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Abstract— A new continuous state observer is derived for
discrete-time linear switched systems under the assumptions
that neither the continuous state nor the discrete state are
known. A specificity of the proposed observer is that, contrary
to the state-of-art, it does not require an explicit estimation
of the discrete state. The key idea of the method consists
in minimizing a non-smooth `2-norm-based weighted cost
functional, constructed from the matrices of all the subsystems
regardless of when each of them is active. In the light of some
recent development in the literature of compressed sensing, the
minimized cost functional has the ability to promote sparsity
in a way that makes prior knowledge/estimation of the discrete
mode sequence unnecessary.

I. INTRODUCTION

For a dynamic system, the state usually refers to a vector
of signals that encodes, from a modeling perspective, the
full information about the past of that system. There are
many practical engineering situations in which an accurate
estimate of the state is desirable. Recovering the full state
from partial observations has many quite obvious advan-
tages. For example, this can help get around the necessity
of instrumenting the system with some possibly expensive
state sensors. Another application of state estimation is in
fault detection. In effect, comparing a model-based estimate
of the state to its measured version can bring out model
inconsistencies thereby enabling the detection of changes
in the system whose nominal behavior is described by that
model. Also, in state feedback control systems, a complete
knowledge of the state is required for the implementation of
the controller. Depending on whether past, present or future
states are estimated, the terminologies smoothing, filtering
or prediction are respectively used.

Prior work. The state estimation problem has been exten-
sively investigated for the classes of linear and nonlinear
dynamic systems. For the class of hybrid systems, the
interest of researchers in the state estimation problem is more
recent, though a number of relevant approaches have already
been published in the existing literature [7], [2], [3], [13],
[15], [23], [5]. The earliest works on state estimation for
hybrid systems were dedicated to the class of Jump Markov
Linear Systems [1], [23], [12], [13]. In these systems the
switching mechanism is a first-order Markov chain and can
be determined from the observations. For such systems the
estimation problem can be tackled in a stochastic framework
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using a particle filtering approach [13] or a bank of Kalman
filters [23].

The main challenge of hybrid state estimation lies in the
fact that the discrete mode is unknown and also needs to be
inferred from the input-output measurements along with the
continuous state. For switched systems in particular, there
is not necessarily a model of the switching law that can
be learnt from data. This is because the class of switched
systems can cover a variety of switching mechanisms; the
switches can in this case be e.g. exogenous, deterministic,
state-driven, event-driven, time-driven or even totally ran-
dom. The work reported in [3] which is one of the first
proposed approaches for switched linear systems, assumes
that the discrete mode sequence is available so that the
problem reduces to the synthesis of a classical Luenberger
type of observer for each linear subsystem. In [2], the discrete
mode is assumed unknown and a receding horizon procedure
is presented. A moving horizon approach was also followed
in [15], [20], [21] to derive a state smoother for the class of
piecewise affine systems.

Our approach. In this paper we develop a new state
observer for discrete-time linear switched systems. Since the
discrete state is also unknown, a very natural approach would
be to solve a mixed integer-continuous optimization problem
for both the discrete and continuous states. Most of the
existing hybrid state estimators for switched linear systems
follow this idea. Unfortunately this may be computationally
heavy and sometimes intractable. The main feature of the
method introduced in this paper is that it approximates the
mixed integer-continuous optimization problem with a non-
smooth but still continuous optimization one. Moreover this
last problem is convex and therefore solvable by efficient and
well-documented techniques [8], [16]. Thanks to the inter-
esting properties of the proposed particular cost functional,
we can get around the necessity of explicitly estimating
the system discrete state. At each time t, the continuous
state is computed in two steps : 1) a prediction step during
which the state estimate is predicted based on the system
matrices and the previous estimate ; this is performed through
the minimization of an `2-norm criterion involving all the
subsystems’ matrices and 2) a correction step during which
the measurements at time t are used to refine the predicted
state.

Outline. We start with presenting some preliminary concepts
in Section II. We distinguish between two cases: the case
when the modes are instantaneously discernible, is treated
first in Section III; the more general situation where the
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modes are discernible over a finite data-window, is dealt with
in Section IV. Numerical experiments are depicted in Section
V. Some concluding remarks are provided in Section VI.

