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Abstract— This work presents a novel parameter estimation
approach for system modelling based on model decomposition.
This approach uses Possible Conflicts to decompose the system
model into minimal submodels that are used to obtain minimal
parameter estimators for non-faulty situations. A laboratory
plant was used to test the approach. The results obtained
were compared against two classical parameter estimation
techniques, the SQP optimization method and a curve-fitting
approach using non-linear least squares. Both classical ap-
proaches use the global simulation model of the plant to carry
out the optimization. The properties of the three techniques are
presented and discussed. The developed parameter estimation
approach improves the results obtained with the cited classical
approaches.

I. INTRODUCTION

One of the most important stages in the process simulation

field is model validation. Model validation can be defined

as the procedure to determine whether a simulation model

is an accurate representation of the real system fulfilling

some specific objectives. The simulation model has to be

able to replace the real system in order to satisfy a set of

pre-established requirements. A notable task into this phase

consists of comparing the real system outputs against the

simulation model.

The process to design simulation models, similar to other

development processes, is an iterative procedure [1]. When a

simulation model is obtained and its conceptual correctness

has been verified, the validation phase begins. In the valida-

tion phase, the response of the real system and the simulation

model are compared under equivalent working conditions.

Then, it can be decided if the model has to be changed or

the tuning needs to be improved.

Typically, even though the model is empirically correct

and it is able to capture the process trends for the operating

points studied, the behaviour is not accurate with respect to

the real plant response. In these situations, it is necessary to

fit the simulation model based on the real process data. This

task is known as parameter estimation.

The parameter estimation tries to solve problems re-

lated to discrepancies between the real system, affected

by uncertainty sources, and the simulation model, based
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on theoretical principles. The most common cost function

used by parameter estimation schemes is the minimization

of the squared error between the real plant outputs and

the simulated model outputs. The decision variables are

the estimated parameters. An important task that needs to

be performed by the model developers is to decide which

parameters have to be estimated and which parameters have

to be set to a fixed value. Usually, estimated parameters are

those parameters subject to uncertainty.

The parameter estimation procedure is a very intense

computational problem, especially for nonlinear systems.

Moreover, computational complexity increases exponentially

with the size of the system. In real industrial plants, the

number of parameters to be estimated is usually very big.

Consequently, the computational effort for parameter esti-

mation in real plants can be very high.

For system modelling, the parameter estimation process is

performed only once in a modelling and simulation approach,

but in those cases the parameter estimation techniques can

be applied to highly detailed large scale modelled plants (for

example in training operators simulators), where the solution

can be unreachable.

In Fault Tolerant Control [2], the system identification pro-

cedure is performed on-line several times. Hence, a quick and

robust system identification approach is needed, and classical

techniques can be unable to fulfill these requirements. Also,

data reconciliation [3] approaches require several runs of the

optimization algorithms using simulation models in a similar

way to the parameter estimation techniques. The problem of

parameter estimation must be simplified in order to reduce

the computational effort.

In [4], a model decomposition approach to reduce the

computational burden of the faulty parameter identification

was proposed. The main idea was to use Possible Conflicts

[5] to decompose the global estimation problem into smaller

estimation tasks, called minimal faulty parameter estimators.

Empirical studies showed that the minimal faulty parameter

estimators provide faster and more accurate fault identifi-

cation for nonlinear systems. The present work uses similar

ideas, and presents a novel approach for system identification

using actual parameter estimation in non-faulty situations.

The main goal is to reduce the estimation time while being

accurate in those systems where a timely online system

identification process is required.

In this work, real data from a two-tank laboratory plant

are used. Using such data, online parameter estimation for

system identification is carried out. First, two well-known

parameter estimation techniques, SQP optimization and non-
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linear least squares [6], are used to estimate the parameters

of the plant. Then, model decomposition using Possible

Conflicts is applied together with the non-linear least squares

approach. Efficiency and accuracy for parameter estimation

with each one of these techniques is studied. Results showed

that using Possible Conflicts, efficiency and accuracy of the

parameter estimation task is highly improved.

The rest of the paper is organized as follows: Section

II presents the laboratory plant that were used as the case

study, and the experiments that were carried out. Section III

describes the different parameter estimation configurations

considering the global system model. Section IV describes

our parameter estimation in a non-faulty situation approach

using minimal parameter estimators. Section V shows the

results obtained for each one of the parameter estimation

techniques. Finally, Section VI presents the main conclusions

and future work.

