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Abstract— In this work, we consider the optimal sending
rate for Networked Control Systems (NCS) with different
communication schemes. Therefore, we compare time-triggered
control with a Time Division Multiple Access (TDMA) or a
Frequency Division Multiple Access (FDMA) communication
protocol and event-based control with an ALOHA or Carrier
Sense Multiple Access (CSMA) communication protocol. Our
main interest is the optimal load and optimal performance
of such systems. Nevertheless, we are also interested how the
optimal performance scales with the number of agents, whether
or not it is possible to add a new agent to an already running
system, and the effects of an overloaded communication system.

Index Terms— Networked Control Systems; Communication
Systems

I. INTRODUCTION

Due to the steady increase in microcontroller and commu-

nication systems, more and more control loops are closed by

a packet based communication network. Such a control sys-

tem, where the loop is closed by a communication network is

consequently called Networked Control System (NCS). Up

to now, the communication system is most often modeled as

an iid loss process or time delay, independent of the network

load and communication protocol. For a correct analysis of

NCS, it is necessary to use more realistic network models.

Therefore, we analyze time-triggered and event-based control

with different communication protocols. In doing so, the loss

probability and delay are no more given in advance and

constant; instead, they depend on the network load.

The benefits of event-based control have been demon-

strated in [1], by comparing event-based and time-triggered

control of first order systems. The authors showed that for

event-based control less events are necessary to achieve the

same performance as time-triggered control. Consequently,

many works using event-based control for NCS followed,

e.g., [2]–[10].

However, in real communication systems, packets might

get delayed or lost. Thus, event-based control with packet

losses was analyzed in [8]. Although the loss probability

depends on the utilization, the exact interevent-times are not

taken into account. Based on this work, we analyzed the

performance of event-based control with a shared communi-

cation medium in [11], [12]. In these works, we were mainly

concerned with the exact loss probability of event-based

control with an ALOHA communication system and showed

that it is crucial to include the communication strategy
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when comparing time-triggered and event-based control. In

the present paper, we continue to analyze this interaction

between control and communication strategy by considering

the performance of NCS with a large number of agents and

different communication protocols.

A similar problem to the one studied in this work was also

studied in [6] and [10]. A simulation based approach was

used in [6] to compare time-triggered and event-based control

with different communication protocols. As in the present

paper, the impulsive control of an integrator system with

a CSMA communication protocol is considered analytically

in [10]. However, there are some important differences,

which are discussed in Sec. II, Sec. III, and Sec. V. Despite

these differences, we get the same performance for event-

based control with CSMA for a large number of agents, but

different sending rates.

The remainder of this work is outlined as follows. The

problem setup is given in Sec. II. In Sec. III, we take a

detailed look at the interevent times of event-based control

and show that the interevent times of all agents together

converge to a Poisson process as the number of agents goes

to infinity. In Sec. IV, we derive the optimal performance

of time-triggered control and in Sec. V, the optimal per-

formance of event-based control with ALOHA and CSMA

communication protocols. The different approaches are com-

pared in Sec. VI. Finally, the paper is concluded in Sec. VII.

II. PRELIMINARIES

Our model of the underlying communication medium itself

is relatively simple. Each packet takes the same time to be

transmitted, the packet duration τ . Moreover, we assume

that packets are lost if and only if two or more users are

sending simultaneously. Based on this simple model of the

communication medium itself, the loss probability and delay

for different communication protocols can be derived, see

Sec. V and, e.g., [13], [14] for more details. Consequently,

the loss probability and delay are not assumed to be given,

instead they depend on the network load.

Moreover, we assume that there is a sharp separation

between control and communication. When the control unit

detects an event, it generates a packet, which contains the

information how the state of the system must be changed,

and passes it to the communication unit to transmit. Con-

sequently, when the packet arrives, it will be outdated and

does not reset the state to the origin. In contrast, in [10] it is

assumed that a packet arrival always resets the state to zero.