II. PRELIMINARIES

We consider a discrete-time switched linear system described
in state space form by{

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t)
y(t) = Cσ(t)x(t) +Dσ(t)u(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny are respectively
the state, the input and the output of the system at time
t ∈ N. σ(t) ∈ Q is the discrete mode (state), that is, the
index of the subsystem which is active at time t ; Q is the
finite set of discrete modes with cardinality |Q| = s. For
each discrete mode σ ∈ Q, Aσ, Bσ, Cσ, Dσ are the matrices
(of appropriate dimensions) which are associated with that
mode.

Given the system matrices Aσ, Bσ, Cσ, Dσ , σ ∈ Q,
and the past input-output observations (u(τ), y(τ)), τ =
0, . . . , t−1, the problem discussed in this paper is concerned
with the estimation of the continuous state x(t) at time
t under the assumption that the discrete state sequence is
unknown. We more specifically try to answer the question
of whether it is possible to reconstruct the continuous state
without an explicit knowledge/estimate of the discrete mode
sequence.
For the need of convergence analysis, we shall associate with
system (1) its uncontrolled version,

z(t+ 1) = Aσ(t)z(t), z(0) = x(0) (2)

where the switching σ(·) is the same as the one in system
(1).

Assumption 1: System (2) is uniformly exponentially sta-
ble for any initial state z(0) and under any switching path.
That is, there exist (independently of the initial state and the
switching sequence) some numbers λ and c, with λ ∈]0 1[
and 0 < c <∞, such that

‖z(t)‖2 ≤ cλ
t ‖z(0)‖2 ∀t.

Note from [18] that uniform exponential stability of system
(2) is equivalent to Bounded Input-Bounded Output (BIBO)
stability of system (1). It is also equivalent to the existence
of a finite number k such that ‖Ai1 · · ·Aik‖2 < 1 for any
selection (i1, . . . , ik) of indices in Q. Let K denote the
smallest such number k and define, for future use,

ρ = max
(i1,...,iq)∈Qq

q≤K

∥∥Ai1 · · ·Aiq∥∥2
. (3)

Intuitively, for any hybrid state estimation method to be suc-
cessful, there is a reasonable need to assume that the discrete
modes are discernible in a certain sense. Some algebraic
characterizations of mode discernibility and continuous state
observability have been proposed in the literature, e.g., in
[22], [4], [24], [14]. Such characterizations are non-trivial
and are based on rank tests on some complex structured

matrices. Here, due to the non-algebraic nature of the estima-
tion scheme, we will express mode discernibility in simpler
terms. With the notation gi(t) = y(t) − Cix(t) − Diu(t),
we define a somewhat strong notion of mode discernibility
(instantaneous) which is data-dependent, as1

R = min
t≥0
i6=σ(t)

‖gi(t)‖2 > 0 (4)

being large in a certain sense to be specified later. If
[Ci Di] 6= [Cj Dj ] for i 6= j, then the assumption (4) holds
generically with respect to the state and the input. This means
that the property ‖gi(t)‖2 > 0, i 6= σ(t), holds everywhere
in the state-input space Ω ⊂ Rn+nu of the system, except
possibly on a set of measure zero, which is precisely the
algebraic set defined by ∪i 6=j ker([Ci − Cj Di − Dj ]),
with ker(·) referring to the kernel space. Assumption (4)
does not hold absolutely when the state-input space Ω
intersects ∪i 6=j ker([Ci − Cj Di − Dj ]). It always holds if
rank([Ci − Cj Di − Dj ]) = n + nu for any (i, j) such
that i 6= j. Requiring R to be strictly positive may appear
severely restrictive in general. A more relaxed discernibility
assumption will therefore be introduced in Section IV.

III. OBSERVER DESIGN WHEN THE MODES ARE
INSTANTANEOUSLY DISCERNIBLE

We first consider the case when the discrete modes are
discernible directly from one instantaneous output. A more
general situation will be studied in Section IV.

