
Trajectory Planning for Manipulators based on the Optimal

Concatenation of LQ Control Primitives

Michael Steinegger⋆, Benjamin Passenberg⋆, Marion Leibold⋆, and Martin Buss⋆

Abstract— A trajectory planning method for robotic systems
consisting of kinematic chains is introduced based on the
concatenation of control primitives. The parameterized, opti-
mal motion primitives are derived from a parametric, linear-
quadratic optimal control problem, which is formulated for the
input-to-state and input-to-output linearized robot dynamics.
The primitives can be concatenated, such that the resulting
trajectory is optimal with respect to desired intermediate
points. Here, sub-optimal intermediate points are found by
a heuristic motion planning algorithm and are iteratively
inserted, if necessary, to avoid collisions with obstacles in the
robot workspace. All parameters for concatenated primitives
are uniquely determined by the solution of a system of param-
eterized linear equations. In comparison to ordinary approaches
based on optimal control, the computational effort for trajectory
planning is reduced, since the system of linear equations can
be solved on-line by algebraic computations.

I. INTRODUCTION

Trajectory planning is one of the basic problems in

robotics. The planning process is often carried out in high

dimensional configuration spaces and adaptations to changes

in the robot workspace have to be determined in real-time.

Furthermore, the generated trajectory is often requested to

minimize a desired cost criterion under the restriction that

obstacles are avoided on the way to the desired final state.

One method to address the trajectory planning problem

consists in applying optimal control theory. Optimal control

provides powerful methods to compute optimal trajectories

for linear as well as nonlinear, high-dimensional systems

while taking the system dynamics and other possible con-

straints or limitations into account. However, motion plan-

ning based on optimal control is in general only feasible in

the case of obstacle-free environments and for non-real-time

applications if the system dynamics are nonlinear and highly

complex.

In order to reduce the complexity of the system dynamics

and the computational effort for the planning process, there

has been an increasing interest in robot control based on

control primitives. The idea of primitive-based control is

to generate trajectories out of several primitives encoding

simple and stereotypical motions. To achieve complex tra-

jectories, primitives are often adapted by parameters and

sequenced or superimposed. Primitives based on dynamical

⋆Michael Steinegger, Benjamin Passenberg, Marion Leibold, and
Martin Buss are with the Institute of Automatic Control En-
gineering, Technische Universität München, 80290 München, Ger-
many. michael.steinegger@mytum.de, {passenberg,
marion.sobotka}@tum.de, m.buss@ieee.org

systems encoding the desired trajectory in a landscape of

attractors are introduced in [1] and specified in [2] as

Dynamic Movement Primitives (DMP). The trajectory pro-

files can be adapted by parameters which makes DMPs

attractive for imitation learning approaches as in [3]–[5].

In [6], movement-patterns are used for motion capturing

and learning, where intermediate points are extracted from a

human movement trajectory. Spline optimization is applied in

order to compute the trajectory, passing through the extracted

fixed intermediate points. Nonlinear contraction theory is

applied in [7] for a smooth concatenation of DMP trajectories

for an unmanned aerial vehicle (UAV). A similar approach

is presented in [8], where drawing tasks are reproduced

by switching between linear dynamical systems delivering

different trajectory samples.

Motion primitives inspired by experimental observations

on the motion generation of vertebrates are introduced in

[9]. There, primitives are defined as linear systems with

different equilibria. By a suitable linear combination of the

system outputs, desired motions of a manipulator with two

degrees of freedom (DOF) are generated. In [10], a primitive-

based hybrid control approach is presented, in which the

dynamics of nonlinear systems are quantized in terms of

time-parameterized trajectory primitives. The primitives are

concatenated by a maneuver automaton to generate feasible

trajectories for an UAV. A method based on the non-optimal

concatenation of feedback LQ regulators around set-points

of the linearized dynamics is presented in [11] for planning

stabilizing trajectories.

