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Abstract— This paper extends tube-based model predictive
control methodology to the control of nonlinear systems with
unmodelled dynamics. The problem of obtaining robustness
against unstructured uncertainty is converted into the eas-
ier problem of achieving robustness against an (additional)
bounded disturbance while satisfying an (additional) output
constraint. The bound on the disturbance and the output
constraint depend on the magnitude of the uncertainty. Robust-
ness against the uncertainty is achieved by using tube-based
model predictive control. Simulation experiments concerning
the control of a solar collector plant illustrate the effectiveness
of the proposed control strategy.

I. INTRODUCTION

Robustness against dynamic uncertainty has received less

attention in the model predictive control literature (see [1]

and references therein) than robustness against parametric

uncertainty or static time varying uncertainty that depends

on the system variables. Motivated by the theory of linear

robust control (linear H∞), it is usual to require that the

operator ∆ corresponding to the unmodelled dynamics lies

in the class of systems with bounded ℓ2 gain. In this paper

we assume that ∆ lies in the class of systems with bounded

ℓ∞ gain; specifically, we assume that the operator ∆ lies

in the class of practical input/output stable (p-IOS) systems

[2]. The motivation for this choice is that practical input-

output stability generalizes the concept of finite gain with

respect to supremum norms [3]. The problem of obtaining

robustness against unstructured uncertainty can be converted

into an easier problem of achieving robustness against an

added bounded disturbance subject to the usual constraints

and an added output constraint. It is well known that,

if the controlled systems is ISS with respect to bounded

uncertainties, then it is also robustly stable with respect to

unmodelled dynamics (small gain theorem) but the amount of

admissible uncertainty is unknown. Here we propose a design

procedure, based on tube-based model predictive control [4],

[5], that provides robustness against specified uncertainty

provided the resultant optimal control problem is feasible.

Tube-based MPC is well suited for this task because it is

an implementable form of feedback MPC and possesses

two degrees of freedom, the extra degree of freedom being

employed to improve disturbance attenuation. The controller

consists of a model predictive controller in the outer loop that

steers trajectories of the uncertain system towards a reference
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trajectory that steers the initial state to the target state. In §2

the class of unmodelled dynamics is introduced. In §3 and §4

we specify the nominal trajectory and the ancillary controller.

In §5 the properties of tube-based model predictive when a

generic disturbance affects the system are examined. In §6 a

discussion on the choice of the constraints for the Tube-based

MPC is carried out and possible extensions are illustrated.

In §7 we illustrate the performance of the method on outlet

temperature control of a solar collector plant. Finally, in §8,

we draw some conclusions.

Notation: I is the set of integers. | · | denotes the usual

Euclidean norm. ℓ∞ is the set of all sequences φ(·) =

{φ(i)}∞i=−∞ ∈ R
nφ such that ‖φ‖∞

△
= sup{|φ(t)|, t ∈

I} < ∞. φ[t0,t](·) denotes the sequence {φ(i)}t
i=t0

defined

on the interval [t0, t].

II. PROBLEM FORMULATION

The system to be controlled is described by






x(t + 1) = f(x(t), u(t), w(t))
w(t) = ∆(φ(−∞,t](·))(t)
φ(t) = h(x(t))

(1)

where, f(·) is twice continuously differentiable, h is contin-

uous and ∆ represents unmodelled dynamics; x ∈ R
n, u ∈

R
m, φ ∈ R

p and w ∈ R
q. The controller is required to steer

the initial state x to a neighborhood of a desired equilibrium

point xe while satisfying input and state constraints u ∈ U

and x ∈ X for all admissible values of the uncertainty; xe

satisfies xe = f(xe, ue, 0) for some ue ∈ U. It is assumed

that U and X are compact subsets of R
n and R

m respectively.

The uncertainty is defined in a purely input/output form

Definition 1: The map ∆ : ℓ∞(Rp) → ℓ∞(Rq) is an

input/output operator if it is causal.

We require ∆ to lie in the class of i/o operators satisfying

the practical input/output stability (p-IOS) property [2].

