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Abstract— At Google, the PageRank algorithm helps rank-
ings in search results by providing measures of web page
importance. This paper builds upon the distributed randomized
approach for this algorithm proposed in our recent works.
To reduce computation and communication, we develop a
method to systematically aggregate web pages into groups
by exploiting the sparsity inherent in the web. Each group
computes an aggregated PageRank, which can be distributed
among group members. We provide a decentralized scheme for
its computation and analyze convergence properties.
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sus, PageRank algorithm, Randomization, Search engines

I. INTRODUCTION

The search results when using the search engine Google

take account of various aspects of web pages, but it has

been acknowledged that the so-called PageRank algorithm

provides crucial information. This algorithm assigns to each

web page a measure of its importance or popularity based

on the link structure of the web (see, e.g., [16]).

One of the main challenges in the implementation of

this algorithm is the size of the web. Numerical methods

for PageRank have been a subject of recent research. In

the adaptive scheme of [14], computational resources are

allocated to pages whose convergence to the values is slow.

The work of [1] employs techniques based on Monte Carlo

simulation. Numerical analysis methods known as asyn-

chronous iterations are applied in [15].

In our recent paper [10], we developed a distributed

randomized approach for PageRank computation. From the

control theoretic viewpoint, a key observation is that the

PageRank computation shares several features with multi-

agent consensus problems, which have recently gained much

attention. Thus, we view the web as a network of agents

having computation and communication capabilities and let

each web page, or the server that hosts it, compute its

own PageRank value by communicating with neighboring

pages. To realize asynchronous communication, it employs

the so-called gossip protocol, where the pages randomly

determine when information should be transmitted. Such a
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randomization-based method is motivated by the probabilis-

tic methods in systems and control [18] and has also been

adopted for multi-agent consensus (e.g., [3], [5], [6]). In

[11], we have also considered the effects of communication

failures under this approach.

In this paper, we generalize and improve the distributed

algorithms in [10] by reducing the amount of computation

and communication. In doing so, the computation of the true

PageRank values may become difficult. Consequently, we

provide an alternative method for finding a good approximate

with an estimate on the possible errors.

The proposed approach is based on a novel aggregation

method of the original web to reduce the problem size.

The pages are first divided into a number of groups, e.g.,

based on the hosts or the domains of the pages. It is known

that most links in the web are intra-host ones [16], and

thus the underlying graph has certain sparsity properties. We

further aggregate the graph so that each group either (i) has

more internal links than those going outside or (ii) consists

of just one page. The aggregation procedure employs a

simple criterion and can be applied to graphs with any

link structures. Then, each group computes only one value

in a decentralized manner via an enhanced version of the

algorithms in [10]. This value represents the total value of

the group members and can be distributed to determine the

individual values. Aggregation can significantly reduce the

computational cost while maintaining the accuracy and the

convergence rate at a level similar to the non-aggregated full-

order case.

The aggregation-based technique in this paper is a gen-

eralization of those studied in our works [11], [13], which

are limited to computation of only the group values. In this

paper, we provide a more systematic view on the problem. It

is particularly motivated by the singular perturbation analyses

for large-scale systems in Markov chains [17] and multi-

agent consensus type problems [2], [7]. A common point

in these works is that the interaction among groups is

assumed to be weak, in which case the update scheme can

be approximated by a lower-order one. By contrast, however,

such a strict sparsity assumption does not hold for the web

graph. Hence, in our grouping procedure, which is applicable

to any graphs, such pages are treated as exceptions, being put

into groups of their own. Aggregation for PageRank has also

been explored to compute acceptable approximation in [16]

by classical methods in the Markov chain literature and in

[4] through extensive simulation.

This paper is organized as follows: Section II gives an

overview of the PageRank problem. In Section III, we
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formulate the problem of the aggregation-based algorithm,

followed by the main results in Section IV. The paper is

concluded in Section V. More details of the results can be

found in the full version [12] of the paper.

Notation: For vectors and matrices, inequalities are used

to denote entry-wise inequalities: For X, Y ∈ R
n×m, X ≤ Y

implies xij ≤ yij for i = 1, . . . , n and j = 1, . . . , m; we say

that the matrix X is nonnegative if X ≥ 0 and positive if

X > 0. A probability vector is a nonnegative vector v ∈ R
n

such that
∑n

i=1 vi = 1. A matrix X ∈ R
n×n is said to be

(column) stochastic if it is nonnegative and each column sum

equals 1. Let 1 ∈ R
n be the vector whose entries are all 1

as 1 := [1 · · · 1]T . Similarly, S ∈ R
n×n is the matrix with

all entries being 1.

