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Abstract— We consider the problem of real-time communica-
tion with delay constraints. In earlier work it has been shown
that a certain weighted-debt policy is feasibility-optimal in the
sense that if any scheduling policy can satisfy the throughput-
with-deadline requirements of all the clients, then the weighted-
debt policy can do so. This raises the interesting question:
Why is it that a periodwise static priority policy can satisfy
any set of requirements that the more general class of history
dependent policies can? We answer this by showing that the set
of feasible timely-throughput vectors is a polymatroid. We do so
by establishing a submodularity property of the complement of
the unavoidable idle time function. This shows that a periodwise
static priority policy, where the priority order is revised at the
beginning of each period, but never in the middle of a period,
can attain any feasible timely-throughput vector.

We next go on to investigate a more general problem where
the packet arrivals and channel conditions can vary over
periods, and establish the existence of an optimal periodwise
static priority policy.

Keywords: Real-time communication, Polymatroids, Sub-
modularity, Periodwise Static Priority Policies, Through-
put, Deadlines, Timely throughput.

I. INTRODUCTION

Wireless networks are becoming an integral part of the
global communication infrastructure. There is increasing de-
mand for wireless data services for multimedia applications,
video streaming, VoIP, real-time monitoring, networked con-
trol, etc. Thus, providing temporal Quality of Service (QoS)
over unreliable wireless channels has become an impor-
tant service for wireless networks to support. In previous
work [2], a model and framework have been developed
for jointly addressing the QoS criteria requirements of sup-
porting required delivery ratios, given channel reliabilities,
subject to the constraint that the delay of each delivered
packet is less than one time period.
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In the model of [2], time is slotted, and slots are broken
into groups of τ slots each, called periods. One packet arrives
for each of a number of clients at the beginning of each
period. This packet is dropped if it is not delivered by the
end of the period. In each slot, the access-point (in the
case of downlink, or some one client in the case of uplink)
can attempt to transmit one packet. The transmission may
however be successful or not, depending on the channel un-
reliability between the access-point and the particular client.
The timely-throughput for a client is defined as the long-term
rate at which packets are successfully delivered to (or from,
in the case of uplink) the client. Given a period for the whole
system, a timely-throughput requirement for each client, and
a channel reliability for each client, the fundamental question
addressed in [2] is whether it is possible to satisfy a given
set of such requirements. It was shown there that a certain
weighted-debt policy is feasibility optimal in the sense it can
meet the QoS requirements of any system for which there is
a history dependent policy that can do so.

This weighted-debt policy orders the clients at the begin-
ning of each period, and persistently transmits the packets
of a client until it is successful, before moving on to the
packet of the next lower client in the ordering. Of course
a period may run out before all clients are served. At the
commencement of the next period, the policy again orders
the clients, possibly in a different order, and serves them
in that order during the period, etc. It should be noted that
this weighted-debt policy never revises the priority order of
clients in the middle of a period. In particular the order is not
changed within a period due to the random events that may
occur in that period (e.g., a certain packet is unsuccessfully
attempted a certain number of times). However, the order
is revised at the beginning of the next period. We call such
a policy a periodwise static priority policy. The intriguing
question that arises is why such a restrictive policy can
meet the QoS requirements of any set of clients whenever
there exists a more general history-dependent policy that can
meet their requirements. Why is it that one does not need
to consider a more general and powerful history dependent
policy?

In this paper, we directly show why it is that a a peri-
odwise static priority policy can meet the QoS requirements
whenever there is a more general history dependent policy
that can do so. Having done so, we move on to consider a
more general model for supporting QoS. We allow random
arrivals of packets to clients at the beginning of each period,
which relaxes the earlier requirement that one packet arrives
for each client at the beginning of the period. Packet arrivals

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5047



to clients can even be correlated, as for example may happen
in a multimedia situation where there are stereo cameras.
We also allow for the channel for each client to vary from
period to period. Such a model was considered in [3], and a
certain joint debt-channel policy was shown to be feasibility-
optimal in the class of all periodwise static priority policies.
Here we show the new result that the joint debt-channel is
actually optimal in the general class of all history-dependent
policies.