In this paper, an approach is presented based on optimal

control primitives for collision-free trajectory planning. In

[12], it is shown that the optimal solution of a finite-horizon

linear-quadratic optimal control problem is a parametrized

primitive that is given in the form of a feedback-feedforward

control. This paper introduces how several of these primitives

can be optimally concatenated, such that intermediate points

are met. When applying the concept to robotics, intermediate

points are determined with a heuristic motion planner to

avoid collisions with obstacles. Since the intermediate points

are not optimal, the overall trajectory is sub-optimal. The

optimal concatenation of primitives is calculated in real-time

by evaluating a set of algebraic equations.

The paper is organized as follows: Sec. II introduces

parametric LQ control primitives, defined for linearized robot

dynamics. Furthermore, constraint equations for the optimal

concatenation of primitives in joint space are derived. In Sec.

III, the primitives are extended for motions in task space. The

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2837

planning scheme for collision-free trajectories is described in

Sec. IV and evaluated in Sec. V.

II. JOINT SPACE PRIMITIVES FOR LINEAR AND

LINEARIZABLE SYSTEMS

We consider the linear time-invariant dynamical system
{

ż(t) = Az(t) +Bv(t)
,

y(t) = Cz(t)
(1)

where z(t) ∈ R
m is the system state, v(t) ∈ R

n is the

control input, y(t) ∈ R
s is the output, and m = 2n. The

system matrices are given by A ∈ R
m×m, B ∈ R

m×n,

and C ∈ R
s×m. The objective of the LQ optimization is to

find an optimal control input v∗(t) for a given time interval

t ∈
[

t0, tf
]

, such that the quadratic performance index

Γ(z, v) = Θ0 + µT
0 Π0 +Θf + µT

f Πf +

tf
∫

t0

Φ(z, v) dt (2)

is minimized. The weighting function Φ(z, v) is defined as

Φ(z, v) =
1

2
zT (t)Qz(t)+zT (t)Sv(t)+

1

2
vT (t)Rv(t) , (3)

with the weighting matrix S ∈ R
m×n, the symmetric,

positive semi-definite matrix Q ∈ R
m×m, and the symmetric,

positive definite matrix R ∈ R
n×n. The functions Θk,

k ∈ {0, f} penalize the deviation from the initial and final

states and they are defined with symmetric, positive semi-

definite matrices Wk ∈ R
m×m as

Θk =
1

2

(

z(tk)− zk
)T

Wk

(

z(tk)− zk
)

. (4)

The affine constraints Πk on the initial and final state

Πk := Cz(tk)− yk = 0s×1 (5)

are adjoined by constant multipliers µk ∈ R
s. Note that if

the initial and final states are fully assigned, the functions

(4) are equal to zero since z(t0) = z0 and z(tf) = zf .

Applying calculus of variations yields the necessary con-

ditions for a minimum of the performance index

ż(t) = Az(t) +Bv(t) (6)

λ̇(t) = −Qz(t)− Sv(t)−ATλ(t) (7)

0 = Rv(t) + ST z(t) +BTλ(t) (8)

λ(t0) = −W0z(t0) +W0z0 − CTµ0 (9)

λ(tf) = Wfz(tf)−Wfzf + CTµf . (10)

The state and costate differential equations can be written as

[

żT (t) λ̇T (t)
]T

= H
[

zT (t) λT (t)
]T

, (11)

where λ(t) ∈ R
m and H denotes the Hamiltonian matrix

H =

[

A−BR−1ST −BR−1BT

−Q+ SR−1ST SR−1BT −AT

]

.

It has been shown [12, Theorem 1], that all solutions of

(11) can be parameterized in terms of two parameter vectors

η ∈ R
m and ρ ∈ R

m under the assumptions that (A,B)

is controllable and H has no eigenvalues on the imaginary

axis. The parametric state and costate trajectories are then

defined as
[

z(t)
λ(t)

]

=

[

Im
P⊕

]

eA⊕tη +

[

Im
P⊖

]

eA⊖(t−tf)ρ , (12)

where Im is the identity matrix of size m × m. The

matrix P⊕ ∈ R
m×m denotes the positive semi-definite and

symmetric maximal solution and P⊖ ∈ R
m×m denotes the

negative semi-definite and symmetric minimal solution of the

continuous-time algebraic Riccati equation (CARE)