Definition 2: A causal operator ∆ : ℓ∞(Rp) → ℓ∞(Rq)
is an admissible uncertainty if there exist β ∈ KL, γ ∈ K
and a nonnegative constant c∗ such that

|∆(φ(·))(t)| ≤ max{β(‖φ(−∞,0](·)‖∞, t),

γ(‖φ[0,t](·)‖∞), c∗} (2)

for all t ≥ 0 , i.e. such that ∆ is p-IOS.

It follows from Definition 2 that, if the output φ(·) of the

system satisfies |φ(−∞,0](·)‖∞ ≤ β−1(c, 0)1 where c ≥ c∗

and φ(t) ≤ γ−1(c) for all t ∈ I≥0, then the input w to the

1β−1(c, 0)
△
= z satisfying β(z, 0) = c
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system satisfies |w(t)| = |∆(φ(·))(t)| ≤ c for all t ∈ I≥0.

Hence robustness against this type of unmodelled uncertainty

can be achieved by using a control u that ensures that the

controlled system

x+ = f(x, u, w), (3)

where w is now regarded as a bounded disturbance taking

values in the compact set W , {w ∈ R
q | |w| ≤ c}, is such

that an additional output constraint

φ = h(x) ∈ Φc
△
= {φ ∈ R

p | |φ| ≤ γ−1(c)} (4)

is always satisfied (in addition to the original state and con-

trol constraints x ∈ X, u ∈ U). The output constraint restricts

the input to, and, hence, the output of, the uncertainty ∆. We

have converted the problem of obtaining robustness against

unstructured uncertainty to the easier problem of achieving

robustness against a bounded disturbance w while satisfying

an additional output constraint. Both the output constraint

set Φc and the set W in which the disturbance w lies depend

on the design parameter c; the smaller c, the smaller W is

and the tighter the output constraint becomes. The control

problem is well posed if the following assumption is satisfied

Assumption 1:

h(xe) ∈ int(Φc)
The control objectives can be achieved by using tube-based

model predictive control [4].

III. THE NOMINAL (REFERENCE) TRAJECTORY

The nominal system is

z+ = f̃(z, v) (5)

where f̃(z, v)
△
= f(x, u, 0). The reference trajectory steers

the nominal system from the initial state x0 to the target

state xe and is obtained by minimizing

V̄N (x0,v;xe) ,

N−1
∑

i=0

ℓ(z(i) − xe, v(i) − ve) (6)

subject to the state and control constraints z ∈ Z and

v ∈ V, and the terminal constraint z(N) = xe; here

v , {v(0), v(1), . . . , v(N − 1)} and z(i) is the associated

solution of (5) with initial state z. The function ℓ(·) is

defined by ℓ(z, v)
△
= |z|2Q + |v|2R where Q and R are positive

definite, |z|2Q
△
= (zT Qz), and |v|2R

△
= (vT Rv). The tightened

constraint sets Z and V are chosen to ensure satisfaction

of the original constraints x(t) ∈ X, h(x(t)) ∈ Φc and

u(t) ∈ U by the controlled uncertain system so that Z lies

in the interior of X, h(Z) lies in the interior of Φc and V

lies in the interior of U. Let v
0(x0;xe) denote the solution

of the nominal control problem with initial state x0 and

let z
0(x0;xe) denote the associated state trajectory. Clearly,

z0(0;x0, xe) = x0 and z0(N ;x0, xe) = xe; in the absence

of the disturbance w, the control sequence v
0(x0;xe) steers

x0 to xe. The reference state and control trajectories are the

infinite sequences z
∗(x0, xe) and v

∗(x0, xe), respectively,

defined by

z
∗(x0, xe) = {z∗(0; z, xe), z

∗(1; z, xe), . . .} ,

{z0(x0, xe), xe, xe, . . .}

v
∗(x0, xe) = {v∗(0; z, xe), v

∗(1; z, xe), . . .} ,

{v0(x0, xe), ve, ve, . . .}.

