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Abstract— An adaptation algorithm for the parameters se-
lection of the multiple frequency hybrid observer in [1] is
proposed. The algorithm is tailored for numerical implemen-
tation and is aimed to retrieve, exploiting a suitable amount
of past data, the number of frequencies of a signal and the
observer gains to improve the exponential convergence to zero
of the frequencies estimation error, even in case of noisy
measurements.

I. INTRODUCTION

The problem of finding the unknown angular frequencies
ωi’s of the signal

y(t) =

n∑
i=1

Ei sin (ωit+ φi), (1)

where also Ei’s and Φi’s are unknown, has been extensively
addressed using classical Fourier analysis of batch data [2],
on-line methods based on notch filters [3] and Kalman filters
[4], adaptive schemes [5] and adaptive identifiers [6], [7],
[8], filtered transformations [9], Immersion and Invariance
techniques [10], and hybrid systems [1] just to name a few.
With respect to the previous work, we further assume that
the number of frequencies n of the signal (1) is not known,
as in [11] and [12].

We propose an algorithm to estimate n and select the
signal sampling time and the gains of the observer in [1]
to provide an auto-tuned hybrid observer with improved
performances. The selection of the gains in [1] (as well as
in [10]) are crucial to obtain satisfactory performances and,
as it will be pointed out in Section III, they depend on the
value of the ω’s and the sampling time T of the signal (1).
More specifically, the observer in [1] requires the selection
of the sampling time T to collect a given amount of samples
of (1) which are processed to obtain the estimates of the ω’s.
Via numerical simulations the exponential convergence of
the estimation error ω− ω̂ to zero has been seen to sensibly
depend on the selection of T , that might be chosen in the
wrong way up to to prevent convergence of the estimates
(see Lemma 1). Then, we want to provide the hybrid
observer in [1] with an algorithm that, processing a batch of
past data, retrieves on-line the correct value of n and “best”
T . In the companion paper [13] the techniques of this paper,
combined with hybrid observer [1], are exploited to solve
the problem of asymptotic regulation of linear systems in
case of disturbances (references) generated by neutrally
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stable linear systems of unknown dimension and parameters.

The paper is organized as follows: in Section II we recall
the hybrid observer presented in [1] followed by the proposed
approach which is motivated theoretically and numerically in
Section III, where also the main algorithms are provided.
Numerical simulations to show the effectiveness of the
method are given in Section IV and conclusions are drawn
in Section V.

II. BACKGROUND

The signal (1) can be seen as the output y(t) = Cx(t), x ∈
R2n, C = [0, 1, 0, 1, 0, . . . , 1], of the linear, time-invariant
system described by

ẋ = Ax = diag
{[

0 ωi
−ωi 0

]}
x, i = 1, . . . , n , (2)

with unknown initial condition x(t0) and ωi’s. The method
proposed in Section III exploits samples of (1) with re-
sampling sampling time T to estimate the ω’s. We assume
that the re-sampling time T is defined as a multiple of the
hardware sampling time Ts, namely T = pTs, for some
p ∈ N≥1. Then we define the measurements vector

Yk :=


y(tk−2n)
· · ·

y(tk−2)
y(tk−1)

 = Ox(tk−2n), (3)

where tk = kT , i.e. y(tk) = y(kpTs), and

O :=


C

CAD
. . .

CA2n−1
D

 , AD := eAT . (4)

The characteristic polynomial of AD is

pAD
(λ) =

n∏
i=1

(λ2 − 2 cos(ωiT )λ+ 1)

= λ2n + a2n−1λ
2n−1 + · · ·+ a1λ+ 1, (5)

with symmetric coefficients, i.e. such that a2n−h = ah, h =
1, . . . , n−1. The coefficients ai of pAD

(λ) can be compactly
expressed as

a :=



1
a1

a2

...
a2n−2

a2n−1


=

[
1 0
0 S

]


1
a1

a2

...
an−1

an


= Ŝ

[
1
ac

]
(6)
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where Si is the i−th row of S ∈ R2n−1×n and the matrices
S, Ŝ and the coefficient vector ac are defined according to

Si :=

{
1 if i = j or 2n− i = j,

0 otherwise,
(7a)