Our main contributions in this paper are therefore twofold.
First, we prove why consideration of only periodwise static
priority polices is sufficient to support any real-time traffic.
We do this by showing that the feasibility conditions satisfy
a certain submodularity property. From this it follows that
the convex hull of occupation measures achieved by history
dependent policies is simply the convex combination of
those achievable by periodwise static priority policies. So,
only randomized periodwise static priority policies are the
extreme points of the convex hull of occupation measures
of the history dependent policies, since time sharing of
randomized priority policies can cover all points in that
set. The second contribution is the extension of the above
result to systems where the packet arrivals at the beginning
of a period are random and possibly correlated, and where
channel conditions change from period to period. For this
more general model we prove that a earlier joint debt-
channel policy [3] is feasibility optimal in the general class
of history dependent policies. This generalizes the previous
result where optimality is only established in the class of
periodwise static priority policies.

The rest of the paper is organized as follows: Section II
summarizes some related work. Section III describes the
system model. Section IV establishes that there exists a
periodwise static priority policy that is feasibility optimal.
We then use this result to extend the optimality of such a
policy for the case of various packet arrival patterns and time-
varying channels in Section V. Finally, Section VI concludes
this paper.

II. RELATED WORK

In recent years, scheduling for QoS constraints on un-
reliable wireless networks has been increasingly gaining
research interest. Tassiulas and Ephremides [7] have pro-
posed a max-weight scheduling policy and proved that it
is throughput optimal. Neely [9] has further evaluated this
policy and shown that the policy achieves a constant average
delay. Shakkottai and Stolyar [8] have evaluated various
scheduling policies to support a mixture of real-time and
non-real-time traffic. In Hou, Borkar, and Kumar [2], a
model and framework for admission control and scheduling
under QoS constraints have been proposed for the case
where all clients generate traffic periodically with the same
period. A periodwise static priority policy has been proposed
and proved to be feasibility optimal in that it fulfills the
requirements of all feasible systems. However, a thorough
understanding has been lacking on why a periodwise static
priority policy can be feasibility optimal. The model studied

in [2] is further extended in [4] to accommodate different
traffic arrival patterns generated by different flows, and in
[3] to time-varying channel reliabilities. In this work, a
certain periodwise static priority policy has been proved to
be optimal in the class of all such policies. However, whether
it is optimal in the class of all history dependent policies was
left unresolved.

III. MODEL FOR QOS

In this section we describe the model for supporting time-
based QoS described in [2], for the class of problems where
the delay allowed for each delivered packet is no longer
than one period of τ slots. Consider a wireless access point
serving N clients numbered 1, 2, . . . , N . Time is slotted and
packets arrive at the access point at time slots 0, τ, 2τ ... . The
quantity τ is the period. At each such time slot nτ , there is
simultaneous arrival of N packets, one for each client. Each
packet has to be delivered to its respective client before the
end of the period, or else it is dropped. Thus, in this model, a
delay constraint of τ time slots is enforced on all successfully
delivered packets.

The access point may make one packet transmission in
each slot. However, the channels to the clients are unreliable.
When the access point transmits a packet to a client (or, in
the case of uplink, when the client i transmits a packet to
the access point), it is successful with probability pi, and
unsuccessful with probability (1− pi).

Each client requires a timely throughput of qi packets
per period. This is the long-term average of the number of
packets per period that need to be delivered to client i. We
call this the timely throughput because packets are counted as
delivered only if they are delivered within the deadline τ . The
entire problem is therefore characterized by the following
quantities:

1) The period τ .
2) The unreliabilities of the channels to the N clients
{p1, p2, . . . , pN}.

3) The timely throughputs required by the clients
{q1, q2, . . . , qN}.

The question of interest is this: Can the access point satisfy
the timely throughput requirements of these N clients?

In [2] it is shown that if there is any history dependent
scheduling policy that can satisfy all the clients, then the
following weighted-debt policy is feasibility optimal: At
the beginning of period nτ , the access point computes the
weighted debt owed to client i as

1
pi

(
qi − # packets delivered to client i in [0, (n− 1)τ ]

n

)
.

This is essentially the shortfall in the fraction of jobs that the
server needed to have delivered for client i in order to have
met its demand, weighted by the factor 1

pi
. (If the debt is

negative, the client is ahead of its requirement). The clients
are then served in the order of their weighted debt, with
higher weighted debt clients getting higher priority. It should
note that this is a periodwise static priority policy that orders
the clients at the commencement of the period, but never
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revises this order within the period in response to events
that may have unfolded within the current period.

