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Abstract— Quantization effects are inevitable in networked
control systems (NCSs). These quantization effects can be
reduced by increasing the number of quantization levels.
However, increasing the number of quantization levels may lead
to network congestion, (i.e., the network needs to transfer more
information than its capacity). In this paper, we investigate
the problem of designing a robust H∞output feedback con-
troller for discrete-time networked systems with an adaptive
quantization density or limited information. More precisely,
the quantization density is designed to be a function of
the network load condition which is modeled by a Markov
process. A stability criterion is developed by using Lyapunov-
Krasovskii functional and sufficient conditions for the existence
of a dynamic quantized output feedback controller are given
in terms of Bilinear Matrix Inequalities(BMIs). An iterative
algorithm is suggested to obtain quasi-convex Linear Matrix
Inequalities (LMIs) from BMIs. An example is presented to
illustrate the effectiveness of the proposed design.

Keywords: Networked Control Systems (NCSs), Adap-

tive quantization Density, Sector Bound Approach,
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I. INTRODUCTION

With emerging technologies such as shared digital wired

and wireless networks, new research areas are opened in

the field of networked control systems (NCSs). NCSs are

distributed systems in which plants, sensors, controllers and

actuators are spatially distributed and interconnected through

communication networks. This development has greatly im-

proved modularity, system flexibility and reduced processing

cost. However, NCSs also bring many new challenges in con-

trol system design such as network-induced delays, packet

dropouts, quantization errors, variable transmission intervals,

network security and other communication constraints.

The issues of network induced time delays and packet

dropouts have been considered by many researchers; see

[1]-[11]. Many researchers have used Markov processes

to model the randomness of the network-induced delays

[3], [12], [13], [14], [18]. The Markov chain takes values,
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which corresponds to network-induced delays, in a finite set

based on known probabilities. However, the main drawback

of the aforementioned papers is that real communication

networks are not able to send data with infinite precision.

In communication networks, the length of each data packet

is finite, therefore, in order to improve the performance of

NCSs, the effect of data quantization must be incorporated

into any controller design. In most studies, the quantization

error is treated as an uncertainty in stability analysis and

controller synthesis [5], [4], [15], [16], [17]. The size of the

uncertainty depends on the quantization density and for a

logarithm quantizer, the size of uncertainty can be bounded

by a sector [19]. The main drawback of aforementioned

papers is the quantization density is assumed to be fixed.

In [20], it has mentioned that quantization process is useful

in NCSs . Quantizers with coarser quantization densities help

in reducing the network congestion. Consequently, network-

induced delays can be reduced because less information is

transmitted. However, the coarser the quantization density the

larger the quantization error. Hence, there exists a trade off

between the quantization error and the network congestion

or network-induced delay. In this paper, the quantization

density is designed to be a function of the network load

condition which is modeled by a Markov process. More

precisely, when the network load is heavy, a coarser quanti-

zation density is used so that less number of information is

transmitted. While in the lighter network load case, a finer

quantization density is selected. In doing so, the network

load condition can be sustained or maintained. Based on the

Lyapunov-Krasovskii functional approach, stability criterion

and the design procedures for an output feedback with an

adaptive quantization density are given in terms of Bilinear

Matrix Inequalities (BMIs) which are then converted into

quasi-convex LMIs to be solved by using an iterative cone

complementarity algorithm [25].

The main contributions of the paper can be summarized

as follows:

• To ease the network congestion, the quantization density

is designed to be a function of the network load which

is modeled by a Markvo process. To the best of the au-

thors’ knowledge, this issue has never been investigated

in the literatures.

• The controllers are parameterized by BMIs whose

dimensions depend upon the dimension of the state

variable of the open loop system and not on the number
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of the modes of the Markov chain. This decreases

the computational burden and it has not been formally

investigated in NCSs.

This paper is organized into five sections. In Section

II, system description, quantization error modeling, packet

dropouts and problem formulation are presented. Main re-

sults for stability criterion and controller synthesis are given

in Section III. Conclusions are given in Section IV.