II. THE PAGERANK PROBLEM

We briefly introduce the PageRank problem [16]. Consider

the directed graph G = (V, E) representing a network of n
web pages. Here, V := {1, 2, . . . , n} is the set of nodes

corresponding to the web page indices while E ⊂ V × V is

the set of edges for the links among pages. If page i has an

outgoing link to page j, then we have (i, j) ∈ E .

The PageRank algorithm assigns some measure of impor-

tance to each web page. The PageRank value of page i ∈ V
is given by x∗

i ∈ [0, 1], where x∗
i > x∗

j implies that page

i has higher importance than page j. The pages are ranked

such that a page having more links, especially those from

important pages, becomes more important. This is done in

such a way that the value of one page equals the sum of

the contributions from all pages that have links to it. Let

the values be in the vector form as x∗ ∈ [0, 1]n. Then, the

PageRank vector x∗ is defined by

x∗ = Ax∗, x∗ ∈ [0, 1]n, 1
T x∗ = 1, (1)

where the link matrix A = (aij) ∈ R
n×n is given by aij =

1/nj if (j, i) ∈ E and 0 otherwise, and nj is the number of

outgoing links of page j. Hence, x∗ is a nonnegative unit

eigenvector corresponding to the eigenvalue 1 of A.

For this eigenvector to be well defined, the convention is

to modify the problem. First, for simplification, we redefine

the graph by bringing in artificial links for nodes with no

outgoing links such as PDF files. This can be done by adding

links back to the pages having links to such pages. As a

result, the link matrix A becomes a stochastic matrix. This

implies that there exists at least one eigenvalue equal to 1.

To guarantee the uniqueness, let m be a parameter such that

m ∈ (0, 1), and let the modified link matrix M ∈ R
n×n be

M := (1 − m)A +
m

n
S.

Notice that M is a positive stochastic matrix. By Perron’s

theorem [9], the eigenvalue 1 is of multiplicity 1 and is the

unique eigenvalue with maximum magnitude. Further, the

corresponding eigenvector is positive. Hence, we redefine the

value vector x∗ by using M as follows.

Definition 2.1: The PageRank value vector x∗ is given by

x∗ = Mx∗, x∗ ∈ [0, 1]n, 1
T x∗ = 1. (2)

Due to the large dimension of the link matrix M , the

computation of x∗ is difficult. The solution employed in

practice is based on the power method given by the recursion

x(k + 1) = Mx(k) = (1 − m)Ax(k) +
m

n
1, (3)

where x(k) ∈ R
n and the initial vector x(0) ∈ R

n is a

probability vector. The second equality above follows from

the fact Sx(k) = 1, k ∈ Z+. For implementation, the form

on the far right-hand side is important, using only the sparse

matrix A. This method asymptotically finds the value vector

as shown below [9].

Lemma 2.2: In the update scheme (3), for any x(0) that

is a probability vector, it holds that x(k) → x∗ as k → ∞.

III. PROBLEM FORMULATION

In this section, we introduce the problem setting for

the distributed computation of the aggregated PageRank.

Following the randomized distributed approach of [10], we

view the web as a network of agents having computation and

communication capabilities. The focus here is to compute

approximate values of the exact PageRank with reduced com-

putation and communication. In what follows, we present the

aggregation procedure and then the communication protocol.

A. Web aggregation

The original web is aggregated by assigning each page

into a number of groups and then each group computes one

value, which is the sum of the values of the group members.

We aggregate pages sharing the following three properties:

(i) The pages are placed under the same host/server so that

their values can be computed together. (ii) Each group has

a sufficiently large number of internal links. More specifi-

cally, pages have more links within their own groups than

those pointing at pages that belong to other groups having

multiple members. (iii) Group members are expected to take

similar values in PageRank, which may be known from past

computations and/or the link structure; see [13] for results

related to this property. The process of grouping can be done

at each host locally.

We develop a novel aggregation approach by exploiting

sparsity properties of the web, as stated by (ii) above.

The approach is closely related to the singular perturbation

analysis for large-scale systems with network structures [2],

[7], [17]. See [12] for further discussion.