(7)

IV. MODEL PREDICTIVE CONTROLLER

The task of the ancillary model predictive controller is to

keep the state of the uncertain system close to the reference

trajectory previously defined. The ancillary model predictive

controller solves, at each state x of the uncertain system

that is encountered, an open-loop optimal control problem

in which the system is the nominal system and the cost is

a measure of the deviation from the reference trajectories

z∗(x0, xe) and v∗(x0, xe). The ancillary optimal control

problem is therefore time-varying so we use t to denote

current time. The optimal control problem PN (x, t;x0, xe)
solved by the ancillary controller at (x, t) (i.e. at state x, time

t) is minimization of the cost VN (x, t,u;x0, xe) defined by:

VN (x, t,u;x0, xe) ,

N−1
∑

i=0

ℓ(x(i) − z∗(t + i;x0, xe),

u(i) − v∗(t + i;x0, xe)) + Vf (x(N);xe) (8)

where x(t) = x and, for each i, x(i) , φ̄(i;x,u) the

solution of x+ = f̃(x, u) if the initial state is x and

the control sequence is u , {u(0), u(1), . . . , u(N − 1)}.

Problem PN (x, t;x0, xe) is defined by

V 0
N (x, t;x0, xe) = min

u

{VN (x, t,u;x0, xe) | u ∈ U
N} (9)

The minimiser of PN (x, t;x0, xe) is u
0(x, t;x0, xe) and the

control κN (x, t;x0, xe) applied to the system at (x, t) is the

first element of this N-sequence:

κN (x, t;x0, xe) = u0(0;x, t, x0, xe). (10)

The corresponding state sequence is x
0(x, t;x0, xe). An

important feature of PN (x, t;x0, xe) is that it has no state

constraints. If x = z∗(t;x0, xe), then V 0
N (x, t;x0, xe) =

0 and the optimal trajectory coincides with the reference

trajectory. The sampling period and stage cost ℓ(·) may differ

from that for the reference trajectory.

V. ANALYSIS

Since f(·) is twice continuously differentiable, the termi-

nal cost function Vf (·) may be chosen as follows. Using the

linearization of f(·) at (xe, ue), a Control Lyapunov Function

V̂f (·) of the form V̂f (x;xe) = |x−xe|
2
Qf (xe) (where Qf (xe)

is positive definite) and an associated Control Invariant set

Xf (xe) = {x | V̂f (x;xe) ≤ α} for some α > 0 can be

chosen similarly as shown in [6] (page 136) to satisfy the

stability condition

J ≤ V̂f (x − xe;xe) ∀x ∈ Xf (xe) (11)
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where

J = minu V̂f (f̃(x, u) − xe;xe) + ℓ(x − xe, u − ue)
subject to

u ∈ U, x ∈ Xf (xe) ⊂ X, h(Xf (xe)) ⊂ Φc

(12)

Clearly xe lies in the interior of Xf (xe). Then Vf (·)
△
=

λV̂f (·) for some λ ≥ 1. Let M denote the compact set

of initial and target states (x0, xe) such that P̄N (x0;xe)
is feasible. The parameter λ can be chosen to justify the

omission of the terminal constraint in PN as shown in the

following extension of Proposition 6 in [7]

Proposition 1: For all ζ > 0 there exists a λζ
△
= ζ/α

such that, for all (x0, xe) ∈ M and all t ∈ I≥0, x ∈

Sζ(t;x0, xe)
△
= {x | V 0

N (x, t;x0, xe) ≤ ζ} implies that

φ̄(N ;x,u0(x, t;x0, xe)) lies in Xf (xe) if λ ≥ λζ .

Since (V̂f (·;xe), Xf (xe)) satisfies the stability condition, so

does (Vf (·;xe), Xf (xe)) for all λ ≥ 1. Our assumptions on

ℓ(·) and Vf (·) ensure that the stability condition is satisfied

if λ ≥ max{1, λζ}; we assume this in the sequel.

Proposition 2: [5] For each (x0, xe) ∈ M there exist

constants c2 > c1 > 0 such that

(i) V 0
N (x, t;x0, xe) ≥ c1|x − z∗(t;x0, xe)|

2

∀(x, t) ∈ R
n × I≥0

(ii) V 0
N (x, t;x0, xe) ≤ c2|x − z∗(t;x0, xe)|

2

∀(x, t) ∈ (Xζ(x0, xe) + cfW) × I≥0

(iii) V 0
N (x+, t+;x0, xe) ≤ V 0

N (x, t;x0, xe)−
ℓ(x − z∗(t;x0, xe), κN (x, t;x0, xe) − v∗(t;x0, xe))

∀x ∈ Sζ(t;x0, xe), t ∈ I≥0

(iv) V 0
N (x+, t+;x0, xe) ≤ ρV 0

N (x, t;x0, xe)

where Xζ(x0, xe)
△
=

⋃

t∈I[0,N]
Sζ(t;x0, xe), ρ

△
= 1 − c1/c2,

x+ = f̃(x, κN (x, t;x0, xe)), t+
△
= t + 1 and cf is the

Lipschitz constant of f(·) .

