
true derivatives of the input signals were known both in
experiment and simulation.

The differentiation methods presented in Section III were
evaluated for simulated and experimental data. For simulated
data, the estimated derivative could simply be compared to
the true derivative to obtain a performance measure. In the
case of experimental data, the derivative of the signal was
not known, so other means of evaluation had to be applied.

The purpose of this study is to identify model (1) and it is
hence reasonable to compare the differentiation methods by
their ability to give consistent estimates of the model param-
eters. The analytical model output differentiation method is
implemented by using the estimates of the model parameters
in (2) identified with gaze direction as output data. An ap-
proximation of the signal derivative is then readily given by
(16). The method of analytical model output differentiation
is only used to give estimates of gaze velocity. Its output
cannot be used to further improve the model.

In each simulated case, the user-defined parameters of
the observer method (the feedback gain K) and the La-
guerre method (the parameter p, window-length and highest
function order) were tuned to give the best result. For
experimental data, the method parameters were chosen to
give the most consistent estimates of the model parameters.

System identification was performed using the System
Identification Toolbox in MathWorks MATLAB with the
pem-function (prediction error method) for linear systems.

A. Results with simulated data

Fig. 2 shows the first 12 seconds of a typical data set
obtained from model simulation, representing horizontal eye
movements. Simulated zero mean white Gaussian noise
with unit variance was added to the measurements. The
differentiation methods outlined in Section III were applied
to the data set to give estimates of the derivative, shown
in Fig. 3 and Fig. 4. The model parameters in the observer-
based method and the analytical model output differentiation
method were set equal to the simulation parameters, i.e. the
underlying system was assumed to be fully known.

Since the observer-based and the analytical model output
differentiation methods depend on the model, uncertainties
in the model parameters may result in poor performance
for these two techniques. To study the effects of imperfect
models, the methods were once again applied to the signal
of Fig. 2, but this time with the model parameters perturbed
by 10%. The results are presented in Fig. 5. The output
of the three-point method is omitted since the latter is not
model-based. The output of the Laguerre functions method
is provided for reference.
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Fig. 2. The first 12 seconds of a typical data set obtained from model
simulation. Simulated zero mean white Gaussian noise with unit variance
was added.

0 2 4 6 8 10 12
−40

−30

−20

−10

0

10

20

30

40

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (
de

gr
ee

s 
⋅ s

−
1 )

 

 
Observer
Laguerre
Model output differentiation
Real

Fig. 3. Output of the differentiation methods applied to the signal in Fig. 2.
The underlying system was known and the signal-to-noise ratio was 5 dB,
simulated zero mean white Gaussian noise.

Fig. 6 shows the parameter estimates obtained from identi-
fication of the model for the considered differentiation meth-
ods. The method of analytical model output differentiation
gives the same parameter estimates as identification of model
(2) with eye position output data does and is thus marked
as Position in the figure legend. Each method was run on
several simulated data sets. The actual values of θ(2) and
θ(3) were both equal to one and were used in the observer-
based method to obtain the estimated derivative. Note that the
iterative approach described in Section III-A was not used
here.

B. Results with experimental data

Fig. 7 shows the first 12 seconds of the horizontal part
of a typical data set obtained from the eye tracker. Fig. 8
and Fig. 9 depict the results produced by the considered
differentiation methods applied to the data in Fig. 7. Since
the data set in Fig. 7 is a real gaze direction measurement
obtained from an eye tracker, its true derivative was not
known.

Identification was performed for eight sets of eye tracker
data obtained from the same test subject to estimate θ(2)
and θ(3). Fig. 10 summarizes the obtained parameter values.
The frequency characteristics of the models estimated from

a typical data set are provided in Fig. 11.

V. CONCLUSIONS AND DISCUSSION

Four approaches to differentiation of measured signals
were evaluated for the purpose of estimating eye velocity
from eye tracking gaze direction data. In this study, the
velocities were used to identify DSPG models, but accurate
eye velocity estimates are also required in other types of
medical and biomedical research.