PA+ATP −
(

S + PB
)

R−1
(

ST +BTP
)

Q = 0 . (13)

With the two extremal solutions, the closed-loop system

matrices Ah ∈ R
m×m, h ∈ {⊕,⊖} can be written as

Ah = A−BKh , (14)

where the gain matrices Kh ∈ R
n×m are defined as

Kh = R−1
(

ST +BTPh

)

, (15)

and the eigenvalues of A⊕ and A⊖ are stable and anti-stable,

respectively. The main idea of the parametric solution is

to combine the stabilizing solution P⊕ and anti-stabilizing

solution P⊖ of the CARE to achieve an optimal point-to-

point movement from an initial to a desired final point. The

resulting parameterized optimal control law is [12]

v∗(t) = −K⊕e
A⊕tη −K⊖e

A⊖(t−tf)ρ , (16)

which we define as a control primitive for linear systems.

A. Intermediate Point Constraints

The LQ primitive (16) drives the linear system (1) from its

initial state z0 to the desired final state zf . Now, we introduce

a state variable x(t) ∈ R
n and define the system state as

z(t) =
[

xT (t) ẋT (t)
]T

. The new state x(t) is considered

as a position vector and ẋ(t) as the associated velocities.

If the trajectory z(t) should be forced to pass through

some specific points or if obstacles should be avoided on the

way to the final state, it is necessary to include intermediate

points to the trajectory planning process. The intermediate

points specify the desired position values xd = x(td) at a

desired time td and z(td) is considered as the transition state

between two control primitives. The velocities ẋ(td) are not

specified, such that the optimization chooses them optimally

to guarantee a minimum value of the performance index.

To derive the necessary conditions at the intermediate

points for the optimal concatenation of several primitives,

z1(0) z1(tf,1) = z2(0)

z2(tf,2)
zL(tf,L)

zN (tf,N)z1(t1)

z2(t2)
zN (tN)

t

0 t
d
1 t

d
2 t

d
L

tf

Fig. 1. Concatenation of N trajectories for the intermediate point problem.

2838

we assume that a number of L intermediate positions xd
j =

x(tdj), j ∈ {1, . . . , L} must be met on the way to the final

state z(tf). The desired time at which the corresponding

intermediate point xd
j is passed, is denoted by tdj .

Referring to Fig 1, a trajectory z(t) is now divided into

N = L + 1 sub-trajectories zi(ti), i ∈ {1, . . . , N} which

should be generated by the associated control primitives

vi(ti) = −K⊕e
A⊕tiηi −K⊖e

A⊖(ti−tf,i)ρi . (17)

Each primitive vi(ti) is parameterized by the pair of parame-

ter vectors (ηi, ρi) and we define a time horizon ti ∈ [0, tf,i]
for each primitive, where ti = t− tdi−1 and tf,i = tdi − tdi−1

with td0 = tf,0 = t0 = 0 and tf,N = tf . Furthermore, the

states zj(tf,j) and zj+1(0) are equal to guarantee a smooth

transition between two sub-trajectories.

An optimal trajectory for a two-point boundary-value

problem can be parameterized by η and ρ. In the case of a

boundary-value problem with L intermediate points, in total

2N parameter vectors have to be specified with a total of

2Nm unknowns. The boundary conditions

z1(0) = z0 (18)

zN (tf,N) = zf , (19)

the affine constraints at the jth intermediate point with the

matrix Ω =
[

In 0n×n

]

Z(z(tf,j)) := Ωzj(tf,j)− xd
j = 0n×1 (20)

Ωzj+1(tj+1 = 0)− xd
j = 0n×1 , (21)

and the requirement of a continuous transition velocity at

each intermediate point

Ψ
(

zj(tf,j)− zj+1(tj+1 = 0)
)

= 0n×1 , (22)

Ψ =
[

0n×n In
]

, provide in total (2m + 3Ln) equations.