First, partition the original graph G = (V, E) and construct

the aggregated graph G̃ = (Ṽ, Ẽ) as follows:

(i) The node set is given by Ṽ := {1, 2, . . . , r}, and each

node i represents a partition set Ui of V , that is,
⋃

i Ui = V
and Ui∩Uj = ∅, ∀i �= j. We call the set Ui a group of pages.

Let r be the number of groups, and let ñi be the number of

pages in group Ui. Thus,
∑r

i=1 ñi = n.

(ii) The edge set Ẽ = Ṽ × Ṽ satisfies that if (i1, i2) ∈ E ,

then (h(i1), h(i2)) ∈ Ẽ , where h : V → Ṽ is the function

indicating the group j that the web page i belongs to such

that h(i) = j, or i ∈ Uj .

Without loss of generality, we assume that in the PageRank

vector x∗, the first ñ1 entries correspond to the pages
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belonging to group U1, and the following ñ2 entries are for

those in group U2, and so on. We also make the following

assumption. It says that each group should have a sufficiently

small number of external links compared to internal ones.

Recall that ni denotes the number of outgoing links of page

i, and let next,i be the number of links from page i to groups

having more than one page. As in [7], we define the node

parameter δi of page i by

δi :=
next,i

ni

, i = 1, . . . , n. (4)

Assumption 3.1: Given the bound δ ∈ (0, 1) on node

parameters, each group j satisfies one of the following

conditions:

(i) For each page i in group j, it holds that δi ≤ δ.

(ii) Group j consists of only one page.

In view of (ii) above, groups with one member are called

single groups; denote by r1 the number of such groups.

These groups represent exceptional pages having high ratios

of external links.

The update scheme employs the coordinate transformation

x̃(k) := V x(k) via the matrix V =
[
V T

1 V T
2

]T
, where V1 ∈

R
r×n and V2 ∈ R

(n−r)×n are given by

V1 := bdiag(1T
eni

), V2 := bdiag
(
[I

eni−1 0] −
1

ñi

1
eni−11

T
eni

)
,

(5)

where bdiag(Xi) denotes a block-diagonal matrix whose ith
diagonal block is Xi. Note that V1 and V2 are block-diagonal

matrices containing r and r − r1 blocks, respectively. They

have simple structures, depending only on the sizes ñi of the

groups. Also, in V2, the columns corresponding to the pages

that form groups of their own are zero. Moreover, V1 and V2

are orthogonal: V1V
T
2 = 0.

The PageRank vector x̃∗ and the state x̃(k) after the

transformation are partitioned as

x̃∗ =

[
x̃∗

1

x̃∗
2

]
:=

[
V1

V2

]
x∗, x̃(k) =

[
x̃1(k)
x̃2(k)

]
:=

[
V1

V2

]
x(k).

(6)

In the first part x̃∗
1 the ith entry is the total value of

the members in group i; this x̃∗
1 is called the aggregated

PageRank. In the second part x̃∗
2, each entry represents the

difference between a page value and the average value of

the group members. In the distributed algorithm developed

in Section IV, the objective is to compute x̃∗
1 via information

exchange only among groups. After this is completed, the

second part x̃∗
2 should be obtained. It will be shown that in

this stage, transmissions among pages in different groups

is necessary, but only once during the algorithm. Hence,

reduced communication load can be expected for small r.

Remark 3.2: A simple grouping procedure for Assump-

tion 3.1 to hold can be described as follows. The pages are

initially grouped based on their hosts, so the computation of

the node parameters δi in (4) can be done locally. Any page

i whose δi does not satisfy the condition (i) is taken out from

the group; such pages are treated as single groups, for which

the condition (ii) applies. Other pages still belong to the same

group, and thus their parameters δi are updated to check

whether (i) holds for this new group. These steps are repeated

until all pages under one host satisfy the assumption. This

procedure terminates for any given δ. ▽

B. Communication protocol via random gossiping

For the computation of x̃1(k), the groups send their values

to linked groups. Here, we employ a gossip-type asyn-

chronous protocol, where the groups decide to communicate

with their linked neighbors at random times.

In the aggregated graph G̃ = (Ṽ, Ẽ), the nodes exchange

their values over their outgoing links. Denote by Ṽi the set

of indices of the groups having links from node i as

Ṽi :=
{
j ∈ Ṽ : (i, j) ∈ Ẽ , j �= i

}
.