The methods considered in this study use different ways
of approaching the numerical differentiation problem. The
analytical model output differentiation method completely
relies on the estimated model and thus accurate modeling
is required to obtain useful results. The signal to be dif-
ferentiated only has an implicit effect on the result through
the identified model parameters. The observer-based method
also requires a model, but takes as well the signal to be
differentiated into account. The feedback gain K in the
observer can be chosen to trust the data or the model
to different degrees and the choice naturally depends on
the noise variance. The steady-state Kalman filter can be
used for gain optimization. The Laguerre functions method
requires no prior knowledge and is preferable if the model
quality is poor. The Laguerre functions method relies on
appropriate values of the window length, function order and
the parameter p. Choosing p too small may result in noise
amplification while a large p combined with low function
order may fail to give accurate approximations of high
frequency content. A large window length will require high
order of the approximation which may result in numerical
problems. Short windows will increase computation time.

Fig. 3 shows that when the underlying system is known,
both the observer-based method and the analytical model
output differentiation method will give nearly exact results.
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Fig. 4. Output of the three-point method applied to the signal in Fig. 2.
The signal-to-noise ratio was 5 dB, simulated zero mean white Gaussian
noise.
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Fig. 5. Output of the differentiation methods applied to the signal in fig. 2.
The assumed parameters of the underlying system were perturbed by 10%
and the signal-to-noise ratio was 5 dB, with simulated zero mean white
Gaussian noise as the noise sequence.

The Laguerre method gives a smooth and fair result com-
pared to the three-point method, but neither can compete
with the model-based methods when the system is perfectly
known. However, under uncertainty in the parameters of
the underlying system, the performance of the observer-
based method and the analytical model output differentiation
method degrade, as can be seen in Fig. 5. The former
performs slightly better than the latter since it relies on the
model knowledge to a lesser extent.

Fig. 6 confirms that, for a perfectly known model, the
obtained parameter estimates are accurate for the observer-
based method and for the model identified from gaze di-
rection data. This is expected since the added noise was
Gaussian and white. In the noise-free case the parameter
estimates would have been exact. The observer method-
based estimates are more spread than the estimates from
gaze direction data since the observer partly relies on the
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Fig. 6. Estimates of θ(2) and θ(3) (KeKi and KeKp) for eight data
sets.
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Fig. 7. The first 12 seconds of a typical data set from the eye tracker.

noisy data. The Laguerre functions method and the three-
point method show higher parameter variance.

In Fig. 10, a somewhat larger variance is observed in the
parameter estimates of the observer-based method and the
estimates from gaze direction data, than in those obtained
with the Laguerre functions method. This indicates that
model (1) is not exact. A more accurate model of the system
would give more consistent parameter estimates for these
methods. However, accurate models are often complicated
and cumbersome to work with. The Laguerre method pro-
vides an apparently robust way of estimating the derivatives
of noisy gaze data without the need for an explicit model. It
is worth noting that both the observer-based method and the
Laguerre functions method give more consistent parameter
estimates than identification from gaze direction data does,
thus implying that efforts to find appropriate differentiation
techniques are worthwhile.

Fig. 11 shows that the three-point method fails to give a
feasible model. The static gain of the other models is close
to unity. As was mentioned in Section I, the static gain of the
SPS is the SPG at constant visual stimuli velocity and known
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Fig. 8. The estimated derivatives of the signal in Fig. 7.
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Fig. 9. Output of the three-point method when applied to the signal in
Fig. 7.

to be about 0.9 in healthy persons, [6]. In previous studies on
SPS’s, the SPG is given as a system performance measure.
It is evident from Fig. 11 that this value does not fully
characterize the system. The models obtained by using the
observer-based method and the Laguerre functions method
have the same static gain, but the corresponding systems are
far from equivalent.

In conclusion, the SPG is a single point in the system
frequency characteristics and performance measures based
on it do not capture much of the system dynamics. The
full frequency response, the DSPG, should therefore be
considered when characterizing SPS’s.
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Fig. 10. Estimates of θ(2) and θ(3) (KeKi and KeKp) for eight data
sets of eye tracker data. All data sets pertain to the same test subject.
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Fig. 11. Frequency characteristics of three models estimated with data
obtained from applying the different differentiation methods to eye tracker
data.
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