II. CASE STUDY

A. Physical Configuration

Theoretical concepts will be tested on a real laboratory

plant, made up of two cylindrical tanks T1 and T2, connected

through a narrow cylindrical pipe placed 5 cm over the tanks

bases. There are two drain pipes at the same height than the

connection pipes. Fig. 1 shows a scheme of the laboratory

plant.

The main goal of the control strategy in this plant is to

maintain the level of the tanks close to the level selected by

the operator. The level of both tanks is measured by two level

sensors. The water is drained into the tanks by two variable

velocity pumps.

The control strategy is performed by two PI controllers.

The PC and the sensors and actuators are connected using an

I/O card (CIO-DA16). The communication between the card

and Simulink c©, that supports the control system, is based on

the OPC communication protocol. The I/O card works as an

OPC server using a VC++ application developed specifically

for this card. Simulink c© works as a client using the OPC
Simulink c© blocks provided by the Matlab c© OPC library.

Further information about the physical configuration of the

plant can be found in [7].

B. Mathematical model

The mathematical model of the laboratory plant is based

on first principles, i.e. based on mass balances. The model

has been implemented using Simulink c©.

Flows drained through drain pipes in both tanks (q10 and

q20) are defined as follows:

q10 = C10Sn

√

2gh1 (1)

q20 = C20Sn

√

2gh2 (2)

where g is the force of gravity; Sn is the section of the drain

pipes; and, h1 and h2 represent the level in tanks.

Both tanks are connected through a pipe whose flow q12
is expressed using the Torricelli theorem:

T1 T2

P1 P2

LC

1

LC

2

q12 q20q10

q1 q2

Fig. 1. Schema of the laboratory plant

q12 = C12Snsign(h1 − h2)
√

2g|h1 − h2| (3)

The function sign in equation 3 represents the direction

of the flow inside the pipe given the heights of tanks T1 and

T2: h1 and h2.

The variation in the level of the tanks is given by the

following mathematical expressions:

A
dh1

dt
= q1 − q12 − q10 (4)

A
dh2

dt
= q2 + q12 − q20 (5)

where A is the area of the tanks bases.

Table I shows the physical parameters that appear in all

the previous equations.

TABLE I

PHYSICAL PARAMETERS OF THE LABORATORY PLANT.

Parameter Value

Sn 0.5 cm

A 314 cm2

Parameters C10, C20 and C12 in equations 1, 2 and 3 are

constant, and they model the flow inside the three pipes.

These will be the three estimated parameters. The presence

of manual valves are the source of uncertainty for parameters

C10, C20 and C12.

C. Experiments design

A set of close-loop experiments were designed to perform

the tuning of parameters C10, C20 and C12. The set of

experiments explores the different operating points of the

plant through random changes in the reference in both tanks.

The experiments consider the different stationary states

in the process with long time periods without changes in

the references. Also the transient states were explored with
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changes in the references with continuous high frequencies.

Figure 2 shows an example of these experiments.

Typical experiments for fault detection and diagnosis tasks

were used in order to validate the parameters calculated.
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Fig. 2. Closed loop experiments

III. PARAMETER ESTIMATION

This section describes two classical approaches that have

been applied to the case study to carry out the parameter

estimation: the sequential quadratic programming (SQP)

optimization approach, and a curve-fitting approach using

non-linear least squares. Both configurations can be seen as

equivalent but the cost function of each method is adapted

to use the suitable Matlab c© command.

X is the input vector for the system. In our case study

X = [q1 q2] represents the input flows obtained for pumps

p1 and p2. The outputs from the model are the measured

level in the tanks Y = [h1 h2]. The parameter vector to be

optimized is θ = [C12 C10 C20].

A. SQP

The first configuration used to estimate the parameters is

a dynamic optimization approach. Fig. 3 shows a flow chart

with the basic idea of the approach.

The cost function of this solution consists of a function

whose arguments are the value of the parameters. The cost

function runs the simulation experiment by means of a

callback to the model using the parameters received. The

model uses the designed experiments and the parameters in

order to generate an output. When the simulation ends, the

model returns the output with the current parameters values,

and the cost function computes the sum of the squared error

between the real plant output and the simulated plant output:

COST

FUNCTION

C12 C20 C10

Y

X

Y

C12 C20 C10

Simulation model

Has the simulation

target been reached?