Since the optimal control problem PN has no state con-

straints, V 0
N (·) is Lipschitz continuous in x as stated in the

following proposition

Proposition 3: For all (x0, xe) ∈ M there exists a constant

cV > 0 such that |V 0
N (x, t;x0, xe) − V 0

N (z, t;x0, xe)| ≤
cV |x − z| for all x, z in Xζ(x0, xe) + cfW, all t > I≥0.

Since x ∈ Sζ(t;x0, xe) ⊂ Xζ(x0, xe) implies

f̃(x, κN (x, t;x0, xe)) ∈ Sζ(t + 1;x0, xe) ⊂ Xζ(x0, xe) and

since f(x, κN (x, t;x0, xe), w) ∈ Sζ(t + 1;x0, xe) + cfW ⊂
Xζ(x0, xe) + cfW, we have:

Corollary 1: For each (x0, xe) ∈ M,

V 0
N (x+, t+;x0, xe) ≤ V 0

N (x, t;x0, xe)
−c1|x − z∗(t;x0, xe)|

2 + cV |w|
V 0

N (x+, t+;x0, xe) ≤ ρV 0
N (x, t;x0, xe) + cV |w|

for all t ∈ I≥0, all x ∈ Xζ(x0, xe) and all x+ ∈
f(x, κN (x, t;x0, xe), W).

The ancillary controller guarantees, as shown in the fol-

lowing proposition, that the state of the uncertain system

belongs to a neighborhood of the reference trajectory.

Proposition 4: Let Sd(t;x0, xe)
△
= {x|V 0

N (x, t;x0, xe) ≤
d} for each d ∈ (0, ζ) and suppose (x0, xe) ∈ M. (i) For

all ε > 0 there exists a d(ε)
△
= [cV |Ŵ| + ε]/(1 − ρ) with

|Ŵ|
△
= maxw{|w| | w ∈ Ŵ ⊆ W} such that, for all

d ≥ d(ε), all t ∈ I≥0, x ∈ Sζ(t;x0, xe) r Sd(t;x0, xe)
implies V 0

N (x+, t+;x0, xe) ≤ V 0
N (x, t;x0, xe) − ε and all

x+ ∈ f(x, κN (x, t;x0, xe), Ŵ). (ii) There exists a d∗
△
=

cV |Ŵ|/(1 − ρ) such that, for all d ≥ d∗, all t ∈ I≥0,

x ∈ Sd(t;x0, xe) implies x+ ∈ Sd(t
+;x0, xe) for all

x+ ∈ f(x, κN (x, t;x0, xe), Ŵ).

Hence any state trajectory starting at (x, t) lying in

the state tube Tx(x0, xe)
△
= {Sd(t;x0, xe) | t ∈ I≥0}

remains in the state tube thereafter and the correspond-

ing control remains in the control tube Tu(x0, xe)
△
=

{κN (Sd(t;x0, xe), t;x0, xe) | t ∈ I≥0}. Moreover, since

d∗ → 0 as Ŵ → {0} in the Hausdorff metric, the state

and control tubes shrink to the reference trajectories as

Ŵ → {0}. Then, the state constraints are fulfilled if the

following assumption is satisfied for all (x0, xe) ∈ M

Assumption 2: 1) f : X × U × W → R
n is twice

continuously differentiable.

2) X and U are compact.

3) W = {w ∈ R
q | |w| ≤ c} for c∗ ≤ c < ∞.

4) h(X) ⊆ Φc

5) ℓ : X × U → R and Vf (·) are quadratic and positive

definite.

6) Vf (·) satisfies the stability condition (11).

7) d∗ ≤ d ≤ ζ and λ ≥ max{1, ζ/α}.

8) There exists Z ⊂ X and V ⊂ U such that for all

(x0, xe) ∈ M and all t ∈ I[0:N ], Sd∗(t;x0, xe) ⊂ X

and h(Sd∗(t;x0, xe)) ⊂ Φc.