II. SYSTEM DESCRIPTION AND DEFINITIONS

A simple networked control system is shown in Figure

1. A class of uncertain discrete-time linear systems under

Fig. 1. Layout of the networked control systems with quantizer

consideration is described by the following model:

x(k + 1) = [A + ∆A(k)]x(k) + [B1 + ∆B1(k)]w(k)

+[B2 + ∆B2(k)]u(k), x(0) = 0

z(k) = [C1 + ∆C1(k)]x(k) + [D11 + ∆D11(k)]

w(k) + [D12 + ∆D12(k)]u(k)

y(k) = C2x(k) (1)

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜm1 , y(k) ∈ ℜm2

are the state, input, controlled output and measured output,

respectively. w(k) ∈ ℜm3 is the disturbance which belongs

to L2[0,∞), the space of square summable vector sequence

over [0,∞). The matrices A, B1, B2, C1, D11, D12 and C2

are known matrices with appropriate dimensions. The matrix

functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and

∆D12(k) represent the time-varying uncertainties in the

system which satisfy the following assumption

Assumption 2.1:
[

∆A(k) ∆B1(k) ∆B2(k)
∆C1(k) ∆D11(k) ∆D12(k)

]

= EgF (k)Hg

Eg =

[

E1

E2

]

, Hg =
[

H1 H2 H3

]

where Eg and Hg are known matrices which characterize

the structure of the uncertainties. Furthermore, there always

exist a positive-definite matrix W such that the following

inequality holds:

FT (k)WF (k) ≤ W

where F (k) is a time varying function.

Quantizer Modeling and Description:

The quantization process is useful in NCSs design. Net-

work congestion and network-induced time delay can be

reduced by using a coarser quantizer. Hence, by adjusting

the quantization density, the network load capacity can be

sustained.

Let {rk, k} be a discrete homogeneous Markov chain

taking values in a finite set S = {1, 2, · · · , s}, with the

following transition probability from mode i at k to mode j

at time k + 1

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S.

In this paper, the quantization density is designed to

be a function of the network load condition. Hence, the

quantization density, δ, is described as a finite state Markov

process as δ = δ(rk). On the basis of this technique, a

network load dependent quantizer is proposed as follows:

q(ν, i) =



















ρh(i) if 1
1+δ(i)ρ

h(i) < ν ≤ 1
1−δ(i)ρ

h(i),

ν > 0, h = 0,±1,±2, · · ·
0, if ν = 0

−q(−ν, i) if ν < 0
(2)

where 0 < ρ(i) < 1 is the quantization density of q(·, ·),
and δ(i) is related to ρ(i) by

δ(i) =
1 − ρ(i)

1 + ρ(i)
(3)

The associated quantized set U is given by

U =
{

±ρh(i), h = 0,±1,±2, · · ·
}

⋃

{0}. (4)

Now define the quantization error as

e(k, i) = q(v(k), i) − v(k) = ∆q(k, i)v(k), (5)

where v(k) is signal to be quantized, q(v(k), i) is

the quantized signal. It has been shown in [19] that

∆q(k, i) ∈ [−δ(i), δ(i)].

The measured output y(k), which is used as feedback

information for controller, may not be available all the time

due to packet dropouts. To compensate these packet dropouts,

a stochastic variable following Bernoulli sequence is used.

We are interested in the following mode dependent dynamic

output feedback control law:

x̂(k + 1) = α(k){Ac(i)x̂(k) + Bc(i)q(y(k − τ(k)), i)}
+(1 − α(k))Acf (i)x̂(k)

u(k) = Cc(i)x̂(k) (6)
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where Ac(i), Acf (i), Bc(i), Cc(i) are controller matrices.

α(k) ∈∈ 0, 1 is random variable following Bernoulli random

distribution:

α(k) =

{

1, if feedback information is available

0, Without feedback signal

Assume that α(k) has probability:

Prob{α(k) = 1} = E{α(k)} = α, Prob{α(k) = 0} = 1−α

where 0 ≤ α ≤ 1 is a constant and

E{α(k) − α} = 0, β2 ≡ E{(α(k) − α)2} = α(1 − α)

where E(·) is the expectation operator and β2 is the variance.