Here, we allow node i to communicate with a subset of Ṽi

at a time. This helps to reduce the instantaneous communi-

cation load especially for nodes having many links. For this

purpose, we partition Ṽi into the sets Ṽi,1, . . . , Ṽi,gi
, where

gi is the number of partition sets, i.e., it holds that

Ṽi =

gi⋃

ℓ=1

Ṽi,ℓ, Ṽi,ℓ ∩ Ṽi,j = ∅, ∀ℓ �= j.

For each node i ∈ Ṽ , let ηi(k) ∈ {0, 1, . . . , gi} be the i.i.d.

random process that specifies the set of nodes to which it

sends the value (x̃1(k))i at time k. That is,

ηi(k) =

{
ℓ if node i sends its value to nodes in Ṽi,ℓ,

0 if node i does not communicate.
(7)

The probability distribution of this process is given as

αi,ℓ = Prob{ηi(k) = ℓ}, ℓ = 0, 1, . . . , gi, k ∈ Z+. (8)

The update probabilities αi,ℓ ∈ (0, 1) are chosen so as to

satisfy the condition
∑gi

ℓ=0 αi,ℓ = 1, i ∈ Ṽ .

The problem of this paper can be roughly stated as follows:

Design a distributed randomized algorithm for computing

approximated PageRank values such that (i) the groups

compute x̃1(k), the total values of their member pages,

following the gossip protocol for communication and then

(ii) from x̃1(k), the PageRank vector x(k) and, in particular,

the values for individual pages are obtained.

IV. AGGREGATION-BASED PAGERANK COMPUTATION

In this section, we present the approach for aggregating

the web graph and propose an approximated version of the

PageRank. Then, the distributed randomized algorithm for

computing the group values x̃1(k) is discussed.

A. Definition of aggregated PageRank

We begin by analyzing the centralized update scheme of

(3) in Section II when the state is transformed as x̃(k) =
V x(k) by (6). Let Ã := V AV −1 and partition it in

accordance with the dimensions of x̃1(k) and x̃2(k) as

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
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with Ã11 ∈ R
r×r. The update scheme is then expressed as

x̃1(k + 1) = (1 − m)Ã11x̃1(k)

+ (1 − m)Ã12x̃2(k) +
m

n
u, (9)

x̃2(k + 1) = (1 − m)Ã21x̃1(k) + (1 − m)Ã22x̃2(k), (10)

where u := V11 = [ñ1 · · · ñr]
T ; we also used the fact

V21 = 0. The initial states are such that x̃1(0) ≥ 0 and

1
T
r x̃1(0) = 1. The steady state is x̃∗ given in (6).

Now, to derive an approximated version of the update

scheme above, we focus on the characteristics of the sub-

matrices Ãij . The inverse of the transformation matrix V in

(5) can be found in an explicit form, which will be useful

in our analysis. Denote it by W := V −1 and partition it as

W =
[
W1 W2

]
, where W1 ∈ R

n×r and W2 ∈ R
n×(n−r)

are given by

W1 := bdiag
( 1

ñi

1
eni

)
, W2 := bdiag

([
I

eni−1

−1
T
eni−1

] )
.

Again, W1 and W2 are block-diagonal matrices with r and

r − r1 blocks, respectively. Moreover, the rows in W2 that

correspond to single groups are zero. It is obvious that

V1W1 = I , V1W2 = 0, V2W1 = 0, and V2W2 = I .

The key observation in our aggregated approach is that the

matrix A can be decomposed into three parts as [17]

A = I + Aint + Aext. (11)

Here, the internal link matrix Aint is block diagonal; its ith
block is of the size ñi × ñi, whose nondiagonal entries are

the same as those of A, but its diagonal entries are chosen

so that the column sums are zero. This implies that I + Aint

is a block-diagonal stochastic matrix. Hence, we have

V1Aint = 0. (12)

On the other hand, the external link matrix Aext contains

all elements in A which are not in the block-diagonal Aint

while its diagonal entries are chosen so that each column

sum equals zero. Let Aext0 be an n × n matrix whose jth

column is the same as that of Aext if page j belongs to a

non-single group and zero otherwise for j = 1, . . . , n. By

the definition of W2, we can check that

AextW2 = Aext0W2. (13)

By using the facts W = V −1, (11), (12), and (13), the

submatrices in Ã can be expressed as
[
Ã11 Ã12

Ã21 Ã22

]
=

[
V1AW1 V1AW2

V2AW1 V2AW2

]

=

[
I + V1AextW1 V1Aext0W2

V2(Aint + Aext)W1 I + V2(Aint + Aext0)W2

]
. (14)

For later use, from Ã22, we construct the block-diagonal

matrix Ã′
22 by removing Aext0 as

Ã′
22 := I + V2AintW2. (15)

The following results will become helpful later.