IV. OPTIMALITY OF PERIODWISE STATIC PRIORITY
POLICY

In this section we directly establish the existence of a
periodwise static priority policy which satisfies a set of
clients that can be satisfied by some history dependent
policy. We start with the feasibility region for the vectors
(q1, q2, ..., qN ) that has been characterized in [2] as follows.
Note that the number of transmissions to serve client i is
a geometrically distributed random variable, with parameter
pi. Let I(S) denote the expected fraction of unavoidable idle
time that is incurred by the access point, if it can serve only
the clients in the set S ⊆ {1, 2, . . . , N}. Thus,

I(S) := E{1
τ

(
τ −

∑

i∈S

γi

)+

},

where γi ∼ Geom(pi). We also define f(S) = 1 − I(S),
which is the expected fraction of time that the access point
spends transmitting packets, if it is non-idling, by which we
mean that it never idles as long as there are undelivered
packets, and it has only the set S of clients to serve. Then a
vector (q1, q2, ..., qN ) is feasible if and only if it lies in the
polytope:

P =

{
(q′1, q

′
2, ..., q

′
N )

∣∣∣∣
∑

i∈S

xi ≤ f(S), ∀S ⊆ {1, 2, . . . , N},

where xi =
q′i
τpi

, and q′i ≥ 0,∀i,
}

We begin our analysis by showing that the above set is
a polymatroid. This is shown by proving that the function
f(S) is submodular (see Theorem 1).

We note that the polytope P is a polymatroid if and only
if f(S) satisfies the following properties (see Yao [1]).
(a) f(φ) = 0.
(b) f is non-decreasing.
(c) f is submodular, i.e., if E, F ⊆ S, then f(E)+ f(F ) ≥

f(E ∪ F ) + f(E ∩ F ).
The first property is obvious for f . The second property
follows from the fact that the idle time function I(·) is a
non-increasing function. That is, if there were a larger set
of clients, then any non-idling policy would necessarily idle
less. Thus, the only condition that remains to be checked is
the submodularity of f .

Definition 1. For two disjoint set of clients A and B, let
f(A|B) denote the expected fraction of time the access
point spends transmitting packets for the clients in A, given
that the access point always schedules transmissions for the
clients in A right after it delivers all packets for the clients
in B, and only clients in the set A ∪ B are available. Note
that, obviously, f(A|B) = f(A ∪B)− f(B).

Lemma 1. For subsets A, B, and C, if B ⊆ C and A∩C =
φ, then f(A|B) ≥ f(A|C).

Proof. By definition, we have

f(A|B)
=f(A ∪B)− f(B)
=I(B)− I(A ∪B)

=E{1
τ

(
τ −

∑

i∈B

γi

)+

} − E{1
τ

(
τ −

∑

i∈A∪B

γi

)+

}

=E{1
τ

min[

(
τ −

∑

i∈B

γi

)+

,
∑

i∈A

γi]}.

Similarly,

f(A|C) = E{1
τ

min[

(
τ −

∑

i∈C

γi

)+

,
∑

i∈A

γi]}.

Since B ⊆ C,
∑

i∈C γi ≥ ∑
i∈B γi, and therefore

f(A|B) ≥ f(A|C).

Theorem 1. For any subsets of clients E and F , f(E) +
f(F ) ≥ f(E ∪ F ) + f(E ∩ F ).

Proof. We have

f(E) = f(E \ F |E ∩ F ) + f(E ∩ F ),

and
f(E ∪ F ) = f(E \ F |F ) + f(F ).

Therefore,

[f(E) + f(F )]− [f(E ∪ F ) + f(E ∩ F )]
=[f(E \ F |E ∩ F ) + f(E ∩ F ) + f(F )]
− [f(E \ F |F ) + f(F ) + f(E ∩ F )]

=f(E \ F |E ∩ F )− f(E \ F |F ) ≥ 0.

The last inequality holds by Lemma 1 and the fact that (E∩
F ) ⊆ F .

Next, note that a history dependent policy is a policy which
uses the information of the clients from past to the current
time, to decide which packet is to be served in any slot.
It keeps calculating during the period and can change the
order of clients within a period even if those have made prior
unsuccessful attempts and would like to retransmit. On the
contrary, a periodwise static priority policy is a static priority
policy (e.g., debt-first policy) which maintains the order of
the clients throughout one period regardless of the outcome
of the tranmission of packets in that period. A randomized
periodwise static priority policy is a periodwise static priority
policy which, at the begining of each period, randomly
chooses a particular order for all clients, and maintains that
order for the whole period. If a history dependent policy,
or a periodwise static priority policy is feasibility optimal,
it must satisfy the above constraints. Theorem 2 proves the
existence of a randomized periodwise static priority policy.