The control problem of this work is similar to the one

of [1], [8], [10]–[12]. There are N agents, each has to control
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a system with integrator dynamic:

dxi = uidt + dvi, (1)

where xi ∈ R is the state of system i, the disturbance

vi(t) ∈ R is a Wiener process with unit incremental variance

and vi and vj are mutually independent. The control signal

ui(t) ∈ R is a sequence of impulses, each impulse resets

the state to the origin. For simplicity of notation, we assume

that all agents are identical and drop the subindex i in the

remainder of this work. In event-based control, the impulses

are generated whenever the state x exceeds a bound, i.e.,

when x ≤ ∆ or x ≥ ∆. In order to guarantee that the

scheme works properly even when packets are delayed or

lost, the bounds must be shifted at each event generation

and packet arrival, see [8], [11]. If a bound is exceeded,

the bounds are shifted by the boundary increment ∆ such

that the state is exactly between the new bounds. Hence, the

distribution of the time between two events, the so called

interevent or interarrival time, does not depend on lost or

delayed packets, i.e., the interevent times are independent

and identically distributed and the load does not depend on

the number of previous packet losses. Note that this is crucial

for a proper analysis of the problem since it allows us to use

the results from renewal theory.

In [1], it was shown that for event-based control the

mean interevent time Teb can be easily derived from the

boundary increments as Teb = ∆2. However, for the analysis

of communication systems, it is more appropriate to use the

interarrival rate λ := 1/T eb = 1/∆2 mainly due to the fact

that the accumulated rate of the users is just the sum of

the individual rates, i.e., λΣ =
∑

i λi. Moreover, the offered

load ρ is defined as the product of the packet duration τ and

the interarrival rate λ, i.e., ρ := τλ = τ/∆2. Since there are

N identical agents, the network load ρΣ =
∑

i ρi becomes

ρΣ = Nρ.

As in [1], [8], [10]–[12], the cost of time-triggered and

event-based control is given by the variance of the state:

J = lim sup
M→∞

1

M

∫ M

0

E[x(t)2]dt. (2)

In [1], time-triggered and event-based control without

packet loss and delay was compared. It was shown that the

costs of time-triggered and event-based control are

Jtt =
Ttt

2
, Jeb =

Teb

6
,

where Ttt is the sampling time and Teb the mean interevent

time.

Not surprisingly, loss and delay increase the cost, as shown

in [8], [11], [12]. For event-based control, the additional cost

due to packet loss is

Jeb,p =
p

ρ(1 − p)
τ, (3)

where p is the packet loss probability, see [8], [11], [12].

For time-triggered and event-based control, the additional

cost due to delay is

Jd = d, (4)

where d is the mean delay, see [11]. Moreover, in [11], [12]

we observed that the cost scales directly with the packet

duration τ . Thus, we use the normalized cost, i.e., the cost J
divided by the packet duration τ , for comparing the different

approaches. To sum up, the normalized cost of event-based

control with loss and delay is

Jeb

τ
=

1

6ρ
+

p

ρ(1 − p)
+

d

τ
. (5)

III. INTEREVENT TIMES OF EVENT-BASED CONTROL

In this section, we first give the interevent time distribution

of event-based control and then show that the superposition

of the arrival processes of all agents together converges to

a Poisson process for N → ∞. This convergence is crucial

since it allows us to use standard results from communication

theory. However, this is only due to our specific choice of the

control and communication scheme and does not necessarily

hold for the setup of [10], where it is assumed that the

interevent times are generated by a Poisson process.

In [8], the Probability Density Function (PDF) f(t|∆) of

the interarrival times of event-based control is given as:

f(t|∆) = ∆

√

2

πt3

∞
∑

k=−∞

(4k + 1)e−
(4k+1)2∆2

2t . (6)

Note that (6) can be written as a function of a normalized

PDF f(t|1):

f(t|∆) =
1

∆2
f(

t

∆2
|1) = λf(λt|1). (7)

In order to analyze the case of an infinite number of agents,

we use the Palm-Khintchine Theorem and the following two

assumptions, definition and short discussion, from [15].