Assumption (8) ensures that constraint satisfaction is possible

despite the disturbances and it is a necessary assumption

when disturbances are present and constraints have to be

satisfied. Since the state and control tubes tend, respectively,

to the reference state and control trajectories as W tends

to zero, Assumption (8) is satisfied if W is sufficiently

small. Stability analysis is simplified by the fact that the

reference trajectory remains constant at xe for all t ≥ N .

Consequently, the value function V 0
N (·), the control law

κN (·) and the level set Sd(·) are all independent of both

t and x0 for t ≥ N so that, for all t ≥ N ,

V 0
N (x, t;x0, xe) = V xe

N (x)
△
= V 0

N (x,N ;x0, xe)

Sd(t;x0, xe) = Sxe

d

△
= {x|V xe

N (x) ≤ d}

κN (x, t;x0, xe) = κxe

N (x)
△
= κN (x,N ;x0, xe)

Theorem 1: Suppose Assumption 2 is satisfied. Then, for

each (x0, xe) ∈ M, every state trajectory {x(t) | t ∈ I≥0}
and control trajectory {u(t) | t ∈ I≥0} of the controlled

uncertain system x+ = f(x, κN (x, t;x0, xe), w) with initial

state x(0) = x0 lie, respectively, in the state tube Tx(x0, xe)
and the corresponding control tube Tu(x0, xe) for all t ∈
I≥0 thereby satisfying the state and control constraints. The

state x(t) converges in time N to the set Sxe

d and remains
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in this set thereafter. Moreover, if the Lipschitz constant

cxe

V for V xe

N (x) in Sxe

d is such that cxe

V < cV and/or

max{γ(‖h(Sxe

d )‖∞), c∗} < c there exists a de < d such

that every solution x+ = f(x, κxe

N (x), w) with initial state

in Sxe

d converges to Sxe

de ⊂ Sxe

d in finite time and remains

in this set thereafter.

VI. CHOICE OF CONSTRAINTS

A. Choice of Z and V

Explicit determination of the tubes Tx(x0, xe) and

Tu(x0, xe) is virtually impossible. Instead we propose, as

described more fully in [8], that attention is restricted to

a finite set S of pairs (Z; V). If a pair (Z; V) is such

that some constraints are not satisfied for a suitably large

sample of initial and target states and disturbance sequences,

then (Z; V) is replaced by a ‘tighter’ pair of constraint

sets in S; if all constraints are easily satisfied, then (Z; V)
is replaced by a ‘looser’ pair from S. The procedure is

continued until an acceptable pair is obtained. Although exact

constraint satisfaction cannot be ensured with this procedure,

it should be recognised that most design strategies for

nonlinear robust control can be too conservative or implicitly

require sophisticated global optimization for which exact

solutions are computationally demanding; examples are the

estimation and exact determination of a Lipschitz constant.

This procedure is considerably simpler than the design of

a non-linear control law in which the decision variable is

also infinite dimensional; the fact that the state and control

tubes are bounded makes the procedure possible but tuning

and validation are required. Moreover it is worth to point

out that the proposed controller is inherently robust because

any x ∈ Sζ(t;x0, xe) r Sd(t;x0, xe), i.e belonging to the

controllability set but not to the tube (the state constraints

can be violated), is steered to a suitable neighborhood of the

reference trajectory and finally of the equilibrium pair where

likely the constraints satisfaction is fulfilled.

B. Extension for mixed constraints

The procedure may be adapted to handle systems whose

the output φ is of the form φ = h(x, u) assuming that

h(xe, ue) ∈ int(Φc). The difficulty that arises when φ is

of this form is due to the fact that theorem 1 holds if

the ancillary controller is subject only to constraints on the

control variables. To achieve this when φ = h(x, u) requires

some modification.

(i) In some cases it is possible to ensure satisfaction of

the mixed constraints x ∈ X, u ∈ U and h(x, u) ∈
Φc by requiring x and u to satisfy

x ∈ X̂ = {x ∈ X | h(x, Û) ∈ Φc} ⊂ X

and u ∈ Û if Û ⊂ U is chosen appropriately.