J

Calculate new

parameters
according to the

optimization

algorithm criterion

No

Yes

END

Fig. 3. Dynamic optimization solution.

min
θ

Tmax
∑

i=1

2
∑

j=1

(yi,j − ŷi,j)
2 (6)

The optimization problem posed in this configuration has

been solved using an implementation of sequential quadratic

programming (SQP) method. This method is suitable for

non-linear optimization problems. The Matlab c© command

that encapsulate this optimization method is the fmincon

command [8].

Table II shows the selected optimization options, the maxi-

mum number of iterations, and maximum number of function

evaluations. The table also shows the initial value of the

parameters (θ0). The termination criteria for the optimization

algorithm depends on either the number of iterations or the

function evaluations. The optimization algorithm terminates

if if the tolerances shown in the table reach the minimum

value selected.

TABLE II

PARAMETERS FOR SQP SOLUTION.

Parameter Value

Algorithm SQP (active set)

θ0 [C12 C10 C20] [0.5 0.5 0.5]
θmin [C12 C10 C20] [10−2 10−2 10−2]
θmax [C12 C10 C20] [10 10 10]

Termination criteria

Maximum number of itera-
tions allowed

400

Maximum number of func-
tion evaluations

600

Termination tolerance on the
function value

10−6

Termination tolerance on the
parameters

10−6

Termination tolerance on the
constraint violation

10−6

B. Non-linear least squares

The second method proposed for the parameter estimation

problem considering the whole model is based on a curve-
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fitting by means of non-linear least-squares. This function is

implemented by the Matlab c© function lsqcurvefit [8].

This solution is equivalent to the previous one but some

changes must be performed in order to use correctly the

command. Function F that appears in equation 7 receives

as arguments the parameters and the input data of the

designed experiments X = [q1 q2]. This function returns

the estimated value of the tank levels Ŷ = [ĥ1ĥ2]. The

quadratic difference between the Ŷ and Y is the target to

minimize in this configuration.

min
θ

∑

i

(F (θ,X)−Y)2 (7)

The command lsqcurvefit solves optimization problems

using non-linear least-squares. This method is based on

the inner reflexive Newton method [8]. In this case an

approximation to a big lineal system solution is calculated

using the Preconditioned Conjugate Gradient (PCG) method.

TABLE III

PARAMETERS FOR NON-LINEAR LEAST SQUARES SOLUTION.

Parameter Value

Algorithm Non-linear least squares

θ0 [C12 C10 C20] [0.1 0.1 0.1]
θmin [C12 C10 C20] [10−2 10−2 10−2]
θmax [C12 C10 C20] [10 10 10]

Termination criteria

Maximum number of itera-
tions allowed

400

Maximum number of func-
tion evaluations

600

Termination tolerance on the
function value

10−6

Termination tolerance on the
parameters

10−6

Termination tolerance on the
constraint violation

10−6

Table III shows the parameters selected for the optimiza-

tion method for this configuration. Non linear least squares

algorithm was not able to converge to the true solution using

same initial conditions and number of iterations that the

SQP approach. Even using values as shown in table III the

performance of this method was worse than SQP as shown

in table IV. Both the accuracy in the estimation and the

computation time is slightly better with the SQP approach

than with the non-linear least squares. The main problem

regarding this second solution is related with the maximum

number of function evaluations, that is reached without being

able to find the best solution.

Even testing in a small plant the non-linear least squares

method shows problems in convergence as the results show.

So, this method is used in order to prove the improvement

in the parameter estimations using model decomposition.

IV. MODEL DECOMPOSITION FOR PARAMETER

ESTIMATION

The solution presented in this work for parameter esti-

mation in the modelled laboratory plant is based on the

minimal parameter estimators technique [4], [9]. The main

TABLE IV

ESTIMATION RESULTS FOR THE SQP AND THE NON-LINEAR LEAST

SQUARES APPROACHES.

Parameter SQP Non-linear least

squares

CPU mean time 375.05 s 509.99 s

Number of itera-
tions

73 150

Number of func-
tion evaluations

444 600

Total error 99033.94 102375.81
Parameter
estimated

[0.1076 0.1992
0.1976]

[0.1029 0.1984
0.1969]

Termination cri-
terion

Tolerance on the
parameters

Maximum num-
ber of function
evaluations

contribution of the minimal parameter estimators deals with

the size of the cost function rather than the optimization

technique itself. The basic idea is to decompose the global

estimation problem into smaller optimization tasks, later,

each one of these optimization tasks can be carried out using

dynamic optimization using SQP, least-squares curve-fitting,

or any other optimization technique.