Lemma 4.1: (i) The matrix Ã11 is stochastic.

(ii) The matrix Ã′
22 in (15) has spectral radius smaller than

or equal to 1.

(iii) Under Assumption 3.1, it holds that ‖Aext0‖1 ≤ 2δ.

An important implication of (ii) and (iii) of this lemma is

that if the node parameter δ is sufficiently small, the matrix

(1 − m)Ã22 is stable; this is because from (14), we have

Ã22 = I + V2(Aint + Aext0)W2 = Ã′
22 + V2Aext0W2, where

Aext0 is proportional to δ. This fact leads us to the idea of

how to approximate the scheme (9) and (10). First, express

(10) for x̃2(k) using its steady state (x̃2(k + 1) = x̃2(k)) as

x̃2(k) = (1 − m)
[
I − (1 − m)Ã22

]−1
Ã21x̃1(k), (16)

where the matrix I − (1 − m)Ã22 is nonsingular. This ex-

pression is motivated by the time-scale separation in singular

perturbation based approaches of [2], [7], [17]. Substituting

this into the recursion (9) for x̃1(k) yields

x̃1(k + 1) = (1 − m)
{

Ã11 + (1 − m)Ã12

×
[
I − (1 − m)Ã22

]−1
Ã21

}
x̃1(k) +

m

n
u. (17)

Note that if in addition this recursion is stable, then the steady

states of the scheme above with (16) and (17) become x̃∗ in

(6), the same as those of (9) and (10).

In this approximate form (16) and (17), the scheme

requires the recursive computation of only x̃1(k), whose

dimension equals the number r of groups. It thus appears that

information should be exchanged only among groups. How-

ever, notice that the term Ã12[I − (1 − m)Ã22]
−1Ã21x̃1(k)

involves the product of vectors of dimension n− r and con-

sequently may not be suitable for distributed computation.

We further simplify the scheme by relaxing the objective

to that of computing the approximated version of the state

x̃(k). Specifically, we modify the scheme (16) and (17) above

under the assumption that δ is small enough. The scheme

consisting of three steps is summarized as follows.

Algorithm 4.2: 1. Take the initial state x̃1(0) ∈ R
r as a

probability vector. At each time k, compute the first state

x̃1(k) ∈ R
r via the reduced-order recursion

x̃1(k + 1) = (1 − m)Ã11x̃1(k) +
m

n
u. (18)

2. Compute the second state x̃2(k) ∈ R
n−r by

x̃2(k) = (1 − m)
[
I − (1 − m)Ã′

22

]−1
Ã21x̃1(k). (19)

3. Transform the state back in the original coordinate by

x(k) = Wx̃(k) = W1x̃1(k) + W2x̃2(k). (20)

The convergence of this scheme is outlined below. Let x̃′
1

be the eigenvector of the stochastic matrix (1 − m)Ã11 +
(m/n)u1

T corresponding to eigenvalue 1. This exists and

is unique because Ã11 is stochastic by Lemma 4.1 (i) and

moreover, u/n is a positive probability vector by definition;

hence, the matrix (1 − m)Ã11 + (m/n)u1
T is positive

stochastic and Perron’s theorem [9] applies. Then, let

x̃′ :=

[
x̃′

1

x̃′
2

]
, (21)
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TABLE I

COMPARISON OF THE OPERATION COSTS

Algorithms Bounds on numbers of operations

Original (3) O((f0(A) + n)k)

Aggregation-based (18)–(20)
O((f0( eA11) + r)k + f0( eA21)

+
P

i
(ni − 1)2 + 2n − r)

f0(·): The number of nonzero entries of a matrix

where x̃′
2 := (1 − m)

[
I − (1 − m)Ã′

22

]−1
Ã21x̃

′
1. The first

part x̃′
1 is the approximate of the aggregated PageRank x̃∗

1;

with some abuse of terminology, it will also be called the

aggregated PageRank. Finally, let x′ := V −1x̃′.

The update scheme above converges to x′. We state this

fact as a proposition, which follows from Lemma 2.2.

Proposition 4.3: In the update scheme (18)–(20) of Algo-

rithm 4.2, for any initial vector x̃1(0) that is a probability

vector, it holds that x(k) → x′ as k → ∞.