In effect we are replacing the mixed constraints

h(x, u) ∈ Φc by the decoupled constraints x ∈
X̂, u ∈ Û; this is possible in some cases albeit

conservatively.

(ii) An alternative approach is to replace the constraints

h(x, u) ≤ ĉ
△
= γ−1(c) by xa ≤ ĉ where the

additional state xa satisfies

x+
a = νxa + h(x, u)

φ = (1 − ν)xa

where |ν| ≪ 1. Since h(·) is chosen to represent

model error, the change modifies slightly the class

of permissible uncertainties.

(iii) When the uncertainty class is the set of input-

output-to-state stable (IOSS) finite dimensional sys-

tems, it is possible to exploit its Lyapunov charac-

terization similarly to the one proposed in [9], [10].

If ∆(φ(·))(t) is IOSS there exist α1, α2, γ̃, δ̃ of

class K∞ and a Lyapunov function V∆ satisfying

α1(|y|) ≤ V∆ ≤ α2(|y|)

where y denotes the state variables of the unmod-

elled dynamic such that the uncertain system can

be modeled in the following way

V +
∆ ≤ ξV∆ + γ̃(h(x, u))

|w| ≤ δ̃(V∆)
(13)

where |ξ| < 1. The worst case situation is given by

V +
∆ = ξV∆ + γ̃(h(x, u)) (14)

Then it is possible to add the equation (14) to

the control optimization problem and to impose

the additional state constraint 0 ≤ V∆ ≤ V ∆

where V ∆ is such that |w(t)| ≤ δ̃(V ∆) ≤ c
for all t ≥ 0. Note that explicit knowledge of a

Lyapunov function is not required. V∆ is regarded

as an additional variable with an initial condition

satisfying the constraints.

VII. ILLUSTRATIVE EXAMPLE

The effectiveness of the proposed strategy is illustrated

with the problem of controlling the outlet temperature of the

30 MWe SEGS VI Parabolic Trough Plant using a simplified

model [11], [12]. This solar collector plant is described by

three main parts: a collector to absorb the solar energy,

a heat exchanger to discharge the heat energy to generate

electricity in a power plant, a recycle tube to store the cooled

fluid for recycling. The process is controlled by pumping

the required flow rate of fluid from recycle tube to the

collector. For system modeling, the collector and the recycle

tube are discretized spatially at 6 points each. The states of

the model represent the temperature at these locations. The

first 6 states represent the temperature along the collector

and the other 6 states represent the temperature along the

recycle tube. The temperature at the outlet of heat exchanger

has been approximated with a static gain since the heat

exchange is described by a fast dynamic with respect to

outlet temperature of the solar collector plant. The neglected

dynamics comprising the effect of the power plant has been
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modeled with a high frequency uncertainty. The system is

described by

ẋi = a1u(xi−1 − xi) + θ1(Ta − xi) + sr 1 ≤ i ≤ 6
ẋi = a1u((xi−1 + a2)/(1 + θ2) − xi) + w i = 7
ẋi = a1u(xi−1 − xi) 7 < i ≤ 12
φ = u − ue;

(15)

where the state xi represents the temperature at the i-th
location with x0 = x12, u is the input mass flow rate

and the additive w represents (high frequency) uncertainty.

The parameters are a1 = 2.5 × 10−3, θ2 = 5, sr =
5.41×10−1, a2 = 1875.75, θ1 = 1.19×10−3, Ta = 303.15.

The controller is required to steer the system state to the

equilibrium state xe corresponding to desired equilibrium

value of 543◦K for the variable x6. The operator ∆(φ(·))
belongs to the class of finite dimensional asymptotically

stable linear systems with input-output state representation

ẏ = A∆y + B∆(u − ue)
w = C∆y + D∆(u − ue)

(16)

Since ∆(φ(·)) is a finite dimensional uncertainty we

replace Definition 2 of admissible uncertainties by

|∆(φ(·))(t)| ≤ max{β(|y0|, t), γ(‖φ[0,t](·)‖∞)} (17)

for all t ≥ 0. Each admissible uncertainty ∆ satisfies (17)

with β(s, t)
△
= β0e

−σts ≤ c and γ(s)
△
= γ0s ≤ c where σ >

0, β0 = 11, c = 0.48, and γ0 = 0.19. Hence the condition

β(|y0|, 0) = β0|y0| ≤ c is satisfied if |y0| ≤ c/β0 = 0.48/11.