Assumption 1: For all N sufficiently large,

λ1,N + · · · + λN,N = λΣ < ∞, (8)

where λj,N is the sending rate of agent j for the case that

there are N agents.

Assumption 2: Given ǫ > 0, for each t > 0 and N
sufficiently large,

Fj,N (t) ≤ ǫ, j = 1, . . . , N, (9)

where Fj,N is the Cumulative Distribution Function (CDF)

of agent j for the case that there are N agents.

Definition 1: For each N define

L0,N(t) = L1,N (t) + · · · + LN,N(t), (10)

where Lj,N(t) is a stochastic process, which counts the

number of events of agent j that occur by time t for the

case that there are N agents.

Assumption 2 asserts that as N increases, the processes being

combined have renewals very infrequently. Assumption 1

shows that L0,N+1(t) is not formed by adding another

process to L0,N(t). As N increases, the processes being

combined are changed so that (at least for large N ) the

asymptotic rate at which renewals occur is a constant.
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Theorem 1: [Palm-Khintchine [15, Theorem 5.15]] Under

Assumptions 1 and 2, as N → ∞, {L0,N(t); t ≥ 0}
approaches a Poisson process.

Based in the Palm-Khintchine Theorem, we can show

that the arrival process of all agents together converges to

a Poisson process.

Theorem 2: Suppose all N agents together send with a

certain rate λΣ < ∞, i.e., each agent sends with the

rate λΣ/N . As N → ∞, the superposition of the arrival

processes of all agents approaches a Poisson process with

rate λΣ.

Proof: We use Thm. 1 to proof Thm. 2. Since As-

sumption 1 is part of Thm. 2, it remains to show that

Assumption 2 holds. From (7) and the definition of the CDF,

it follows that Fj,N (t) =
∫ t

0 f(x|∆)dx =
∫ t

0 λf(λx|1)dx =
λΣ/N

∫ t

0
f(λΣx/N|1)dx. Since f(t|1) → 0 for t → 0,

there exists an N such that Fj,N (t) ≤ ǫ and we see that

Assumption 2 holds.

Unfortunately, in real applications, we have to deal with

a finite number of agents. Nevertheless, for the remainder

of this work, we approximate the interevent times of event-

based control by a Poisson process even when the number of

agents is finite. Note that in [11], [12], we analyzed event-

based control with unslotted and slotted ALOHA for a finite

number of agents without this approximation.

IV. TIME-TRIGGERED CONTROL

In time-triggered control, each system is sampled with a

constant sampling time Ttt, which is determined during the

design of the controller. Consequently, it is possible to use

a deterministic communication system like TDMA, where

the sending time of each agent is assigned in advanced. This

gives a good performance if the number of agents is known

in advance but makes this approach very inflexible.

A. Time Division Multiple Access (TDMA)

In this approach, each agent sends its packets in preas-

signed time slots. Note that ρ = τ/Ttt and the delay is just the

packet duration, i.e., d = τ . Thus, we get for the normalized

cost
Jtt

τ
=

1

2ρ
+ 1, ρ ≤ 1

N
. (11)

Obviously, this cost is minimal for ρ = 1/N and becomes

J∗
tt

τ
=

1

2
N + 1. (12)

Note that the minimal cost is affine in the number of agents.

B. Frequency Division Multiple Access (FDMA)

In FDMA, the frequency is shared between the agents,

i.e., each agent gets 1/N -th of the bandwidth. Although

the sampling time is not changed, the packet duration is

increased, i.e., the packet duration becomes Nτ instead of

τ . Thus, the normalized cost is

Jtt

τ
=

1

2ρ
+ N, ρ ≤ 1

N
. (13)

Again, this cost is minimal for ρ = 1/N, and becomes

J∗
tt

τ
=

N

2
+ N =

3

2
N. (14)

Again, the minimal cost is affine in the number of agents.