The Ln missing constraints, which are required to specify

all 2Nm parameters, are derived from the theory of optimal

control problems with intermediate constraints (see [13, pp.

101] for details). Adjoining (20) to the performance index (2)

by some multipliers κj ∈ R
n and applying the calculation

of variations yields the optimality condition for the costates

λj(tj) and λj+1(tj+1) at the transition point xd
j

λT
j (tf,j) = λT

j+1(tj+1 = 0) + κT
j

∂Z(z(t))

∂z(t)

∣

∣

∣

t=td
j

. (23)

Due to the fact that the affine constraints (20) at the inter-

mediate point only affect the position values, the derivatives

of Z(z(tf,j)) with respect to the velocities ẋ(t) is equal to

zero. This gives the Ln additional constraints

Ψ
(

λj(tf,j)− λj+1(tj+1 = 0)
)

= 0n×1 . (24)

This requires the Lagrangian multipliers (costates) for the

velocities to be continuous at t = tdj .

B. Parameter Computation

The 2N parameter vectors for the given optimization

problem can be specified by use of (18)-(22) and (24).

To simplify the notation, we define E{⊕,i} = eA⊕tf,i and

E{⊖,i} = e−A⊖tf,i . First, the state equation in (12) is

evaluated at the boundary conditions (18)-(19), which yields

z1(0) = z0 = η1 + E{⊖,1}ρ1 (25)

zN (tf,N) = zf = E{⊕,N}ηN + ρN . (26)

With the affine constraints (20) and (21) at the intermediate

point xd
j and (12), the following is obtained:

xd
j = Ω

(

E{⊕,j}ηj + ρj
)

(27)

xd
j = Ω

(

ηj+1 + E{⊖,j+1}ρj+1

)

. (28)

The requirement of a continuous velocity at the transition

between two sub-trajectories zj(tj) and zj+1(tj+1) gives

0n×1 = Ψ
(

(E{⊕,j}ηj + ρj)

−(ηj+1 + E{⊖,j+1}ρj+1)
)

,
(29)

and the last constraint equation (24) with (12) results in

0n×1 = Ψ
(

(P⊕E{⊕,j}ηj + P⊖ρj)

−(P⊕ηj+1 + P⊖E{⊖,j+1}ρj+1)
)

.
(30)

Without loss of generality, we restrict the notation of (25)-

(30) to the case N = 2 for a compact representation

[

zT0 (xd
j)

T (xd
j)

T 0T2n×1 zTf
]T

= Ξ









η1
ρ1
η2
ρ2









, (31)

Ξ =

















Im E{⊖,1} 0m×m 0m×m

ΩE{⊕,1} Ω 0n×m 0n×m

0n×m 0n×m Ω ΩE{⊖,2}

ΨE{⊕,1} Ψ −Ψ −ΨE{⊖,2}

ΨP⊕E{⊕,1} ΨP⊖ −ΨP⊕ −ΨP⊖E{⊖,2}

0m×m 0m×m E{⊕,2} Im

















.

The unknown parameters are uniquely determined by the

solution of (31) since the matrix Ξ is non-singular.

In the presented example of the (L + 2)-point boundary-

value problem, the initial and final states were fully assigned

and thus Θ0,1 = Θf,N = 0. Note that Θk,i obtained from

(4) is the weighting function of the initial state zi(0) or

final state zi(tf,i) associated with the ith primitive. However,

the method can also be applied to other LQ optimization

problems, e.g. fully assigned initial state and quadratically

weighted final state. In this case, the weighting function

Θf,N (4) must also be considered in the performance in-

dex (2) for the N th primitive, which yields the additional

condition λN (tf,N) = Wf,NzN (tf,N) −Wf,Nzf from (10)

for a minimum. With (12) this condition can be written as
(

P⊕ −Wf,N

)

E{⊕,N}ηN

+
(

Wf,N − P⊖

)

ρN +Wf,Nzf = 0 .
(32)

Since only the initial state is assigned, condition (26) and

therefore the last m rows of (31) are replaced by (32). If the

2839

initial state is weighted the necessary minimum conditions

λ1(0) = −W0,1z1(0)+W0,1z0 obtained from (9) for the first

primitive are considered. This constraint equation together

with (12) replaces (25) and the first m rows of (31).