Ŝ =

[
1 0
0 S

]
, (7b)

ac,i = ai = fi(ω), i = 1, . . . , n, (7c)

where fi(ω) =
∑

(−2)iQij(ω) is the sum of the
(
n
i

)
mono-

mials Qij(ω), j = 1, . . . ,
(
n
i

)
, with Qij(ω) obtained as the

product of the elements of the j−th combination without rep-
etition of i elements of the set {cos(ω1T ), . . . , cos(ωnT )}.
Equivalently, the fi(ω) corresponds to the coefficients of the
characteristic polynomial of AD in (5) for i = 1, . . . , n. The
above definitions allow to write

y(tk) = −Yk′a = −Yk′
[
1 0
0 S

] [
1
a′c

]
, (8)

and

Yk+1 =


y(tk−4n+1) · · · y(tk−2n)

...
...

y(tk−2n−1) · · · y(tk−2)
y(tk−2n) · · · y(tk−1)

a =−Ȳka. (9)

It can be easily proven, by observability of the system (2),
that rank(Ȳk) = 2n for almost all T > 0, i.e. Ȳk is full rank.
Then, the vector a can be readily evaluated by

a = −Ȳ −1
k Yk+1, (10)

collecting the first 4n data to build the matrix Ȳk. This yield
the true values of the parameters ai in finite time.

Remark 1: The ωi’s can be obtained from the ai’s finding
the zeros ζi ± j

√
1− ζ2

i ∈ (−1, 1) of the 2n order polyno-
mial Πn

i=1(λ2−2ζiλ+1) with ζi = cos(ωiT ) and, as shown
in Section III, with 0 < ωiT < π so that ω = arccos (ζi)/T .
Namely, it is sufficient to run a root finding algorithm on the
polynomial (5) with λ = ejα and α ∈ (0, 2π).

To render this method less sensitive to measurement noise,
it is possible to consider more than 2n samples y(tk)
piled in Ȳk exploiting pseudo-inverse to get estimates of a
minimizing the mean squared error.
To obtain the vector ac directly from the measures Yk it is
possible to define Ȳ ck as

Ȳk = [Yk−2n−1, Yk−2n, . . . , Yk] ,
[
Yk−2n−1, Ȳ

c
k

]
, (11)

yielding

ac = −
(
S′Ȳ ck

′Ȳ ck S
)−1

S′Ȳ ck
′ (Yk+1 + Yk−2n−1) . (12)

It is important to note that the numerical invertibility of the
matrix Ȳk is sensitive on the sampling time T . In fact, if T
is too small with respect to the period Ti of the sinusoids
Ȳk is ill-conditioned.

To briefly recall the hybrid observer H in [1] for the
estimation ac define

A0 =


0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 · · · · · · 0 1
0 · · · · · · · · · 0

 , B0 =


0
...
...
0
1

 , (13)

with A0 ∈ R2n×2n and B0 ∈ R2n. Then the flow and jump
maps of H with state

ξ =
[
â′c ζ ′ χ τ

]′ ∈ O, (14a)

where âc ∈ Rn, ζ ∈ R2n, χ ∈ R, τ ∈ R, are

˙̂ac = −γŜ′ζe,
ζ̇ = 0,
χ̇ = 0,
τ̇ = 1,

 if ξ ∈ C, (14b)

â+
c = âc,
ζ+ = A0ζ +B0χ,
χ+ = y,
τ+ = 0,

 if ξ ∈ D, (14c)

where Ŝ′ = [0, S′] ∈ Rn×2n, γ > 0 is the observer gain,
and the error e is given by

e(t, k) = y(tk) + ζ(t, k)′â = y(tk) + Y ′kŜ[1, âc(t, k)′]′.

Note that hybrid time domains are considered (see [14]),
meaning that each variable above is expressed as a function
of (t, k), where t is the flow time and k counts the jumps.
The flow set C and the jump set D are defined as

C , {ξ ∈ O : τ ∈ [0, T ]}, (14d)

D , {ξ ∈ O : τ ≥ T}. (14e)

ζ maintains the past 2n values of the input y, i.e. Yk =
ζ(t, k) whereas χ(t, k) = y(tk) for all t ∈ [tk, tk+1].
Note that 2n samples of y have to be fetched in ζ(0, 0)
before starting. By definition of jump and flow sets, the
observer resets are triggered each sample time T . The hybrid
formulation allows to easily take into account jumps at
sampling and continuous dynamics between them. The flow
map of âc has been selected to minimize the Lyapunov
function V (t, k) = ||ãc(t, k)||2 = ||a − âc(t, k)||2 via a
standard gradient algorithm which has been proved to yield
exponential convergence of the estimation error ãc(t, k) to
zero. The proof relies on the independence of the 2n column
vectors Yk, i.e. rank(Ȳk) = 2n. The observer is then very
simple and provides a continuous time estimate âc(t, k)
which exhibits no jumps. In fact, each new sample of y is
fetched in the ζ whereas the oldest one is discarded, and only
the flow vector field of âc is changed. It follows a standard
assumption necessary to estimate the ai’s and recalled by
Theorem in [1].