Most conventional approaches for hybrid observer design
are based, at least in a first step, on an attempt to recover
explicitly the discrete state sequence. The motivation for such
a treatment of the state estimation problem is that linear
techniques can directly be carried over to hybrid systems
once the discrete state is known, see e.g. [3]. However,
finding simultaneously both the discrete and continuous
states is a problem that is partly combinatorial (mixed
integer-continuous programming). Even worse, deciding the
discrete state becomes much problematic when the data are
contaminated by noise.
This paper proposes a conceptually different approach in that
it is able to overcome the need of explicitly recovering the
discrete state before proceeding with the estimation of the
continuous state. Instead, the designed observer relies on
an appropriately weighted continuous and non-smooth op-
timization. To discuss clearly the foundation of the method,
it is perhaps interesting to start with a batch mode estimation.

A. Off-line state estimation

We first consider a batch estimation of the state. The
idea is based on the following observation. If we denote by
{x(t)}Nt=1 the true state sequence, then the vector sequence

1Strictly speaking, it is not necessary that ‖gi(t)‖2, i 6= σ(t), be strictly
positive for any t ≥ 0. This just needs to hold most of the time. In that
respect, the seemingly strong assumption (4) is motivated by clarity of
presentation.
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{hi(t), i = 1, . . . , s, t = 1, . . . , N} with

hi(t) =

[
x(t+ 1)
y(t)

]
−
[
Ai Bi
Ci Di

] [
x(t)
u(t)

]
, (5)

forms a sparse sequence of vectors that is, a great number of
elements of this sequence are equal to zero. More precisely,
if at any time t there is only one i ∈ {1, . . . , s} satisfying the
system equation (1), then exactly N vectors of the sequence
{hi(t)}i,t are equal to zero. Note that sparsity of the vector
sequence {hi(t)}i,t is, in principle, equivalent to sparsity of
the scalar sequence {‖hi(t)‖}i,t for any norm ‖·‖ and in
particular for the `2 norm. Capitalizing on this fundamental
observation, we may find the estimate {x̂(t)} of the state
sequence so as to minimize the cost functional

J
(
x̂(1), . . . , x̂(N)

)
=

N−1∑
t=1

s∑
i=1

wi(t)

∥∥∥∥[ x̂(t+ 1)
y(t)

]
−
[
Ai Bi
Ci Di

] [
x̂(t)
u(t)

]∥∥∥∥
2

(6)

where the wi(t) are some known weights and N denotes
the number of samples. The choice of criterion (6) calls for
some comments. First, note that the criterion is constructed
as a sum-of-norms instead of a sum-of-squared-norms as is
usually the case in estimation literature. This is motivated by
the fact that the non-smooth sum-of-norms has the property
of promoting the obtention of a solution {x̂(t)} such that the
vector sequence

{
ĥi(t)

}
i,t

is sparse [11], [19], [6]. While
minimizing a sum-of-squared-norms cost function (which
corresponds to the classical least squares) tends to make
small the average error vector, the cost function in (6) can
tolerate the presence of a few gross errors, that is, the
terms ‖hi(t)‖2 are minimized in a somewhat discriminatory
manner: those errors which can be set zero are placed to
zero, the others can be left large. This implicit discrimination
ability can be reinforced here by an appropriate choice of the
weights wi(t). A procedure similar to the one presented in
[10] can be used to iteratively minimize (6). In this case,
the weights are updated at each iteration. One drawback
however of the cost functional (6) is that it treats the states
as independent variables.

B. State observer

In this section, we construct a state observer (i.e., an
online estimator for the continuous state) for switched linear
systems based on the concept presented above. At any time
the continuous state is inferred from the prior estimate and
the newly available input-output measurements.

More specifically the proposed recursive state estimator
operates in two steps as follows :
Prediction step. At time t − 1, predict the state at time t

based on u(t− 1), x̂(t− 1), y(t− 1),

x̂(t|t− 1) =

arg min
η∈Rn

s∑
i=1

wi(t− 1) ‖η −Aix̂(t− 1)−Biu(t− 1)‖2

(7)

where

wi(t− 1) =
woi (t− 1)∑s
i=1 w

o
i (t− 1)

(8)

woi (t− 1) =
[
‖y(t− 1)− Cix̂(t− 1) (9)

−Diu(t− 1)‖2 + ε
]−1

.