Moreover, note that it is larger than the one with TDMA.

V. EVENT-BASED CONTROL

In this section, we analyze the performance of event-based

control with different communication protocols, which allow

arbitrary access times. Therefore, we first analyze event-

based control with slotted and unslotted ALOHA, where the

users start to send without checking the medium, see [13],

[14], [16]. Then, we will analyze event-based control with

different versions of the family of Carrier Sense Multiple

Access (CSMA) protocols, as described in [13], [14], [17].

Here, the user senses the medium and only sends if the

medium is idle. If the medium is busy, the user either waits

until the medium becomes idle (1-persistent CSMA), or waits

a random time (non-persistent CSMA), before retrying to

send.1 In all these approaches lost packets are retransmitted

to get a reliable communication channel. In the original anal-

ysis of these protocols it is assumed that all packets, i.e., the

new packets, the delayed as well as the retransmitted packets

are generated by a Poisson process. However, we believe

devoutly that retransmitting or artificially delaying packets

does not make sense for event-based control. Consequently,

we assume that lost packets are not retransmitted. Moreover,

in non-persistent CSMA, the packets are not buffered for

later transmissions if the medium is sensed busy. Instead,

the packet is dropped, the bounds are shifted and we wait

for the next event to occur. However, for 1-persistent CSMA,

we assume that the order of arrival is kept, i.e., all packets are

buffered in a global queue. In contrast, in [10], it is assumed

that the next packet is chosen randomly.

A. Unslotted ALOHA

First, we look at the minimal cost of networked event

based control with unslotted ALOHA. Since in unslotted

ALOHA the agents start sending at arbitrary times, the delay

is just the packet duration, i.e., d = τ . Assuming a Poisson

arrival process, the loss probability for unslotted ALOHA is

pu = 1 − e−2ρΣ = 1 − e−2ρN , (15)

see, e.g. [13], [14]. Based on this approximation of the loss

probability, we can derive the optimal load for event-based

control with unslotted ALOHA.

Lemma 1: For event-based control with unslotted

ALOHA, the minimal normalized cost Ju∗
eb /τ is achieved

when the network load ρu∗
Σ fulfills

5 + 6(2ρu∗
Σ − 1)e2ρu∗

Σ = 0. (16)

Numerically, this is ρu∗
Σ ≈ 0.2445.

1Note that there also exists p-persistent CSMA, which roughly works as
follows. Case 1 (idle medium): The user sends with probability p. Case 2
(busy medium): The user waits until the medium becomes idle and then
continues as in Case 1 (idle medium).
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Proof: By using (15) and d = τ in (5), we get

Ju
eb

τ
=

1

6ρ
+

1 − e−2ρN

ρe−2ρN
+ 1 =

6e2ρN − 5

6ρ
+ 1. (17)

Now, (16) follows by checking the first and second deriva-

tive.

Interestingly, the optimal network load does not depend

on the number of agents. However, the optimal load of

each agent, i.e., ρu∗
Σ /N depends on the number of agents.

Consequently, an agent can not know its optimal load if it

does not know the number of agents. Nevertheless, this could

be solved by looking at the loss probability, which turns out

to be independent from the number of agents.

Lemma 2: For event-based control with unslotted

ALOHA, the minimal normalized cost Ju∗
eb /τ is achieved

when the loss probability pu∗ fulfills

5pu∗ + 6 ln(1 − pu∗) + 1 = 0. (18)

Numerically, this is pu∗ ≈ 0.3867.

Proof: We get (18) by using (15) in (16).

Finally, the following theorem gives the minimal cost of

event-based control with unslotted ALOHA and shows that

it is affine in the number of agents.