The previously defined time tdj , at which the intermediate

position xd
j is passed, was assumed to be prescribed up

to now. If tdj is not explicitly specified, the Hamiltonian

H(z, v, λ, t) = Φ(z, v) + λT (t)
(

Az(t) + Bv(t)
)

must be

continuous at tdj [13, p. 101], which yields the constraint

Hj(zj , vj , λj , tf,j) = Hj+1(zj+1, vj+1, λj+1, 0). With (12),

(16), and tf,j = tdj − tdj−1, this additional constraint can be

solved in parallel with (31) for the unknowns tdj , ηi, and ρi.

C. Optimal Cost

The integral term of (2) can be analytically solved (see

[12, Section 4.1]). With the parametric equations (12), the

value of (2) for the ith control primitive is computed as

Γi =

[

αi

βi

]T [

DTG −DTF

−FD F

] [

αi

βi

]

, (33)

where αi =
[

ηTi ρTi
]T

, βi =
[

zTi (0) zTi (tf,i)
]T

, and the

matrices D, F , G are given by

D =

[

Im E{⊖,i}

E{⊕,i} Im

]

, F =

[

W0,i 0m×m

0m×m Wf,i

]

,

G =

[

W0,i + P⊕

(

W0,i + P⊖

)

E{⊖,i}
(

Wf,i − P⊕

)

E{⊕,i} Wf,i − P⊖

]

.

The entire costs are computed by solving (33) and summing

up the costs of the sub-trajectories. Note that W0,1 and Wf,N

are zero in the case of fully assigned initial and final states. If

the initial or final state is quadratically weighted in (2) then

W0,1 > 0 or Wf,N > 0. If the number of primitives is N > 2
all matrices Wk,b of (4) with k ∈ {0, f}, b ∈ {2, . . . , L} are

equal to zero and the final state zi(tf,i) can be obtained by

solving (12) with the ith pair of parameters.

So far, the planning method based on the concatenation of

LQ primitives was defined for linear dynamics. To control a

manipulator with primitives (17), we introduce the nonlinear

robot dynamics and the required feedback linearization.

D. Joint Space Model

The dynamics of a manipulator in joint space are given

by a second-order differential equation [14, p. 171]:

τ(t) = M(q(t))q̈(t) + c(q(t), q̇(t)) + g(q(t)) , (34)

where q(t) ∈ R
n is the vector of joint angles, M(q(t)) ∈

R
n×n is the positive-definite and symmetric inertia matrix,

c(q(t), q̇(t)) ∈ R
n is the vector of centrifugal and coriolis

torques, g(q(t)) ∈ R
n is the vector of gravity torques and

τ(t) ∈ R
n is the vector of torques applied to the joints.

By introducing an additional state variable p(t) = q̇(t) the

system (34) can be converted to the first-order system














[

q̇(t)
ṗ(t)

]

=

[

p(t)
−M(q(t))−1

(

γ(q(t), p(t))− u(t)
)

]

,

y(t) = ζ(q(t))

(35)

where γ(q(t), p(t)) = c(q(t), p(t)) + g(q(t)), u(t) = τ(t),
and y(t) ∈ R

s, s ≤ n is the output of the system. The

function ζ(·) is known as forward kinematics, specifying the

transformation from joint space to task space coordinates.

E. Input-to-State Feedback Linearization

Controlling the system state of a manipulator with control

primitives of the form (16) requires a linearization of the

nonlinear state equation. It can be shown that the robot dy-

namics given by (35) are input-to-state feedback linearizable

([15, pp. 213]) and the feedback control results in

u(t) = M(q(t))v(t) + γ(q(t), p(t)) , (36)

where v(t) is the control input for the linearized system and

the linear relation is given by v(t) = ṗ(t). The dynamics of

the state variable z(t) =
[

qT (t) pT (t)
]T

with respect to

the new control input can be written in the form (1) with

A =

[

0n×n In
0n×n 0n×n

]

, B =

[

0n×n

In

]

. (37)

Based on the performance index (2) and the linearized system

dynamics with the state space realization (1) and (37), the

two extremal solutions of (13) and the closed-loop matrices

(14) with (15) can be computed. Furthermore, it is possible

to directly apply the trajectory planning method of Sec. II-A

and Sec. II-B for the linearized manipulator dynamics, since

x(t) = q(t) and ẋ(t) = p(t).