Update step. At time t refine the prediction x̂(t|t−1) using

the newly available measurement (u(t), y(t)),

x̂(t|t) = arg min
η∈Rn

[
‖η − x̂(t|t− 1)‖22 +

γ

s∑
i=1

w′i(t) ‖y(t)− Ciη −Diu(t)‖2
]
,

(10)

where the weights are re-calculated using the input u(t), the
state x̂(t|t− 1) and the output y(t) as

w′i(t) =
w1
i (t)∑s

i=1 w
1
i (t)

(11)

w1
i (t) =

[
‖y(t)− Cix̂(t|t− 1)−Diu(t)‖2 + ε

]−1

. (12)

Here, γ > 0 is a regularization constant which controls the
importance of the two terms involved in the cost function
(10) to be minimized; ε is a small positive number whose
primary role here is to prevent division by zero. The notation
x̂(t|t− 1) refers to the one step ahead prediction of the esti-
mate x̂(t) at time t−1. Also, notice indeed that x̂(t|t) = x̂(t).
The weights (8)-(9) in the prediction step are constructed
such that the contribution of submodel i to the determination
of the state at time t is all the more important as submodel
i is likely to be active at t− 1. The same holds similarly for
the weights (11)-(12) involved in the update step. Note that
the non-smooth optimization problems (7) and (10) can be
numerically implemented using e.g. the CVX toolbox [16],
[8].

In the sequel we will study the convergence of the pre-
dicted state x̂(t|t− 1) given in Eq. (7) toward the true state
x(t). This analysis is carried out under the assumption that
the switching sequence {σ(t)}, the input sequence {u(t)}
and the initial state x(0) allow for distinguishing between
the different modes.

Lemma 1: Under Assumption 1, the dynamical system2

x̂(t) = arg min
η∈Rn

s∑
i=1

wi(t−1) ‖η −Aix̂(t− 1)−Biu(t− 1)‖2
(13)

arising from (7), is BIBO stable.

Proof: As defined in (13), x̂(t) corresponds to the
solution of the so-called Fermat-Weber problem. From the
related literature [9], it is known that x̂(t) as defined in (13),

2Eq. (13) defines in fact a difference (convex) inclusion system. It
should, in a strict sense, be read as x̂(t) ∈ argminη∈Rn

∑s
i=1 wi(t −

1) ‖η −Aix̂(t− 1)−Biu(t− 1)‖2
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satisfies

x̂(t) =

s∑
i=1

vi(t− 1)
(
Aix̂(t− 1) +Biu(t− 1)

)
.

where the weights vi satisfy vi(t − 1) ≥ 0 for all i, t and
v1(t− 1) + · · ·+ vs(t− 1) = 1. Letting b(t) =

∑s
i=1 vi(t−

1)Biu(t−1) and A(t−1) =
∑s
i=1 vi(t−1)Ai, the expression

of x̂(t) simplifies to

x̂(t) = A(t− 1)x̂(t− 1) + b(t).

Note that A(t−1) lies in the convex hull of the set of matrices
{A1, . . . , As}. It can thus be concluded from Proposition 1
in [17] and Assumption 1 that the above system is asymp-
totically stable (when b(t) is identically zero). Moreover,
by observing that vi(t − 1) ≤ 1, it is easy to see that if
the input u is bounded, then ‖b(t)‖2 is bounded above by
maxi ‖Bi‖2 supt≥0 ‖u(t)‖2. In conclusion, the system (13)
is BIBO stable. That is, if the input sequence {u(t)} is
bounded, the state {x̂(t)} is also bounded.
The convergence result is now stated as follows.

Theorem 1: Suppose that Assumption 1 holds and let the
state estimation error be defined as e(t) = x̂(t|t− 1)−x(t).
Assume that ε is chosen sufficiently small to satisfy

s− 2

s− 1
ε ≤ αR (14)

where 0 < α < 1
s−1 , s ≥ 2 and R is defined as in (4).