Theorem 3: For event-based control with unslotted

ALOHA, the minimal normalized cost is

J∗

τ
= 2e2ρu∗

Σ N + 1 ≈ 3.2612N + 1. (19)

Proof: This theorem follows by using (15) in (17).

B. Slotted ALOHA

In slotted ALOHA, the packet loss probability is reduced

by restricting the times when the users are allowed to start

sending. As the name suggests, time is divided into slots and

the users are only allowed to start sending at the begin of

a slot. In doing so, packet loss is traded against delay. In

this work, we assume that the slot length equals the packet

duration and thus the mean waiting time is half the packet

duration. Thus, we get for the mean delay d = 1.5τ (mean

waiting time + packet duration). Assuming a Poisson arrival

process, the loss probability for slotted ALOHA is

ps = 1 − e−ρΣ = 1 − e−ρN . (20)

See, e.g. [13], [14]. Based on this approximation of the loss

probability, we can derive the optimal load for event-based

control with slotted ALOHA. Since the proofs are similar to

the ones of slotted ALOHA they are omitted.

Lemma 3: For event-based control with slotted ALOHA,

the minimal normalized cost Js∗
eb /τ is achieved when the

network load ρs∗
Σ fulfills

5 + 6(ρs∗
Σ − 1)eρs∗

Σ = 0. (21)

Numerically, this is ρs∗
Σ ≈ 0.4889.

Note that the optimal network load with slotted ALOHA

is twice the optimal network load with unslotted ALOHA,

i.e., ρs∗
Σ = 2ρu∗

Σ .

Lemma 4: For event-based control with slotted ALOHA,

the minimal normalized cost Js∗
eb /τ is achieved when the loss

probability ps∗ fulfills

5ps∗ + 6 ln(1 − ps∗) + 1 = 0. (22)

Numerically, this is ps∗ ≈ 0.3867.

Surprisingly, the optimal loss probability for slotted and

unslotted ALOHA are identical, i.e., pu∗ = ps∗ although

the optimal network load is different.

Theorem 4: For event-based control with slotted ALOHA,

the minimal normalized cost is

Js∗
eb

τ
= eρs∗

Σ N + 1.5 ≈ 1.6306N + 1.5. (23)

Again, the minimal cost is affine in the number of agents.

Moreover, since the optimal entire load of slotted ALOHA is

twice the one of unslotted ALOHA, we see that the cost with

unslotted ALOHA is twice the cost with slotted ALOHA,

except for the additional cost due to the delay.

C. 1-Persistent CSMA with an Infinite Queue

Since we assume that the order of arrival is kept, we

model the 1-persistent CSMA protocol by a queueing system.

As stated in Sec. III, we approximate the arrival process

by a Poisson process. Moreover, since the packet duration

is constant, we have a deterministic service time. Finally,

since all agents use the same communication medium, we

have one server. To sum up, our 1-persistent CSMA scheme

can be modeled by an M/D/1 queue, see, e.g., [18] for

an introduction to queueing theory. Using such a queueing

system, the mean delay, i.e., the waiting time plus the

processing time, is

d = τ
2 − ρΣ

2(1 − ρΣ)
. (24)

Since the queue is lossless (p = 0), we have to require 0 ≤
ρΣ < 1 for a stable queue.

Using (24) in (5), the normalized cost becomes

J

τ
=

1

6ρ
+

2 − ρΣ

2(1 − ρΣ)
=

N

6ρΣ
+

2 − ρΣ

2(1 − ρΣ)
. (25)

Again, we are interested in the load ρi∗
Σ , which gives the

minimal cost.

Lemma 5: For event-based control with 1-persistent

CSMA with an infinite queue, the minimal normalized

cost Ji∗
eb /τ is achieved when the network load ρi∗

Σ fulfills

ρi∗
Σ =

{

1/2 for N = 3,
N−

√
3N

N−3 for N 6= 3.
(26)

Proof: The optimal load is found by checking the first

and second derivative of (25).