A few remarks are in order. In the first step (18), the r-

dimensional state x̃1(k) represents the groups. This step re-

quires exchange of states only among groups and not among

individual pages and is suitable for distributed computation.

Once it reaches the steady state, the other two steps should

be carried out. The second step (19) requires transmission

over most links in the web for communicating the (n − r)-
dimensional vector Ã21x̃1(k). Nevertheless, the subsequent

computation in this step as well as the third step (20) can be

done locally within each group. This is because the matrices

I − (1 − m)Ã′
22, W1, and W2 are all block diagonal.

Remark 4.4: The advantage of the aggregation-based ap-

proach can be highlighted in terms of its operation cost [8].

Table I summarizes the numbers of operations for the original

scheme (3) and the proposed scheme (18)–(20). In both

cases, k is the number of steps required for the convergence

of the recursions; termination criteria have been introduced

in, e.g., [14] for the centralized case and [10] for the

distributed case. Also, f0(A) denotes the number of nonzero

entries in the link matrix A. For a sparse matrix, its product

with a vector requires operations of order f0(A). Note that

for the proposed scheme, in the second step (19), the matrix

Ã′
22 is block diagonal, but the blocks may be fairly dense; in

such a case, we have f0

(
[I−(1−m)Ã′

22]
−1

)
≈

∑
i(ni−1)2.

Also, in the third step (20), the transformation matrices

W1 and W2 satisfy f0(W1) = n and f0(W2) = n − r,

respectively. ▽

B. Aggregated PageRank and its approximation error

Here, we present a result to establish an error bound for

the update scheme (18)–(20). The following theorem is based

on the sparsity property in the graph G, represented by the

node parameter δ in Assumption 3.1. Let ǫ ∈ (0, 1) be a

parameter that determines the desired level of approximation.

Aggregate the web so that δ is sufficiently small that

δ ≤
mǫ

4(1 − m)(1 + ǫ)
. (22)

Theorem 4.5: Under Assumption 3.1 with the parameter

δ satisfying (22), the error between the steady state x′ of the

Fig. 1. The example web with groups indicated by the dashed lines

update scheme (18)–(20) of Algorithm 4.2 and the PageRank

vector x∗ is bounded as ‖x∗ − x′‖1 ≤ ǫ.

For the proof, it is useful to consider the following scheme:
[
x̃1(k + 1)
x̃2(k + 1)

]
= (1 − m)Ã′

[
x̃1(k)
x̃2(k)

]
+

m

n

[
u
0

]
, (23)

where the matrix Ã′ is given by

Ã′ :=

[
Ã11 0

Ã21 Ã′
22

]
. (24)

It is a modified version of Ã by replacing Ã12 and Ã22 with

0 and Ã′
22, respectively. Note that the matrix (1 − m)Ã′ is

stable because by Lemma 4.1, Ã11 is stochastic and (1 −
m)Ã′

22 is stable. It is straightforward to show that in this

scheme (23), the state converges to x̃′ in (21). Then, the

vector x′ = V −1x̃′ must be such that

x′ = (1 − m)A′x′ +
m

n
1, where A′ := V −1Ã′V. (25)

The following is a key lemma for the theorem.

Lemma 4.6: Under Assumption 3.1, it holds that ‖A −
A′‖1 ≤ 4δ.

Example 4.7: Consider the web consisting of six pages

shown in Fig. 1. Based on (2), the PageRank vector can be

found as x∗ =
[
0.0614 0.0857 0.122 0.214 0.214 0.302

]T
.

Pages 4 and 6 have the largest number of incoming links,

resulting in large PageRank values.

We aggregate the nodes into three groups as U1 = {1, 2},

U2 = {3}, and U3 = {4, 5, 6}; these are indicated by

the dashed lines in Fig. 1. In this case, the node pa-

rameters are δ1 = δ2 = 1/2, δ3 = 1, δ4 = 1/3,

and δ5 = δ6 = 0. Thus, with δ = 0.5, all the pages

satisfy Assumption 3.1. The PageRank after the coordinate

transformation can be found as x̃∗ =
[
(x̃∗

1)
T (x̃∗

2)
T
]T

=[
0.147 0.122 0.731 | −0.0121 −0.0294 −0.0294

]T
. Notice

that x̃∗
1 is a probability vector.