Assumption 1: The parameters of the signal (1) satisfy
Ei 6= 0, 0 < ωi < π/Ts and ωi 6= ωj for any i 6= j
with (i, j) ∈ {1, . . . , n}.
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Theorem 1 ([1]): Under the Assumption 1, the estimation
error ãc(t, k) = âc(t, k) − ac uniformly exponentially con-
verges to zero as k goes to infinity. �

We remark again that the observer H provides a continuous
time estimate âc(t, k) which exhibits no jumps. To avoid the
zero finding procedure discussed in Remark 1 it is possible
to evaluate dynamically ω substituting âc to ω̂ in the state χ
of H with the flow map

˙̂ω = −γ∇f(ω̂)′Ŝ′ζe, (15)

and jump map ω̂+ = ω̂, with e = y(tk) + ζ ′Ŝ[1, f(ω̂)′]′. In
this case, it can be proven that rank(∇f(ω̂)) < 2n if and only
if there exists j such that ωj = 0 or ωj = ωi for some i 6= j,
preventing the asymptotic convergence of the estimates. This
issue can be avoided adding a “repulsive” term among the
different ωi’s and the value zero in the jump or flow maps.
However, even in simulation, numerical approximations and
noise normally prevent this pathological behavior.
The parameters of the above observer are the number of
frequencies n, the gain γ, and the sampling time T , i.e. the
p ∈ N≥1 such that T = pTs. However, the sensitivity of the
performance with respect to γ is negligible in comparison
with the importance of n and T , the latter of which improves
convergence performances if properly chosen.

III. MAIN RESULT

To retrieve the number of frequencies n we propose
to exploit the rank of the matrix Ȳk considering a re-
sampling with different T on a moving window of input
past data. To this aim, we evaluate on-line the minimum
eigenvalue λmin(Ȳ ′kȲk) by re-sampling the past input data
with increasing p = 1, 2, . . . , T = pTs. This choice is
motivated directly by the proof of Theorem 1 that relies
on the positive-definiteness of the matrix Ȳ ′kȲk, i.e. on the
existence of a constant δ > 0 such that

ȲkȲ
′
k > δI,

with δ = λmin(Ȳ ′kȲk). Note that this selection speeds up
the “slowest” converging error ei = ωi − ω̂i. Nevertheless
there might be other values of T leading to faster transients.
To start with, we notice that the hardware sampling time Ts
limits the higher angular frequency that can be reconstructed
to ωmax := π/Ts by Nyquist-Shannon’s Theorem.

Lemma 1: Assume that ωi < ωmax for all i = 1, . . . , n
and that x0 excites all the modes1 of (2). Let Ȳk ∈ R2n̂×2n̂

be obtained by the samples y(tk) with sampling time T , then
i) rank(Ȳk) = 2n̂ if n̂ ≤ n and T < π/maxi{ωi}

ii) rank(Ȳk) < 2n̂ if n̂ = n and T = π/ωi for i = 1, . . . , n
iii) rank(Ȳk) < 2n̂ if n̂ > n and T < π/maxi{ωi}.

�

The items of Lemma 1 suggest a test for identifying the
correct n, which is related to the rank of the matrix Ȳ ′kȲk.

1Which is equivalent to the condition Ei 6= 0 for all i = 1, . . . , n.
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Fig. 1. Dependence of the condition number of Ȳk as a function of the
sampling time T and n̂ with the measured signal (18) and n = 3.

Coherently with this fact, we exploit the dependency on n̂
and T of the function

Γ(T, n̂) := |λmin(Ȳ ′kȲk)|−1,

where Ȳk ∈ R2n̂×2n̂ and (see (3)) Yk = [y(tk −
2n̂T ), . . . , y(tk − T )]′.