If there is a finite T such that

‖e(T − 1)‖2 <
R

µ
(15)

where µ > (µ0 + δ) max (1, ρ), with ρ defined as in (3) and

µ0 =
1 + α(s− 1)2

1− α2(s− 1)2
M

δ =

√
µ2

0 −
m(s− 1)2

1− α2(s− 1)2
,

m = min
i 6=j

λmin
( 1

(s− 1)2
C>i Ci − C>j Cj

)
,

M = max
i
‖Ci‖2 ,

then the error e(t) converges asymptotically to 0. The no-
tation λmin(·) refers here to the minimum eigenvalue. Note
that as defined above, the number m is necessarily negative.

To prove the theorem, we will need the following technical
lemma.

Lemma 2: Let Assumption 1 hold and define the error
e(t) = x̂(t|t− 1)− x(t). Then e(t) obeys the model

e(t) = Aσ(t−1)e(t− 1) + f̂σ(t−1)(t− 1), (16)

where σ(t− 1) represents the true discrete mode of system
(1) at time t−1 and

{
f̂σ(t−1)(t−1)

}
forms a bounded vector

sequence.
Moreover, if the weights satisfy

woσ(t−1)(t− 1) >
∑

i 6=σ(t−1)

woi (t− 1) (17)

then f̂σ(t−1)(t− 1) = 0, i.e.

e(t) = Aσ(t−1)e(t− 1). (18)
Proof: We first prove Eq. (16). To this end, notice that

problem (7) can be reformulated as

min
x̂(t|t−1),f̂1(t−1),...,f̂s(t−1)

s∑
i=1

wi(t− 1)
∥∥f̂i(t− 1)

∥∥
2
,

s.t. x̂(t|t− 1) = Aix̂(t− 1) +Biu(t− 1) + f̂i(t− 1),

i = 1, . . . , s.

The terms f̂i(t − 1) represent some auxiliary variables. In
particular,

x̂(t|t−1) = Aσ(t−1)x̂(t−1)+Bσ(t−1)u(t−1)+f̂σ(t−1)(t−1).

By subtracting in x̂(t|t− 1), the expression

x(t) = Aσ(t−1)x(t− 1) +Bσ(t−1)u(t− 1)

of the true state, we get Eq. (16). Boundedness of the se-
quence

{
f̂σ(t−1)(t−1)

}
follows from Lemma 1. Assumption

1 then implies immediately that the estimation error (16) is
bounded, see e.g. [18].

We now prove (18). For this purpose, we start by noting
that, with a set of vectors fi(t−1) ∈ Rn, i ∈ Q, appropriately
chosen, one can always write the true state as x(t) = Aix(t−
1) +Biu(t− 1) + fi(t− 1) for any i ∈ Q. In this case, note
in passing that fσ(t−1)(t− 1) = 0. By setting η̃ = η − x(t),
we can write3

η −Aix̂(t− 1)−Biu(t− 1) =

= η − x(t) + x(t)−Aix̂(t− 1)−Biu(t− 1)

= η̃ +Aix(t− 1) +Biu(t− 1) + fi(t− 1)

−Aix̂(t− 1)−Biu(t− 1)

= η̃ −Aie(t− 1) + fi(t− 1).

Hence, by changing the optimization variable in problem (7)
to η̃ = η − x(t), where x(t) is the true state, the following
holds

e(t) = arg min
η̃∈Rn

Jt−1(η̃) =

s∑
i=1

wi(t− 1) ‖η̃ −Aie(t− 1) + fi(t− 1)‖2

or equivalently, Jt−1(η̃) ≥ Jt−1(e(t)) for any η̃ ∈ Rn. In
particular,

0 ≤ Jt−1

(
Aσ(t−1)e(t− 1)

)
− Jt−1(e(t)) =

=

s∑
i=1

wi(t− 1)
∥∥(Aσ(t−1) −Ai)e(t− 1) + fi(t− 1))