F. Control Primitives for Nonlinear Dynamics

The concatenation of primitives derived from (17) yields

the overall trajectory, which is optimal with respect to the

included intermediate points. To apply the LQ primitives to

the nonlinear system (35), (17) is inserted in (36), which

leads to the ith primitive for the manipulator (35)

ui(ti) = M(q(ti))vi(ti) + γ(q(ti), p(ti)) (38)

in each time interval ti ∈ [0, tf,i].
An optimal solution delivers minimal costs for a weighted

combination of the state z(t) and input trajectories v(t). This

means for the manipulator (35) that the joint angles q(t), the

angular velocities p(t), and the angular accelerations ṗ(t)
are minimized over time in configuration space, since z(t) =
[

qT (t) pT (t)
]T

and v(t) = ṗ(t). However, it is not possible

to optimize the control u(t) of the nonlinear system.

III. TASK SPACE PRIMITIVES

The derivation of task space control primitives driving the

linear system (1) from an initial state z(0) to a final state

z(tf) such that the output y(tf) reaches a desired value is

similar to the procedure presented in the previous section.

To apply the primitive-based control method in the case

of controlling the end-effector of a manipulator towards

a desired Cartesian position, linearization of the mapping

between the input and the output of a nonlinear system is

2840

required. It can be shown, that the system (35) is input-

to-output linearizable with relative degree rl = 2, l ∈
{1, . . . , s}. The result of the feedback linearization for

multiple-input and multiple-output systems is given by

ÿ(t) = ξ(q(t), p(t)) + Λ(q(t))u(t) , (39)

where the vector ξ(q(t), p(t)) and matrix Λ(q(t)) contain

the Lie-derivatives of (35) as defined in [15, pp.229]. The

computation yields the solutions

ξ(q(t), p(t)) = J̇(q(t))p(t)

− J(q(t))M(q(t))−1γ(q(t), p(t))
(40)

Λ(q(t)) = J(q(t))M(q(t))−1 (41)

with the Jacobian matrix J(q(t)) = ∂ζ(q(t))
∂q(t) . The input-to-

output linearization provides the linear relation v(t) = ÿ(t)
between the Cartesian acceleration of the end-effector and

the new control input v(t) for the linearized system. This lin-

ear equation can be written in the state space form of a linear

system (1) with the state variable z(t) =
[

yT (t) ẏT (t)
]T

,

the matrices A and B as defined in (37), and the output

matrix C =
[

In 0n×n

]

. The procedure presented in Sec.

II is applied to compute the parameters for task space

primitives. The only difference is that the state variable

now contains the Cartesian position and velocity and the

intermediate point xd
j now specifies the position of the end-

effector instead of the joint angles. Solving (39) for u(t) and

applying a control primitive (17) yields

ui(ti) = Λ(q(ti), p(ti))
−1

(

vi(ti)− ξ(q(ti), p(ti))
)

, (42)

which represents the ith control primitive for the nonlinear

robot system. In the case of task space primitives, optimality

refers to the position y(t), velocity ẏ(t), and acceleration

ÿ(t) of the end-effector in Cartesian coordinates.

IV. OBSTACLE AVOIDANCE

In the previous sections, it has been shown how primitives

can be concatenated in order to obtain an optimal trajectory

with respect to a finite number of intermediate points. Adding

intermediate points with free or fixed time, it can be ensured

that collision-free trajectories are found in the presence of

static or moving obstacles in the manipulator workspace.