By using ρi∗
Σ in (25), we get the following lemma.

Lemma 6: For event-based control with 1-persistent

CSMA with an infinite queue, the minimal normalized

cost Ji∗
eb /τ is achieved when the mean delay fulfills

di∗ =

(

N +
√

3N − 6

2(−3 +
√

3N)

)

τ. (27)

Now, we get the minimal cost by using (26) and (27) in (5).
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Theorem 5: For event-based control with CSMA with an

infinite queue, the minimal normalized cost is

J i∗
eb

τ
=

N − 3

6(1 −
√

3/N)
+

√
N +

√
3 − 6/

√
N

2(−3/
√

N +
√

3)
(28)

≈ N

6
+

√
N

2
√

3
for large N. (29)

From (29), we see that the minimal normalized cost is not

affine in N . However, since the dominating term N/6 does

not grow as fast as the one for time-triggered control, we

get a lower cost than for the time-triggered case. Moreover,

in [10] the minimal cost of event-based control with CSMA

converge to J i∗
eb = Nτ/6 for N → ∞, although a slightly

different problem setup is used there.

Unfortunately, the optimal network load ρi∗
Σ , the optimal

load of each agent ρi∗ as well as the optimal delay di∗

depend on the number of agents N . Consequently, in order

to achieve the optimal performance, the agents have to know

N . Moreover, suppose we have N optimally sending agents,

adding some agents might then overload the queue, resulting

in an infinite cost. Consequently, it is possible but dangerous

to add new agents to an already running system.

D. 1-Persistent CSMA with Finite Queue

Since a finite queue is not realistic and might be risky, we

have a look at 1-persistent CSMA with a finite queue in this

section. In [20], the loss probability and mean delay for a

finite M/D/1 queue of size M (waiting room + processing

unit) is given by

p = 1− bM−1

1 + ρΣbM−1
, d =

(

M −
∑M−1

k=0 bk − M

ρΣbM−1

)

τ,

where the coefficients bn are

bn =

n
∑

k=0

(−1)k

k!
(n − k)ke(n−k)ρΣρk

Σ. (30)

Obviously, it is difficult to get exact analytical results

based on these equations. Thus, we restrict our discussion

on the cost for low and hight loads.

If the load is low, then the finite queue behaves like the

infinite queue, i.e., there is no loss and the delay is similar

to the one of the infinite queue. Consequently, the cost is

similar to the one with an infinite queue.

The other interesting case is a heavily overloaded system,

i.e., ρ → ∞. In order to derive the additional cost due to

loss and delay, it is crucial to note that bi < bj for i < j
and that bn is increasing with increasing ρ. Thus, we have

Jp

τ
=

1 + ρNbM−1 − bM−1

ρbM−1
→ N for ρ → ∞.

Moreover, observe that
∑M−1

k=0 bk − M

NρbM−1
→ 1 for ρ → ∞

and thus
Jd

τ
→ M for ρ → ∞.

TABLE I

THE MINIMAL NORMALIZED COST OF THE DIFFERENT SCHEMES.

control scheme communication scheme minimal normalized cost J∗/τ

time-triggered
TDMA 0.5N + 1
FDMA 1.5N

event-based

unslotted ALOHA 2e2ρu∗
Σ N + 1 ≈ 3.26N + 1

slotted ALOHA eρs∗
Σ N + 1.5 ≈ 1.63N + 1.5

non-persistent CSMA N + 1

1-persistent CSMA N−3

6(1−
√

3/N)
+

√
N+

√
3−6/

√
N

2(−3/
√

N+
√

3)

with infinite queue ≈ 1
6N +

√
N

2
√

3
for large N

To sum up, if the load is low and the queue size is not

too small, then the cost is similar to the cost of event-based

control with 1-persistent CSMA with an infinite queue. If

the system becomes heavily overloaded, i.e., ρ → ∞ the

cost remains finite and converges to the sum of the number

of agents and the queue size.