The minimal parameter estimators are computed from

the set of Possible Conflicts, PCs [5], of a system. The

PCs approach is a dependency-compilation technique from

the Artificial Intelligence, DX, community equivalent to the

Analytical Redundancy Relations (ARR) [5], [10], [11]. PCs

are computed off-line through variable elimination. Each PC

identifies a minimal over-determined set of equations that

can be solved using only observed, i.e. measured variables.

The PCs are those subsystems from the global system model

that can lead to a conflict when a fault occurs within the

Consistency-based Diagnosis framework [12]. Because PCs

are over-determined sets of equations, thus providing the

analytical redundancy necessary to perform fault detection

and diagnosis.

At the same time, these subsystem can be used for a more

efficient parameter estimation task due to the decoupling of

the system model, allowing to define cost functions with

a smaller number of parameters than the global system

model [9]. The minimal parameter estimators method adapts

a similar approach developed within the Moriarty system

(developed by NASA [13], [14]) that used the concept of

Model-based Decomposition for parameter learning within

an on-line reconfiguration process. PCs are conceptually

equivalent to Dissents [5], used by Williams and Millar [13],

[14] for model-based parameter learning in Moriarty.

The main advantage regarding the use of minimal param-

eter estimators relies on the use of smaller fragments of the

system, what entails having faster and more simple estima-

tion tasks (this is specially significant when highly non-linear

systems are considered). Moreover, since minimal parameter

estimators contain only a subset of the system model and

measurements, the estimations will be less influenced by

noisy measurements.

PCs are made up of a subset of equations, one output
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variable, that is the variable estimated by the PC, and a subset

of input variables, that are the input and measured variables

of the system. A PC, PCk, is described in state space form

as follows:

˙̂xpck = fpck(xpck , upck , θpck)

ŷpck = gpck(xpck , upck , θpck)

where fpck and gpck are nonlinear functions; x̂pck and

upck are the state and input vectors, respectively; ŷpck is

the variable estimated by the PC; and θpck is the subset of

parameters for PCk.

Based on the model description shown in section II a set

of two Possible Conflicts have been found (shown in table

V). These Possible Conflicts are minimal w.r.t. the set of

constraints in the models. In the table, the first column shows

the PCs, the second column illustrate the set of components

or sensors used by the PC, the third column describes the

set of equations or support of the PC, and finally the fourth

column presents the variable estimated by the PC.

TABLE V

PCS FOUND FOR THE PLANT: COMPONENTS AND

ESTIMATED VARIABLE FOR EACH POSSIBLE CONFLICT

PCx Components or Sensors Eq. Support Estimatex
PC1 T1, h1, h2 Eq. 1, Eq. 3, Eq. 4 h1

PC2 T2, h1, h2 Eq. 2, Eq. 3, Eq. 5 h2

Once the equations of the Possible Conflicts are computed

from the global system model, these equations are used to

compute a parameterized function, Fpck , where the parameter

to be estimated, θi, is set as an input variable. Then, Fpck

can be used to solve non-linear optimization problems for

parameter θi as established by the following proposition, [9]:

Proposition 1: A Possible Conflict, PCk, and a set of

input variables for PCk, Xpck , can be used as a parameter

estimator, ŷpck = Fpck(Xpck , θi), by using the measured

variable estimated by the Possible Conflict, ŷpck , and solving

ŷpck based on the rest of the measured variables.

Figure 4 shows a flow diagram describing this proposed

solution. This algorithm has to be run twice because there are

two PCs. As shown in Figure 4, main difference with Figure

3 is that PC models need to be computed, but is done only

once, and off-line. Once computed, the minimal parameter

estimators define the cost functions Fpck used in Figure 4.

The non-linear least squares approach (described in the

previous section) has been used in order to solve the curve-

fitting problem for each one of the minimal estimators. In

this case, the optimization algorithm parameters are those

described in Table III, but in this case it was not necessary

to modify the initial value of the parameters, that was initially

set to 0.5 for all the cases. The cost function used to minimize

the error in the estimation is described as follows:

min
θi

∑

(Fpck(Xpck , θi)− Ypck)
2 (8)

PC
k
 estimation

C12 C20 C10

C12 C20 C10

Simulation model

Has the simulation

target been reached?