It is in general unknown where to place the intermediate

points to obtain a collision-free trajectory. Therefore, the pre-

sented control method is combined with a heuristic motion

planning algorithm as presented in [16]. The main idea is to

depict samples of kinematic paths derived from a Rapidly-

Exploring Random Tree (RRT) if collisions were detected.

The complete algorithm proceeds as follows: In a first step,

the RRT algorithm finds a collision-free kinematic path from

the initial to the final state. Afterwards, one single primitive

is considered generating the trajectory between the initial

state and final state and the resulting trajectory is checked

for collisions. If a collision was detected at time step tc, the

configuration-time sample from the kinematic path whose

time stamp is closest to tc is added as an intermediate point.

Now, the trajectory generated by the concatenation of two

control primitives is computed and another intermediate point

is added to the planning process if a collision occurred. This

procedure is repeated until a collision-free overall trajectory

is found. The resulting trajectory is an optimal one for

the specific choice of intermediate points. However, the

intermediate points are not chosen optimally, such that the

trajectory is sub-optimal.

V. SIMULATION EXAMPLE

The proposed method is applied to a simple manipulation

task of a 3-DOF-manipulator, where the planning process

is carried out in joint space under consideration of two

static obstacles in the workspace. Referring to Fig. 2, the

task objective is to control the manipulator from its ini-

tial state z0 =
[

qT (0) pT (0)
]T

to the final state zf =
[

qT (tf) pT (tf)
]T

and the trajectory must pass through

the intermediate configuration q(ta). The initial and final

joint velocities p(0) and p(tf) are equal to zero. The joint

velocities p(ta) at the intermediate point are not specified and

optimized during the planning process. The times tdj for the

intermediate points are fixed since they were derived from

the configuration-time samples from the RRT-algorithm.

The resulting state trajectories, joint accelerations, as well

as the intermediate configurations added by the heuristic

planning algorithm (marked as red crosses) are illustrated

in Fig. 3. There, the joint accelerations show corners at

all intermediate states but are continuous. This is related

to the fact that the intermediate configurations are assigned

and the angular velocities are continuous by virtue of (22).

Solving (8) for v(t) considering (24) and (37) in the resulting

equation, and with the linear relation v(t) = ṗ(t) obtained

from the input-to-state linearization, it can be concluded that

the angular accelerations are always continuous.

Table I lists the computational effort for the parameter

computation of all primitives generating the overall trajectory

and the time needed for the computation of the resulting tra-

jectories, collision checking and integration of the differential

equation (35). The small computational effort is related to

the fact that the closed-loop matrices A⊖ and A⊕ as well

as the extremal solutions P⊕ and P⊖ of the CARE (13) are

computed off-line. Since the constraint equations (25) - (30)

for the primitives can be automatically derived and arranged

in the form of (31), if intermediate trajectory points must

be met, the only computations that must be carried out on-

line are to evaluate the matrix exponentials in (31), solve the

system of linear equations for the unknown parameters, and

then check the resulting trajectory for collisions.

(a) t = 0s (b) t = ta = 3s (c) t = tf = 6s

Fig. 2. Initial, intermediate, and final configuration of the manipulator.

2841

a) joint angles b) angular velocities c) angular accelerations d) Animation of the trajectory

t [s]t [s]t [s]

-4

-3

-2

-2

-2

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

7

q 1
(r

ad
)

q 2
(r

ad
)

q 3
(r

ad
)

q̇ 1
(r

ad
/s

)
q̇ 2

(r
ad

/s
)

q̇ 3
(r

ad
/s

)

q̈ 1
(r

ad
/s
2

)
q̈ 2

(r
ad

/s
2

)
q̈ 3

(r
ad

/s
2

)

(1) first attempt (0 IP) (2) second attempt (1 IP)

(3) third attempt (2 IP) (4) final attempt (3 IP)

Fig. 3. Joint angles (a), angular velocities (b), and angular accelerations (c) obtained from concatenated primitives with boundary values and intermediate
configuration (black dots). The intermediate points (IP) added by the planning algorithm to guarantee a collision-free trajectory are marked with red crosses.
The resulting task space trajectories with the iteratively added IP are shown in (d1)-(d4), where (d4) corresponds to the joint angles (a).