Theorem 2. If there exists a history dependent policy which
is feasibility optimal, then there exists a randomized period-
wise static priority policy, which is also feasibility optimal.
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Proof. Let C be the convex set satisfying the constraints de-
scribing the polytope P . Consider an ordering, which could
be any permutation over the N clients, π = [π1, π2, ..., πN ].
If the randomized periodwise static priority policy (here
we only consider non-idling policies) picks this order, its
expected busy times spent on various subsets of clients are
described by the following equations:
xπ1 = f({π1}),
xπ2 = f({π1, π2})− f({π1}),
...
xπN = f({π1, π2, ..., πN})− f({π1, π2, ..., πN−1}).
Because the number of time slots given for clients is bounded
by τ , C is a closed and bounded convex set. It follows that
if every extreme point of a polytope is some static priority
policy, then the class of periodwise static priority policies
covers all extreme points of C , and thus can realize any
history dependent policy by time sharing. We therefore only
need to show that every extreme point of C is a static priority
policy xπ . It is indeed shown in [1] that, for a polymatroid,
every extreme point corresponds to a static priority policy,
proving the result.

V. EXTENSIONS FOR TIME-VARYING CHANNELS AND
VARIABLE-BIT-RATE TRAFFIC

We now consider a more general model for arrivals and
channels considered in [3]. Such a model supports systems
with time-varying channels and variable-bit-rate traffic. In
[3], there is proposed a scheduling policy, called a joint
debt-channel policy, which is a particular periodwise static
priority policy, and it is proved that such a policy is feasibility
optimal among all periodwise static priority policies. In this
section, we extend this and show that the joint debt-channel
policy is actually feasibility optimal among the class of all
history dependent policies.

We first describe the extended model. It is assumed that
the channel reliability between the access point and a client
can vary over time. In particular, when the access point
schedules a transmission for client i at any time for period
k, then the transmission is successful with probability pk(t).
The channel reliability, pk(t), is assumed to remain the same
within the period k, and only changes from period to period.

The other feature allowed in this more general model is
that clients may generate packets according to a more general
traffic pattern. At the beginning of a period, only a subset of
clients may generate packets.

It is assumed that both the channel reliabilities for clients
and packet generations in each period evolve as an irre-
ducible (without loss of generality) Markov chain with finite
number of states. The state of the system at the beginning
of a period is fully described by the channel reliabilities and
packet generations in this period. We denote the set of all
possible states by C, and suppose that, in steady state, a
particular state c ∈ C occurs with probability rc.

Similar to the previous model, each client i requires its
long-term timely throughput to be at least qi. As earlier, we
define Ic(S) as the expected fraction of forced idle time
when the access point only serves clients in S when the

state of the system is c, and define fc(S) := 1− Ic(S). The
same argument as in Theorem 1 shows that fc(S) is also
submodular for each c.

As in [3], the problem of providing long-term timely
throughput to each client can be solved by decoupling the
system states. Let us suppose that we aim at providing a
timely throughput qc,i to client i under state c. The choices
of [qc,i] are made so that the long-term timely throughput of
each client averaged over all states is at least qi. Clearly, the
feasibility conditions for each state c need to be satisfied.
Thus we formulate the decoupled problem as one of solving
the following optimization problem:

max
∑

c,i

rcqc,i

s.t.
∑

c

rcqc,i ≥ qi,∀i,
∑

i∈S

qc,i

τpc
≤ fc(S), ∀c ∈ C and S ⊆ {1, 2, . . . , N}.

A similar argument as in Theorem 2 shows that if the
vector of timely throughput requirements of clients, [qi], can
be achieved by any policy, then there exists a randomized
periodwise priority policy that achieves the same timely
throughput requirements. Noting that Theorem 4 in [3] has
shown that the joint debt-channel policy is feasibility optimal
among all periodwiwe static priority policies, we obtain the
following theorem.

Theorem 3. The joint debt-channel policy proposed in [3]
is feasibility optimal among all history dependent policies.

VI. CONCLUSION

In this paper we have studied the problem of providing
delay based QoS in unreliable wireless networks. We have
proved the existence of a periodwise static priority policy
which is feasibility optimal for the class of problems where
packets have to delivered before the end of the packet in
which they arrive. Our analysis has proceeded by estab-
lishing the key property that the function representing the
unavoidable idle time incurred by the access point in each
period is supermodular. We have further investigated a more
general problem with variable-bit-rate packet arrivals and
time-varying channels and established the optimality of a
certain joint debt-channel policy over the class of all history
dependent policies.
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