E. Non-persistent CSMA (Erlang’s Loss Model)

As already noted, we do not buffer packets and retry to

send them after a random time if the medium is busy. Instead,

we drop the packet and shift the bounds in order to generate a

new, meaningful packet. Due to this assumption, we model

the non-persistent CSMA as a queueing system without a

waiting room, i.e., M = 1, which is known as Erlang’s

loss model. Thus, there is no queueing delay and the loss

probability is

p =
ρΣ

1 + ρΣ
, (31)

see, e.g. [18]. By using (31) in (5) and d = τ , we get for

the normalized cost

J

τ
=

1

ρ
+ N + 1 =

N

ρΣ
+ N + 1. (32)

Note that the cost is decreasing with increasing ρΣ. Conse-

quently, the minimal cost is achieved for ρ → ∞.

Theorem 6: For event-based control with non-persistent

CSMA, the minimal normalized cost is

Je∗
eb

τ
= N + 1. (33)

Note that ρ → ∞ is achieved when ∆ → 0, i.e., the boundary

increments are so small, that each agent is trying to send all

the time. As a consequence thereof, the systems are sampled

randomly and the shared medium is fully utilized. Note that

the cost is twice the cost of time-triggered control if the cost

due to the delay, which is equal, is not taken into account.

VI. COMPARING THE DIFFERENT SCHEMES

In this section, we finally compare the different control and

communication schemes. Therefore, Table I shows how the

different minimal costs scale with the number of agents N .

Except for event-based control with 1-persistent CSMA with

an infinite queue, the minimal cost is affine in the number

of agents, making it easy to compare the different costs.

Moreover, Fig. 1 shows the normalized costs for a system

with N = 8 agents. The red lines show the costs of time-

triggered control with a TDMA and FDMA communication

system. The green lines show the costs of event-based
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Fig. 1. The normalized cost for N = 8 agents.

control with the two versions of ALOHA. The dashed blue

line shows the cost of event-based control with 1-persistent

CSMA with an infinite queue, whereas the solid blue lines

show the costs of event-based control with a finite queue.

Finally, the black line shows the cost of event-based control

with non-persistent CSMA.

If the network load is relatively low (ρΣ between 10−3 and

10−2 in Fig. 1), the additional costs due to loss and delay are

not significant. Consequently, the cost is determined by the

sampling scheme and does not depend on the communication

protocol. Here, the cost can be decreased by increasing

the network load. If the network load is further increased

(ρΣ > 10−2 in Fig. 1), then the additional costs due to loss

and delay become significant and the effects of the different

communication protocols become dominant.

Event-based control with 1-persistent CSMA and an infi-

nite queue gives the minimal cost of all analyzed control and

communication schemes but might be risky. If the offered

network load ρΣ exceeds one, the cost becomes infinite.

Fortunately, the cost remains finite if the queue is finite.

If the network load is not too high, we see no significant

difference in Fig. 1 between the cost with an infinite queue

and the cost with a properly chosen finite queue.

Note that, except for the non-persistent CSMA, the net-

work load should always be limited. Obviously, ρΣ = 1 is

a hard limit for time-triggered control. On the other hand,

the limit for the event-based control is soft and depends on

the protocol. Increasing the network load beyond the optimal

one is possible but should be avoided because the cost due

to loss and delay become significant.

VII. CONCLUSION

In this work, we analyzed the performance of impulsive

control of an integrator system with different communication

systems with a shared medium. In doing so, we saw that

the performance depends significantly on the control strat-

egy (time-triggered vs. event-based) and the communication

protocol. Consequently, there is evidence to suggest that the

communication protocol must be taken into account when

analyzing and designing networked control systems, making

these steps even more interesting and challenging.

Obviously, the analysis of this work should be extended to

scalar systems and non impulsive control. Moreover, event-

based control with further communication protocols needs to

be analyzed.
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