The matrices in the proposed scheme (18) and (19) are

eA11 =

2
4

0.5 0.333 0
0.25 0 0.111
0.25 0.667 0.889

3
5 ,

ˆ
I − (1 − m) eA′

22

˜−1 eA21 =

2
4

0 −0.167 0
0.174 0.161 −0.113

−0.0758 −0.172 −0.00177

3
5 .

For this scheme, the steady state in the original coordinate

is x′ = Wx̃′ =
[
0.0566 0.0920 0.125 0.212 0.213 0.302

]T
.

Comparing this with the true value x∗ is indeed small as

‖x′ − x∗‖1 = 0.0188. ▽
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C. Distributed randomized algorithm

We provide a distributed randomized scheme for ag-

gregated PageRank by applying the approach of [13]. To

simplify the notation, rewrite the aggregated PageRank in

(21) as ξ′ := x̃′
1 and the recursion in the first step (18) as

ξ(k + 1) = (1 − m)Φξ(k) +
m

n
u, (26)

where the link matrix is denoted by Φ = (φij) := Ã11 and

the state by ξ(k) := x̃1(k).
The objective is to compute the aggregated PageRank ξ′

via the distributed update scheme of the form

ξ(k + 1) = (1 − m̂)Φη(k)ξ(k) +
m̂

n
u, (27)

where ξ(k) ∈ R
r is the state whose initial condition

ξ(0) is a probability vector, and m̂ ∈ (0, 1); the process

η(k) := [η1(k) · · · ηr(k)] defined in (7) determines the

communication pattern at time k. In this scheme, each group

i also computes the time average of its own state ξi. Let ψ(k)
be the average of ξ(0), . . . , ξ(k) as

ψ(k) =
1

k + 1

k∑

ℓ=0

ξ(ℓ) =
1

k + 1

(
kψ(k − 1) + ξ(k)

)
. (28)

Let α ∈ (0, 1] be the base probability. The update

probability αi,ℓ in (8) is the probability that group i transmits

to its neighbors in Ṽi,ℓ for ℓ �= 0. We take them as

αi,ℓ =





1 − α if ℓ = 0,

α

P

j∈ eVi,ℓ
φji

P

j∈ eVi
φji

if ℓ = 1, . . . , gi,
for i ∈ Ṽi. (29)

Note that the probability for group i to transmit information

to some neighbor is
∑gi

ℓ=1 αi,ℓ = α. Also, the frequency

of communication among groups with more links is higher.

Also, let m̂ = mα/[1 − (1 − α)m].
In (27), the distributed link matrices Φq1,...,qr

for qi ∈
{0, 1, . . . , gi}, i ∈ Ṽ , are given by

(Φq1,...,qr
)pi

:=





α
αi,ℓ

φpi if qi = ℓ �= 0, p ∈ Ṽi,ℓ,

1 − α
αi,ℓ

∑
j∈eVi,ℓ

φji if qi = ℓ �= 0, p = i,

1 if qi = 0, p = i,

0 otherwise

(30)

for p, i ∈ Ṽ . These link matrices are in accordance with the

communication pattern specified by η(k), i.e., (Φη(k))pi > 0
if group i sends its value to group p at time k.

The convergence result for the distributed scheme (27) is

as follows [10], [13].

Theorem 4.8: Consider the distributed update scheme in

(27) and (28). With update probabilities αi,ℓ ∈ (0, 1], i ∈ Ṽ ,

ℓ ∈ {0, 1, . . . , gi}, in (29), the aggregated PageRank ξ′ can

be obtained from the time average ψ(k) of the states ξ(k) in

the mean-square sense as E
[∥∥ψ(k) − ξ′

∥∥2]
→ 0, k → ∞.

This distributed update scheme has the following features:

(i) The computation performed at each group i includes

the updates in the state ξi in (27) and the time average

ψi in (28). (ii) The communication among the groups is

local in that each group communicates only over direct

outgoing links, as seen from the link matrices in (30).

(iii) The communication load is determined by the process

η, specifying the interaction among pages. (iv) At any group,

the update probabilities αi,ℓ can be allocated to link groups

locally within the group though α is a global parameter.

V. CONCLUSION

We have developed a distributed randomized algorithm

for PageRank based on a novel aggregation technique. The

approach utilizes a simple grouping procedure. We have

introduced the notion of aggregated PageRank, from which

approximates of the true values can be computed. Advan-

tages of the approach in terms of computation as well as

convergence properties have been demonstrated.
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