τ(k) is the time varying delay satisfying:

0 < τ ≤ τ(k) ≤ τ̄

where τ and τ̄ are known constants. It is worth mentioning

that in NCSs, there exist various type of delays such as sensor

to controller delays τsc(k); controller to actuator delays

τca(k) and processing delays τc(k). However, these delays

can all be lumped together [22]:

τ(k) = τsc(k) + τca(k) + τc(k)

Using (5), the closed loop system of (1) with (6) is given

as follows:

ζ(k + 1) = [Acl1(i) + α(k)Acl2(i) + (1 − α(k))Acl3(i)

+Ē1F (k)H̄1(i)]ζ(k) + [B̄1 + Ē1F (k)H2]

w(k) + α(k)Bcl(i)(1 + ∆q(k, i))C̄2ζ(k − τ(k))

z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k) +

[D11 + E2F (k)H2]w(k). (7)

where ζ(k) = [x(k) x̂(k)]T ,

Acl1(i) =

[

A B2Cc(i)
0 0

]

, Acl2(i) =

[

0 0
0 Ac(i)

]

,

Acl3(i) =

[

0 0
0 Acf (i)

]

, Bcl(i) =

[

0
Bc(i)

]

,

B̄1 =

[

B1

0

]

, C̄2 =
[

C2 0
]

, Ē1 =

[

E1

0

]

H̄1(i) =
[

H1 H3Cc(i)
]

, Ccl(i) =
[

C1 D12Cc(i)
]

Equation (7) can be simplified as:

ζ(k + 1) = [Acl(i) + Ē1F (k)H̄1(i)]ζ(k) + [B̄1 + Ē1F (k)

H2]w(k) + αBcl(i)(1 + ∆q(k, i))C̄2ζ(k −
τ(k)) + (α(k) − α){(Acl2(i)ζ(k) − Acl3(i)

ζ(k) + Bcl(i)(1 + ∆q(k, i))ζ(k − τ(k))}
z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k)

+[D11 + E2F (k)H2]w(k). (8)

where

Acl(i) = Acl1(i) + αAcl2(i) + (1 − α)Acl3(i)

The problem under study is formulated as follows.

Problem Formulation:

Given a prescribed γ > 0 and quantization densities ρ(i),
design a dynamic output feedback controller of the form (6)

such that

1) the system , given in (7) with (6) and w(k) = 0 is

stochastically stable, i.e, there exists a constant 0 <

α1 < ∞ such that

E

{

∞
∑

ℓ=0

ζT (ℓ)ζ(ℓ)

}

< α1 (9)

for all ζ(0) and r0.

2) Under the zero-initial condition, the controlled output

z(k) satisfies H∞performance:

E

{

∞
∑

k=0

zT (k)z(k)|r0

}

< γ2
∞
∑

k=0

wT (k)w(k) (10)

for all nonzero w(k).

The following lemma plays an important role in the deriva-

tion of the main results.

Lemma 2.1: Let x̄(k) = x(k + 1) − x(k) and ζ̃(k) =
[

ζT (k) ζT (k − τ(k)) wT (k) ζT (k)H̄T
1 (i)FT (k)

ζT (k − τ(k))C̄T
2 ∆qT (k) wT (k)HT

2 FT (k)
]T

∈ ℜl, then

for any matrices R ∈ ℜn×n, M ∈ ℜn×l and Z ∈ ℜl×l

satisfying
[

R M

MT Z

]

≥ 0 (11)

the following inequality holds

k−1
∑

i=k−τ̄

x̄T (i)Rx̄(i) ≤ ζ̃T (k)
{

Υ1 + ΥT
1 + τ̄Z

}

ζ̃(k) (12)

where Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0].

Proof is given in our previous work [21].∇∇∇

III. STABILITY ANALYSIS AND SYNTHESIS OF NCSS

Stability criterion for uncertain discrete-time systems with

random quantization densities are given in the following

theorem.

Theorem 3.1: For given controller matrices Ac(i), Acf (i),
Bc(i) and Cc(i)and quantization densities ρ(i) where i =
1, · · · , s, γ > 0, if there exist sets of positive-definite

matrices P (i), R1(i), R1, W1(i), W2(i),W3(i),Q, Z(i) and

matrices M(i) satisfying the following inequalities

R1 > R1(i) (13)

[

R1(i) M(i)
∗ Z(i)

]

≥ 0 (14)

Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 (i)τ̄R1Γ2(i) +

Υ1(i) + ΥT
1 (i) + τ̄Z(i) + ΓT

3 (i)Γ3(i) < 0 (15)
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where

Γ1(i) =
[

Ācl(i) B̄cl(i)C̄2 B̄1 Ē1 B̄cl(i)C̄2 Ē1

]