∥∥
2

−
s∑
i=1

wi(t− 1) ‖e(t)−Aie(t− 1) + fi(t− 1))‖2

3Note that for the sake of simplicity, we have used here the notation
x̂(t− 1) instead of x̂(t− 1|t− 2).
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=

s∑
i 6=σ(t−1)

wi(t− 1)
∥∥(Aσ(t−1) −Ai)e(t− 1) + fi(t− 1))

∥∥
2

−
s∑

i6=σ(t−1)

wi(t− 1) ‖e(t)−Aie(t− 1) + fi(t− 1))‖2

− wσ(t−1)(t− 1)
∥∥e(t)−Aσ(t−1)e(t− 1)

∥∥
2

≤
s∑

i 6=σ(t−1)

wi(t− 1)
∥∥e(t)−Aσ(t−1)e(t− 1)

∥∥
2

− wσ(t−1)(t− 1)
∥∥e(t)−Aσ(t−1)e(t− 1)

∥∥
2

=
(
1− 2wσ(t−1)(t− 1)

) ∥∥e(t)−Aσ(t−1)e(t− 1)
∥∥

2
.

Note that we have used the identity ‖x‖2−‖y‖2 ≤ ‖x− y‖2
in deriving the last inequality. The above inequality implies
that if 2wσ(t−1)(t − 1) > 1 that is, if (17) is satisfied, then
e(t) = Aσ(t−1)e(t− 1).

Proof: The proof of the theorem is a consequence of
Lemma 2. Our method of proof consists of two steps: (i)
derive a sufficient condition for (17) to hold, (ii) use the
asymptotic stability condition of system (2) to conclude.

Part (i). Let t = T . For (17) to be true for t = T , it suffices

that
woσ(t−1)(t− 1) > (s− 1)woi (t− 1) (19)

for all i 6= σ(t − 1). By writing y(t − 1) = Cix(t − 1) +
Diu(t− 1) + gi(t− 1), it follows that

woi (t− 1) =
1

‖y(t− 1)− Cix̂(t− 1)−Diu(t− 1)‖2 + ε

=
1

‖Cie(t− 1)− gi(t− 1)‖2 + ε

Exploiting this, it is easy to see that Eq. (19) is equivalent
to

1

s− 1
‖Cie(t− 1)− gi(t− 1)‖2 >∥∥Cσ(t−1)e(t− 1)

∥∥
2

+
s− 2

s− 1
ε. (20)

Squaring this inequality leads to

e(t− 1)>
( 1

(s− 1)2
C>i Ci − C>σ(t−1)Cσ(t−1)

)
e(t− 1)

+
1

(s− 1)2
‖gi(t− 1)‖2

− 2

(s− 1)2
e(t− 1)>C>i gi(t− 1)

− 2ε
s− 2

s− 1

∥∥Cσ(t−1)e(t− 1)
∥∥

2
−
(
s− 2

s− 1

)2

ε2 > 0.

(21)

In order to find a lower bound of the expression lying on the
left-hand side of the inequality symbol, let us emphasize the

following set of inequalities

e(t− 1)>
( 1

(s− 1)2
C>i Ci − C>σ(t−1)Cσ(t−1)

)
e(t− 1)

≥ m ‖e(t− 1)‖22 ,

− 2

(s− 1)2
gi(t− 1)>Cie(t− 1) ≥ − 2M

µ(s− 1)2
‖gi(t− 1)‖22 ,

− 2ε
s− 2

s− 1

∥∥Cσ(t−1)e(t− 1)
∥∥

2
≥ −2αM

µ
‖gi(t− 1)‖22 ,

−
(
s− 2

s− 1

)2

ε2 ≥ −α2 ‖gi(t− 1)‖22 .

Now reference to inequality (21) shows that for (17) to hold,
it suffices that

m ‖e(t− 1)‖22 +K(α, µ) ‖gi(t− 1)‖22 > 0. (22)

with K(α, µ) =
1

(s− 1)2
−α2−

( 1

(s− 1)2
+α
)2M

µ
. Note

that here it necessarily holds that m ≤ 0. This follows from

the simple fact that if λmin
( 1

(s− 1)2
C>i Ci − C>j Cj

)
> 0,

then λmin
( 1

(s− 1)2
C>j Cj − C>i Ci

)
< 0.