Calculate new

parameters

according to the

optimization

algorithm criterion

No

Yes

END

Cost function

Y

YPC
k

XPCk

Fig. 4. Minimal parameter estimators solution

V. RESULTS

Table VI compares the performance of each one of the

three considered solutions when applied to different scenar-

ios of the laboratory plant. Table VI contains the following

information:

• The CPU mean time employed by each solution. This

value was computed by measuring the CPU time of

10 experiments run using a PC Intel c© core duo

(2, 53 GHz) and 3 Gb of memory.

• The number of iterations.

• The total number of cost function evaluations employed

by each optimization approach to solve the optimization

problem.

• The global quadratic error in the estimation committed

by each one of the three solutions for the best case

solution.

• The value of the parameters vector estimated.

• The termination criterion for each method.

Regarding the minimal parameter estimators, since two

Possible Conflicts were found for this system (one for each

measurement), two minimal parameter estimators were im-

plemented. Results related to minimal parameter estimators

(shown in last column) show the result for both minimal

parameter estimators, i.e., the number of iterations employed

by the first minimal estimator was 15, and the number of

iterations employed by the second minimal estimator was

14. Then, the total amount of iterations employed by this

approach was 15+14, as described in the table.

Columns 2 and 3 in Table VI show the results for SQP and

Curve-fitting approaches, respectively. Both techniques used

the global model of the system to perform the parameter es-

timation. Results show that both approaches are very similar

in terms of accuracy, since the estimation error obtained with

each approach is very similar. However, the computational

effort to obtain the same accuracy results is smaller for the
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TABLE VI

RESULTS

Parameter Dynamic optimization Curve-fitting Minimal parameter estima-

tors

CPU mean time 375.05 s 509.99 s 28.54 s for PC1 + 25.82 s for
PC2

Number of iterations 73 150 15 for PC1 + 14 for PC2

Number of function eval-
uations

444 600 48 for PC1 + 45 for PC2

Total error 99033.94 102375.81 60120.5
Parameter estimated [0.1076 0.1992 0.1976] [0.1029 0.1984 0.1969] [0.0998 0.1940 0.1933]
Termination criterion Tolerance on the parameters Maximum number of function

evaluations
Tolerance on the parameters

SQP than the Curve-fitting approach. On the other hand,

the results for the minimal parameter estimators show that

the CPU mean computation time was highly decreased,

whereas the total error in the estimation was also decreased.

Moreover, looking at the number of iterations and the number

of function evaluations, it is possible to see that the approach

converged much faster that the other two techniques.

The termination criterion was the tolerance on the parame-

ters in the approaches of SQP solution and minimal parame-

ter estimators (meaning that the parameter value between one

iteration and the previous one was lower than the tolerance

fixed for this case). The termination criterion in the curve-

fitting solution was reached because the maximum number of

cost function evaluations was raised. The minimal parameter

estimators used the curve-fitting optimization algorithm to

perform the parameter estimation. Hence, the results obtained

with this real data experiments are very significative from

a practical point of view. It is possible to see the great

advantage that the approach of system decomposition to

compute minimal parameter estimators is able to obtain:

faster convergence to the true solutions, smaller computation

time, and more accurate results.

VI. CONCLUSIONS

In this work a parameter estimation approach based on

model decomposition has been presented, and the estimation

results for a laboratory plant using real data have been

obtained and compared against two classical estimation

techniques: SQP and non-linear least squares for the entire

system.

The main conclusion of this work is that applying Possible

Conflicts to decompose the system model generates smaller

estimation tasks that can be used for fast convergence of the

parameter estimation task for on-line estimation. Moreover,

results with real data also showed that the estimations

obtained with the minimal estimators approach are more

accurate than the estimations obtained with the other two

approaches.

As future work, we are planning to run the SQP approach

together with the minimal estimators. Our guess (based on

the comparison between the SQP and the non-linear least

squares approaches) is that the minimal parameter estimators

implemented using dynamic optimization, will improve even

more the current estimation results. Moreover, the compar-

ative study with real data from a more complex case study

with high nonlinearities will be carried out to see how the

decomposition approach behaves when nonlinearities arise.
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