Γ2(i) =
[

Ā 0 B̄1 Ē1 0 Ē1

]

Γ3(i) =
[

Ccl(i) 0 D11 E2 0 E2

]

Λ(i) = diag
{(

(τ̄ − τ + 1)Q + H̄T
1 (i)W1(i)H̄1(i) −

P (i)
)

, (δ2(i)W2(i),−Q),
(

HT
2 W3(i)H2

−γ2I
)

,−W1(i),−W2(i),−W3(i)
}

P̃ (i) =

s
∑

j=1

pijP (j)

Υ1(i) = MT (i)[diag{I, 0} diag{−I, 0} 0 0 0 0]

Ā =

[

A − I B2Cc(i)
0 0

]

Ācl(i) = Acl(i) + β{Acl2(i) − Acl3(i)},
B̄cl(i) = (α + β)Bcl(i). (16)

Then the closed-loop system is stochastically stable with the

prescribed H∞performance.

Proof: The system (8) can be written as

ζk+1 = Γ1(rk)ζ̃k

zk = Γ3(rk)ζ̃k

(17)

where ζ(k+1) = ζk+1, Γ1(rk) and Γ3(rk) are given in (16)

and ζ̃k is defined in Lemma 2.1

Select the L-K candidate functional for the closed loop

system as:

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (18)

with

V1(ζk, rk) = ζT
k P (rk)ζk (19)

V2(ζk, rk) =

−1
∑

ℓ=−τ̄

k−1
∑

j=k+ℓ

x̄T
j R1x̄j (20)

V3(ζk, rk) =

k−1
∑

ℓ=k−τ(k)

ζT
ℓ Qζℓ +

−τ+1
∑

ℓ=−τ̄+2

k−1
∑

j=k+ℓ−1

ζT
j Qζj

(21)

First forward difference of V (ζk, rk) is given as follows:

∆V (ζk, rk) = ∆V1(ζk, rk) + ∆V2(ζk, rk) + ∆V3(ζk, rk)
(22)

with

∆V1(ζk, rk) = ζT
k+1P̃ (rk)ζk+1 − ζT

k P (rk)ζk

= ζ̃T
k ΓT

1 (rk)P̃ (rk)Γ1(rk)ζ̃k − ζT
k P (rk)ζk

(23)

∆V2(ζk, rk) ≤ x̄T
k τ̄R1x̄k −

k−1
∑

ℓ=k−τ̄

x̄T
ℓ R1x̄ℓ (24)

and

∆V3(ζk, rk) ≤ (τ̄ − τ +1)ζT
k Qζk − ζT

k−τ(k)Qζk−τ(k). (25)

Using Lemma 2.1 and x̄k = xk+1−xk = Γ2(rk)ζ̃k, we have

∆V2(ζk, rk) ≤ ζ̃T
k

{

ΓT
2 (rk)τ̄R1Γ2(rk) + Υ1(rk)

+ΥT
1 (rk) + τ̄Z(rk)

}

ζ̃k

where Γ2(rk) is given in (16).

Therefore,

∆V (ζk, rk) ≤ −ζT
k

(

P (rk) − (τ̄ − τ + 1)Q
)

ζk −

ζT
k−τ(k)Qζk−τ(k) + ζ̃T

k

{

ΓT
1 (rk)

P̃ (rk)Γ1(rk) + ΓT
2 (rk)τ̄R1Γ2(rk)

+Υ1(rk) + ΥT
1 (rk) + τ̄Z(rk)

}

ζ̃k

(26)

Using Assumption 2.1; and adding and subtracting

ζT
k H̄T

1 (rk)FT
k W1(rk)FkH̄1(rk)ζk,

ζT
k−τ(k)∆q(k, i)T W2(rk)∆q(k, i)ζk−τ(k),

wT
k HT

2 FT
k W3(rk)FkH2wk , zT

k zk and γ2wT
k wk to and

from (26), we obtain

∆V (ζk, rk) ≤ −ζT
k

(

P (rk) − (τ̄ − τ + 1)Q − H̄T
1 (rk)

FT
k W1(rk)FkH̄1(rk)

)

ζk − ζT
k−τ(k)

(

Q − δ2(rk)W2(rk)
)

ζk−τ(k) + ζ̃T
k

{

ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk)τ̄R1Γ2(rk)