The state, control and disturbance constraints to be fulfilled

by the system are

X̂ = X = {x ∈ R
n | xi ∈ [290, 620], i = 1, . . . , 12}

U = [0.8, 8], W = [−0.48, 0.48],

Note that, since φ depends only on u, tightening of the input

constraints is straightforward; since ue = 5.53, Û = [3, 8]
implies |φ| ≤ 2.5 and γ(|φ|) ≤ c. Simulations were carried

out with the following admissible realization of ∆(·)

ẏ = −by − b(u − ue)
w = K(y + (u − ue))

(18)

where b = 0.1 and K = 0.086. The discrete-time model

is implicitly obtained via the optimization process using

the nonlinear optimization code IPOPT [13] together with

the toolbox ICLOCS [8]. The sampling time used for the

controller is Ts = 20 seconds. The horizon is N = 250.

The length of the horizon is due to fact that the system is

weakly controllable in a neighborhood of (xe, ue) and the

desired domain of attraction is large. The nominal trajectory

is generated by solving the optimal control problem with

stage cost ℓ(z, v) = |z|2 + |v|2 and the ancillary control uses

the same stage cost ℓ(x, u) = |x|2 + |u|2. The constraint sets

for the central path optimal control problem are Z = {z ∈
R

n | zi ∈ [295, 615], i = 1, . . . , 12} and V = {v ∈ R
m | v ∈

[3.4, 7]} and were obtained using the procedure described

above. For comparison a standard model predictive controller

was determined using the same stage cost ℓ(·), the same

terminal constraint, the same sampling period and the same

horizon as used for the central path controller. Simulations

show that tube-based MPC restricts the spread of trajectories

compared with standard MPC during the transient phase.

Figures 1, 2, 3 illustrate the behavior of the controlled system

starting from the initial conditions x(0) = xe − (100)1 and

y(0) = 0 where 1 denotes a vector of ones having the

same dimension as xe. The disturbance dynamics are fast

when compared with respect the system dynamics and the

magnitude of the disturbance is significant (see figure 4).

The state and control responses are shown in 1, 2, 3.
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Fig. 1. State variable x6 vs time: reference trajectory (dashed), perturbed
trajectory (solid) and Standard MPC (dotted)
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Fig. 2. State variable x12 vs time: reference trajectory (dashed), perturbed
trajectory (solid) and Standard MPC (dotted)
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Fig. 3. Input variable u vs time: reference input (dashed), applied input
(solid) and Standard MPC (dotted)

The intrinsic robustness of the Tube-MPC is illustrated in

figures 5, 6, 7 when the uncertainty is described by (18)

with K = 0.45. The selected uncertainty does not belong

to the admissible class but Tube-MPC counteracts its effect

whereas Standard-MPC does not.

VIII. CONCLUSIONS

We have described a method for achieving robust feedback

MPC of nonlinear systems with unstructured uncertainty. The
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Fig. 5. State variable x6 vs time: reference trajectory (dashed), perturbed
trajectory (solid) and Standard MPC (dotted)

problem of obtaining robustness against unmodeled dynam-

ics has been converted into an easier problem of achieving

robustness against bounded disturbances by the addition of

an output constraint. The bound on the disturbance and

the output constraints are related by a design parameter

c. If c is selected suitably, robustness against unstructured

uncertainty can be achieved by using tube-based model

predictive control. The controller possesses two degrees of

freedom providing a useful flexibility in reducing the effect

of disturbances as shown in the simulation experiments

concerning the control of a solar collector plant. The on-line

complexity of the resultant controller is comparable to that

for conventional MPC. Off-line tuning and validation is re-

quired but this seems to be necessary for any design method

for control of constrained, uncertain, nonlinear systems. The

control procedure can be extended, using published results,

to handle output MPC and additional disturbances.
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Fig. 6. State variable x12 vs time: reference trajectory (dashed), perturbed
trajectory (solid) and Standard MPC (dotted)
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Fig. 7. Input variable u vs time: reference input (dashed), applied input
(solid) and Standard MPC (dot-dashed)
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