Remark 2: To retrieve the correct n, it is also possible to
invert the matrix Ȳk and obtain â using (10) for different n,
selecting the one which minimizes |y(tk)− âYk|. However,
the numerical computation of the minimum eigenvalue of
Ȳ ′kȲk more efficient.
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Fig. 2. Simulation result: convergence of the estimation error with different
sampling time T .

A illustration of the function Γ(T, n̂) is shown in Fig. 1
with

y(t) = sin(t 2π/0.7) + sin(t 2π/0.3) + sin(t 2π/0.2), (18)
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f(ω) =

 −2 cos (ω3T )− 2 cos (ω2T )− 2 cos (ω1T )
3 + 4 cos (ω3T ) cos (ω2T ) + 4 cos (ω3T ) cos (ω1T ) + 4 cos (ω1T ) cos (ω2T )
−4 cos (ω2T )− 4 cos (ω1T )− 4 cos (ω3T )− 8 cos (ω3T ) cos (ω1T ) cos (ω2T )

 , (16)

∇f(ω) =

 2 sin (ω1T )T 2 sin (ω2T )T 2 sin (ω3T )T
−4 sin (ω1T )T (cos (ω3T ) + cos (ω2T )) −4 sin (ω2T )T (cos (ω3T ) + cos (ω1T )) −4 sin (ω3T )T (cos (ω2T ) + cos (ω1T ))

4 sin (ω1T )T (1 + 2 cos (ω3T ) cos (ω2T )) 4 sin (ω2T )T (1 + 2 cos (ω3T ) cos (ω1T )) 4 sin (ω3T )T (1 + 2 cos (ω1T ) cos (ω2T ))


(17)

and Ts = 0.002. It is evident that for n̂ = n = 3 the first peak
corresponds to 0.1 that is half of the shorter period 0.2 among
the sinusoids composing y(t), namely 0.1 = π/maxi{ωi}. If
n̂ > n the value is extremely high denoting rank(Ȳk) < 2n̂.
Note as well the high values of Γ(T, n̂) for very small T
since the signal changes very little among different samples
and the columns of Ȳk are “numerically” (bad conditioned)
dependent.
From Fig. 1 it should be clear how the function Γ(T, n̂)
could help to select n̂ and T . More precisely the value of
T that minimizes Γ before the first spike is encountered
can be considered. In this example with the signal (18),
once n̂ = 3 has been selected, the optimum T is equal to
arg minT {Γ(T, n̂)} = 0.078. The performances of the esti-
mates provided byH using (15) and ω̂+ = ω in place of ˙̂ac =
−γŜ′ζe and â+

c = âc in (14b)-(14c), respectively, are shown
in Fig. 2, where the norms of the estimation error ||ω−ω̂|| for
different values of T ∈ {0.06, 0.07, 0.078, 0.085, 0.092}
are depicted. To implement (15) we have obtained (16) and
(17) using symbolic calculus software, and

e = y(tk)− Y ′kŜ
[

1
f(ω̂)

]
, Ŝ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0


.

We also show in Fig. 3 the time evolution of the estimates
with T = 0.078 which minimizes the function Γ(T, n̂)
selecting n̂ = 3, γ = 1, and ω̂i(0, 0) = i for i = 1, 2, 3.
For numerical reason we have selected γ = 1 and let H
flowing for an equivalent time of 10s among each sampling
time T . The same result can be obtained integrating the
flow map for T seconds, i.e. within the inter-sample time,
with γ = 10/T . However, to improve numerical integration
it is more convenient to select a smaller γ and a longer
“virtual” flowing time between jumps. This can be done on-
line accordingly to the computing power of the hardware
implementing H.
In the presence of noise it is possible to robustify the results
simply increasing the measurements, i.e. the length of Yk.
An example of the function Γ(T, n̂) when the signal (18)
is affected by additive uniformly distributed random noise
between [−0.2, 0.2] (equivalently to 20% of the sinusoidal
components amplitude) is shown in Fig. 4, where Γ(T, n̂)
is evaluated using an extra amount of samples, in number
of w, that are stacked at the bottom of Yk ∈ R(2n+w)×2n.
Note how the difference of Γ(T, n̂) among the correct value

n̂ = 3 = n and n̂ = 4 > n is smaller than in Fig. 1.
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Fig. 3. Estimated angular frequencies when n̂ = n, T = 0.078, γ = 1,
and ω̂i(0, 0) = i for i = 1, 2, 3.