+Υ1(rk) + ΥT
1 (rk) + τ̄Z(rk) + ΓT

3 (rk)

Γ3(rk)
}

ζ̃k − zT
k zk + γ2wT

k wk − wT
k

(

γ2I

−HT
2 W3(rk)H2

)

wk − ζT
k−τ(k)δ

2(i)

W2(rk)ζk−τ(k) − ζT
k H̄T

1 (rk)FT
k W1(rk)Fk

H̄1(rk)ζk − wT
k HT

2 FT
k W3(rk)FkH2wk(27)

Using (16), (27) can be rewritten as

∆V (ζk, rk) ≤ ζ̃T
k

{

Λ(rk) + ΓT
1 (rk)P̃ (rk)Γ1(rk)

+ΓT
2 (rk)τ̄R1Γ2(rk) + Υ1(rk) + ΥT

1 (rk)

+τ̄Z(rk) + ΓT
3 (rk)Γ3(rk)

}

ζ̃k − zT
k zk +

γ2wT
k wk (28)

Using (15), we have

∆V (ζk, rk) ≤ −zT
k zk + γ2wT

k wk (29)

Taking expectation and sum from 0 to ∞ on both sides of

(29) yields

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −E
{

∞
∑

ℓ=0

zT
ℓ zℓ

}

+γ2
∞
∑

ℓ=0

wT
ℓ wℓ
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As initial conditions, as given in problem formulation, are

considered zero i.e, V (ζ0, r0) = 0, so

E
{

∞
∑

ℓ=0

zT
ℓ zℓ

}

≤ γ2
∞
∑

ℓ=0

wT
ℓ wℓ (30)

If w(k) = 0, ∀k ≥ 0 closed-loop system should be

stochastically stable. From (28) and (15), we learn that

V (ζ(k+1), r(k+1)) − V (ζk, rk) ≤ −βζ̃T
k ζ̃k (31)

where β = inf{Λ(rk)min[−M(rk)], i ∈ S} with

M = Λ(rk) + ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk)τ̄R1Γ2(rk)

+ Υ1(rk) + ΥT
1 (rk) + τ̄Z(rk) + ΓT

3 (rk)Γ3(rk) (32)

Summing from 0 to ∞ and by taking expectation on both

sides of (31) gives

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −β1E
{

∞
∑

k=0

ζ̃T
ℓ ζ̃ℓ

}

≤ −β1E
{

∞
∑

k=0

ζT
ℓ ζℓ

}

(33)

Re-arranging (33), we have

E
{

∞
∑

k=0

ζT
ℓ ζℓ

}

≤ 1

β1
E{V (ζ0, r0)} −

1

β1
E{V (ζ∞, r∞)}

≤ α1 (34)

where α1 = 1
β1

E{V (ζ0, r0)} < ∞. This shows that the

closed loop system is stable and (9) holds. ∇∇∇
The following theorem provides procedures for designing

a quantized output feedback controller.

Theorem 3.2: For given γ > 0 and quantization densities

ρ(i), if there exist positive symmetric matrices X(i) > 0,

Y (i) > 0, Y(i) > 0, W1(i), W1(i), W2(i), W2(i), W3(i),
Q, Q, N(i), N (i), R1, R1, R1(i), S(i, j), Z̄(i) and matrices

A(i), Af (i), B(i), C(i), J(i), M̄(i) satisfying the following

inequalities for all i, j ∈ S

R1 > R1(i) (35)

[

N(i) M̄(i)
∗ Z̄(i)

]

≥ 0 (36)

[

S(i, j) JT (i)
∗ Y (j)

]

> 0 (38)

[

R1(i) T T (i)
∗ N (i)

]

> 0 (39)

Y(i)Y (i) = I, QQ = I, N (i)N(i) = I, R1R1 = I. (40)

W̃1(i)W1(i) = I, W̃2(i)W2(i) = I, (41)

where

Λ̄(i) = diag















−
[

Y (i) I

I X(i)

]

,−Q,
(

HT
2 W3(i)H2 − γ2I

)

,

−W1(i),−W2(i),−W3(i)















Ῡ(i) = M̄T (i)[diag{I, 0} diag{−I, 0} 0 0 0 0]