TABLE I

AVERAGE COSTS AND COMPUTATIONAL TIMES.

Description Quantity

Kinematic path 9.4 s

Parameter computation 16.5 ms

Trajectory computation 0.81 s

Collision Checking 17,7 s

Total computational time 28 s

Costs Γ 62.5

(Computations were carried out with MATLAB2008a on

a 2GHz Intel Core 2 Duo T5750 processor, 2GB RAM).

VI. CONCLUSIONS

The proposed trajectory planning method for linear and

linearizable systems combines primitive-based robot control

and a heuristic planning approach. Primitives are defined in

terms of parametric LQ control laws and an algebraic com-

putation strategy to obtain the parameters for concatenated

primitives is shown. To preserve optimal trajectories in the

presence of obstacles in the operational environment, inter-

mediate points are derived from kinematic paths computed

by a RRT algorithm and included into the trajectory planning

method as transition points between primitives.

The trajectory planning approach shows good results in

view of computational effort for the computations of con-

catenated primitives and the resulting trajectory. However,

the optimality of the solutions strongly depends on the choice

of the intermediate points and therefore on the solution of the

RRT algorithm. The approach can be extended to calculate

collision-free trajectories in real-time, e.g. only one primitive

in the extreme case.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural

Information Processing Systems. MIT Press, 2003, pp. 1523–1530.
[2] S. Schaal, “Dynamic movement primitives - a framework for motor

control in humans and humanoid robots,” in The Int. Symp. on

Adaptive Motion of Animals and Machines, 2003.
[3] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, planning,

learning, and imitation with dynamic movement primitives,” in Work-

shop on bilateral Paradigms on Humans and Humanoids, IEEE Int.

Conf. on Intelligent Robots and Systems, 2003.
[4] J. Nakanishi, J. Morimoto, G. Endo, S. Schaal, and M. Kawato,

“Learning from demonstration and adaptation of biped locomotion
with dynamical movement primitives,” in Workshop on Robot Learning

by Demonstration, IEEE Int. Conf. on Intelligent Robots and Systems,
2003.

[5] J. Kober, B. J. Mohler, and J. Peters, “Learning perceptual coupling
for motor primitives,” in IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, 2008, pp. 834–839.
[6] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,

E. Nakano, Y. Wada, and M. Kawato, “A kendama learning robot
based on bi-directional theory,” Neural Networks, vol. 9, no. 8, pp.
1281–1302, 1996.

[7] B. E. Perk and J.-J. E. Slotine, “Motion primitives for robotic flight
control,” Computing Research Repository, 2006.

[8] D. Del Vecchio, R. M. Murray, and P. Perona, “Decomposition of
human motion into dynamics based primitives with application to
drawing tasks,” Automatica, vol. 39, pp. 2085–2098, 2003.

[9] F. Nori and R. Frezza, “Nonlinear control by a finite set of motion
primitives,” 6th IFAC Symp. on Nonlinear Control Systems, 2004.

[10] E. Frazzoli, “Robust hybrid control for autonomous vehicle motion
planning,” Ph.D. dissertation, Massachusetts Inst. of Technology, 2001.

[11] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sum-of-squares verification,” Int.

Journal of Robotics Research, vol. 29, pp. 1038–1052, 2010.
[12] A. Ferrante, G. Marro, and L. Ntogramatzidis, “A parametrization of

the solutions of the finite-horizon LQ problem with general cost and
boundary conditions,” Automatica, vol. 41, pp. 1359–1366, 2005.

[13] A. E. Bryson and Y.-C. Ho, Applied Optimal Control - Optimization,

Estimation, and Control. Taylor & Francis, 1975.
[14] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction

to Robotic Manipulation, 1st ed. CRC Press, March 1994.
[15] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall,

1991.
[16] H. Ding, G. Schnattinger, B. Passenberg, and O. Stursberg, “Improving

motion of robotic manipulators by an embedded optimizer,” in IEEE

Conf. on Automation Science and Engineering, 2010, pp. 204 –209.

2842