We have discussed how to select n̂ and T analyzing a
window of the past data via the Γ function. We propose now
a numerical technique to detect the correct value of n intro-
ducing a n-dimensional vector I(k) whose i-thcomponents
take values in {0, 1, 2}, for different j, T = jTs, as follows

Ii(j)=



0 if Ii(j − 1) = 0 ∧ gi(j) > SaGs,i,

1 if (I(j − 1) = 1 ∧ gi(j) < SbGs,i)∨
(Ii(j − 1) = 0 ∧ gi(j) < SaGs,i)

2 if ((I(j − 1) = 1 ∧ gi(j) ≥ SbGs,i)∧
Ii+1,...,N (j) < 1) ∨ Ii(j − 1) = 2

(19)

where gi(j) = Γ(jTs, i), Gs,i = Γ(Ts, i), Sb > Sa > 0
are thresholds values and N is the maximum number of
frequency of y. The jump map of the variable Ii is such
that whenever Ii = 2 then n = i. In fact if i < n, the
function Γ(jTs, i) decreases as j grows to reach a minimum
and then it increases as jTs approaches π/ωmax.

The threshold value Sa and Sb have been added to detect
that a first minimum has been reached. An example of the
relay-like graph of Ii is shown in Fig. 5.
Assuming that n < N and a data buffer yb of the past
input y to evaluate Ȳk for different T is properly defined and
measured, the algorithm to select n̂ and T is the following.

Algorithm 1
1) Select N , Sa, Sb. Set n̂ = 0, j = 2, Ii(1) = 0 and

evaluate Gs,i = Γ(Ts, i) for i = 1, . . . , N .
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Fig. 4. The function Γ(T, n̂) in presence of additive noise on the signal
(18) considering extra samples (w = 30).

2) While maxi=1,...,n Ii(j) < 2 do
Evaluate Ii(j) by (19) with T = jTs and for i =
1, . . . , N . Set j = j + 1.

3) n̂ = argmaxi=1,...,N Ii, T = argminτ Γ(τ, n̂) = jTs.
Remark 3: The algorithm can be readily extended to the

case where N dynamically grows and the a priori bound
n < N is not known.
To continuously evaluate on-line n̂ and T , we propose the
next algorithm that exploits ac in (12) to verify if the ω or
n is changed.

Algorithm 2
For each new sample:

if n̂ = 0: run Algorithm 1 and evaluate ac
else : if |e(t, k)| = |y(tk) + Y ′kŜ[1, âc(t, k)′]′| > Se||y(tk)||

set n̂ = 0 and empty the data buffer yb.

The parameters that have to be selected are Sa > 0, Sb > 0
such that Sa < Sb, and Se > 0. An example is discussed
in Section IV. Note that Se limits the number of time the
Algorithm 1 is performed.

Theorem 2: Let Assumption 1 hold and assume that ω(t)
and n(t) are piecewise constant. Perform the Algorithm 2
to retrieve n̂ and T at each new sample of y and, whenever
n̂(t) > 0, evaluate the dynamics (14) of H with initial
conditions ω̂i(0), i = 1, . . . , n̂, evaluated as the roots of the
characteristic polynomial (5) with coefficients yield by (11).
Let ãc(t, k) := ac−a(t, k), then whenever ω(t) and n(t) do
not change long enough such that n̂(t) = n, t ∈ [tk, tk+1],
it holds

||ãc(t, k)|| ≤ ||ãc(tk̄, k̄)||eσ(t)(t−tk̄−4nT (tk)), (20)

with σ(t) := λmin(Ȳ ′kȲk), and

Yk := [y(tk − 2nT (tk)), . . . , y(tk − T (tk)), y(tk)]′,

Γi

Ii

2

1

0

SbSa Gs,iGs,iGs,i

Fig. 5. The graph of Ii.
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Fig. 6. The signal y(t) with changing frequencies.

otherwise if n̂(t) > 0, then

|e(t, k)| = |y(tk) + Y ′kŜ[1, âc(t, k)′]′| ≤ Se||Yk||. (21)

IV. NUMERICAL SIMULATIONS

We show the effectiveness of the observer to retrieve the
exact number of frequencies with the signal (see Fig. 6)

y(t)=

 sin(2π/0.7 t) + sin(2π/0.5 t) t ∈ [0, 5)
sin(2π/1.5 t)+sin(2πt)+sin(2π/0.3 t) t ∈ [5, 10)

sin(2π/0.4 t) + sin(2π/0.2 t) t ≥ 10.
(22)

The observer thresholds have been selected equal to
[Sa, Sb, Se] = [0.7, 0.8, 10−4]. Note that the selection of
these parameters do not depend on the amplitude and the
frequency of the sinusoidal terms in (22), but from the
signal/noise ratio.
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Fig. 8. The estimated number of frequencies and the associated T with
the signal (22).