Γ̄1(i) =
[

Ǎcl(i) B̌cl(i)C̄2 B̌1 Ě1 B̌cl(i)C̄2 Ě1

]

Γ̄2(i) =
√

τ̄
[

Ǎ(i) 0 B̄1 Ē1 0 Ē1

]

Γ̄3(i) =
[

Čcl(i) 0 D11 E2 0 E2

]

Γ̄4(i) =
[

(
√

τ̄ − τ + 1)T (i) 0 0 0 0 0
]

Γ̄5(i) =
[

Ȟ1(i) 0 0 0 0 0
]

Γ̄6(i) =
[

0 δ(i) 0 0 0 0
]

Ξ̃(i) =

[

−(S̃(i) − J(i) − JT (i)) I

I X̃(i)

]

X̃(i) =

s
∑

j=1

pijX(j), S̃(i) =

s
∑

j=1

pijS(i, j)

Ǎcl =

[

AY (i) + B2C(i) A

(α + β)A(i) + (1 − α − β)Af (i) X̃(i)A

]

B̌cl =

[

0
(α + β)B(i)

]

, B̌1 =

[

B1

X̃(i)B1

]

Ě1 =

[

E1

X̃(i)E1

]

, Ǎ =

[

(A − I)Y (i) B2C
0 0

]

Čcl(i) = [C1Y (i) + D12C(i) C1] , T (i) =

[

Y (i) I

Y (i) 0

]

Ȟ1(i) = [H1Y (i) + H3C H1] , T (i) =

[

0 Y(i)
I −I

]

.

(42)

Then the closed-loop system is stochastically stable with

the prescribed H∞ performance. Furthermore, a suitable

controller is given as follows

Ac(i) =
(

∑s

j=1 pijY
−1(j) − X̃(i)

)

−1

(

A(i) − X̃(i)(AY (i) + B2C(i))
)

Y −1(i)

Acf (i) =
(

∑s

j=1 pijY
−1(j) − X̃(i)

)

−1

(

Af (i) − X̃(i)(AY (i) + B2C(i))
)

Y −1(i)

Bc(i) =
(

∑s

j=1 pijY
−1(j) − X̃(i)

)

−1

B(i)

Cc(i) = C(i)Y −1(i).
(43)

Proof: The proof is omitted due to the space limitation.

∇∇∇
Using the cone complementary algorithm [25], the feasi-

bility problem formulated by (35)-(41) which is not a convex

problem can be converted into the following nonlinear min-

imization problem: Minimize Tr
(

Y (i)Y(i) + Q(i)Q(i) +

N(i)N (i) + R1R1 + W1(i)W1(i) + W2(i)W2(i)
)

Subject to (35)-(39) and
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Λ̄(i) + Ῡ1(i) + ῩT
1 (i) + τ̄ Z̄(i) Γ̄T

1 (i) Γ̄T
2 (i) Γ̄T

3 (i) Γ̄T
4 (i) Γ̄T

5 (i) Γ̄T
6 (i)

∗ −Ξ̃(i) 0 0 0 0 0
∗ ∗ −R1 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −Q 0 0

∗ ∗ ∗ ∗ ∗ −W̃1(i) 0

∗ ∗ ∗ ∗ ∗ ∗ −W̃2(i)





















< 0 (37)

[

Y (i) I

I Y(i)

]

≥ 0,

[

Q I

I Q

]

≥ 0,

[

N(i) I

I N (i)

]

≥ 0,

[

R1 I

I R1

]

≥ 0,

[

W1(i) I

I W̃1(i)

]

≥ 0

[

W2(i) I

I W̃2(i)

]

≥ 0. (44)

Algorithm to solve this optimization problem is omitted due

to space limitations.

IV. CONCLUSIONS

A novel method for designing a robust H∞output feed-

back control for discrete-time networked systems with an

adaptive quantization density or limited information is pro-

posed. The quantization density is designed to be a function

of the network load condition which is modeled by a

Markov process. Bernoulli random sequences are used to

model packet dropouts in the network. Stability criterion

and controller design are developed using the Lyapunov-

Krasovskii functional approach. The design procedures for a

robust H∞quantized dynamic output feedback controller are

given in terms of BMIs. A cone complementarity algorithm is

suggested to convert BMIs into quasi-convex LMIs. Through

a simulation example of an LTI system, effectiveness of

proposed design is verified as well.
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