We also run the simulation example where a uniformly
distributed random noise between [−0.3, 0.3] is added to
the signal (22). The estimated frequencies are just like in
Fig. 8, however, the observer thresholds have been selected as
[Sa, Sb, Se] = [0.3, 0.8, 0.8] and the matrix Yk ∈ R2n+40 has
been enlarged to contain 40 extra samples. Note the Se (see
the Algorithm 2) need to be increased with measurement
noise.

V. CONCLUSIONS

We have proposed a numeric procedure to estimate the
number of frequencies n of the signal (1) and to select
the re-sampling time T that improves the performances of
the hybrid observer for multiple frequencies estimation in
[1]. The proposed method has been tailored for numerical
implementation. We have given theoretical and numerical

evidence that the function Γ(T, n̂) can be exploited to
retrieve n and select T . Numerical simulations have been
performed to show the effectiveness of the approach, shown
to be robust with respect to measurement noise.

REFERENCES

[1] D. Carnevale, S. Galeani, and A. Astolfi, “Hybrid observer for multi-
frequency signals,” in IFAC Workshop Adaptation and Learning in
Control and Signal Processing (ALCOSP), Elsevier, Ed., vol. 10,
Antalya, 2010.

[2] S. M. Kay and S. L. Marple, “Spectrum analysis – a modern perspec-
tive,” Proc. IEEE, vol. 69, no. 11, pp. 1380–1419, 1981.

[3] P. Regalia, “An improved lattice-based adaptive iir notch filter,” IEEE
Trans. Signal Processing, vol. 39, pp. 2124–2128, Sept. 1991.

[4] S. Bittanti and S. Savaresi, “On the parameterization and design of
an extended kalman filter frequency tracker,” IEEE Trans. Automat.
Contr., vol. 45, no. 9, pp. 1718–1715, 2000.

[5] L. Hsu, R. Ortega, and G. Damm, “A globally convergent frequency
estimator,” IEEE Trans. Autom. Contr., vol. 44, no. 4, pp. 698–713,
1999.

[6] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence
and Robustness, U. S. River, Ed. NJ, Prentice–Hall, 1989.

[7] X. Xia, “Global frequency estimation using adaptive identifiers,” IEEE
Trans. Autom. Contr., vol. 47, no. 7, pp. 1188–1191, 2002.

[8] G. Obregon-Pulido, B. Castillo-Toledo, and A. Loukianov, “A globally
convergent estimator for n-frequencies,” IEEE Trans. Autom. Contr.,
vol. 47, no. 5, pp. 857–863, 2002.

[9] R. Marino and P. Tomei, “Global estimation of n unknown frequen-
cies,” IEEE Trans. Autom. Contr., vol. 47, no. 8, pp. 1324–1328, 2002.

[10] D. Carnevale and A. Astolfi, “A minimal dimension observer for global
frequency estimation,” in Proc. IEEE American Control Conference,
Seattle, Washington, 2008, pp. 5269–5274.

[11] R. Marino and G. L. Santosuosso, “Regulation of linear systems
with unknown exosystems of uncertain order,” IEEE Trans. Automatic
Control, vol. 52, no. 2, pp. 352 –359, feb. 2007.

[12] J. Hoagg, M. Santillo, and D. Bernstein, “Discrete-time adaptive com-
mand following and disturbance rejection with unknown exogenous
dynamics,” Automatic Control, IEEE Transactions on, vol. 53, no. 4,
pp. 912 –928, may 2008.

[13] S. Galeani, D. Carnevale, and A. Astolfi, “An adaptive hybrid robust
regulator,” in IEEE Conf. Decision and Contr., 2011, submitted.

[14] R. Goebel, R. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE Control Systems Magazine, vol. 29, pp. 28 – 93, 2009.

6096