With m ≤ 0, it follows from (15) and (22) that(
m+ µ2K(α, µ)

)
‖gi(t− 1)‖22 > 0

and constitutes a sufficient condition for (22). This is a poly-
nomial of degree 2 in µ. From direct algebraic calculations,
it is then straightforward to see that this last condition holds
if and only if (15) holds with µ > µ0 + δ.

Part (ii). We have just shown that (17) holds at time T under
the condition (15) if µ > µ0 + δ. By now exploiting Lemma
2, the error at time T takes the form e(T ) = Aσ(T−1)e(T−1)
where σ(·) is the true switching function. Note that for any
i ∈ Q and any x ∈ Rn, ‖Aix‖2 ≤ ρ ‖x‖2 where ρ is defined
in (3). It follows that if

‖e(T − 1)‖2 ≤
R

µ
with µ > (µ0 + δ) max(1, ρ),

as assumed in the statement of the theorem, then

‖e(T )‖2 =
∥∥Aσ(T−1)e(T − 1)

∥∥
2
≤ R

(µ/ρ)

with µ/ρ > µ0 + δ. This in turn implies that

‖e(T + 1)‖2 =
∥∥Aσ(T )Aσ(T−1)e(T − 1)

∥∥
2

≤ R

(µ/ρ)
with µ/ρ > µ0 + δ,

which implies . . . etc. . . . In fact, from the definition of ρ,
Condition (15) is satisfied for any t ≥ T so that e(t) =
Aσ(t−1)e(t − 1) for any t ≥ T . By Assumption 1, it
can be concluded that the estimation error e(t) converges
asymptotically towards 0.
What Theorem 1 says is that, if the estimation error happens
to lie inside the disk D(µ) = {x ∈ Rn : ‖x‖2 < R/µ} for
a large enough µ and if the design parameter ε is chosen
sufficiently small, then the estimation error will definitively
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converge asymptotically to zero. For this situation to occur,
the modes must be strongly distinguishable within the data
in the sense that the number R defined in (4) must be large.

As it turns out, the derived sufficient convergence condi-
tions may be somewhat conservative. In practice we have
noticed that convergence is generically achieved, thus sug-
gesting that further research should be devoted to relaxing
the condition of Theorem 1.

Remark 1: A requirement for an estimation problem to
be well-posed is that the considered system is observable.
Observability is a property of the system that refers to
the possibility to infer uniquely the continuous state (and
sometimes, also the discrete mode) from input and output
measurements. Note that here, Eq. (15) constitutes a local
observability condition. In effect, this equation says that if
the estimated state comes to be close enough to the true
state, then by Theorem 1, we are able to recover uniquely
the true state. Since convergence is only locally proved,
no absolute observability condition in the usual sense is
explicitly invoked.

C. An approximate closed-form implementation

Note that the designed state observer is based on solving
an `2 optimization problem at each time. However this may
be a little computationally expensive in practice. In the
objective of alleviating the computational requirement, we
remark in this section that the previous observer admits an
approximate analytic implementation at a much cheaper cost.
The idea is based on replacing the `2 norm in the criterion
appearing in (7) by a squared-norm while taking the square
of the weights in (9). Hence we redefine the weights by

woi (t−1) =
[
‖y(t− 1)− Cix̂(t− 1)−Diu(t− 1)‖2+ε

]−2

,

(23)
that is, as the square of the ones defined in (9). As in (8),
the weights are then normalized according to

wi(t− 1) =
woi (t− 1)∑s
i=1 w

o
i (t− 1)

. (24)

The prediction and the update equations for the estimated
state become respectively

x̂(t|t− 1) =

arg min
η∈Rn

s∑
i=1

wi(t− 1) ‖η −Aix̂(t− 1)−Biu(t− 1)‖22

(25)

and

x̂(t) = arg min
η∈Rn

[
‖η − x̂(t|t− 1)‖22 +

γ

s∑
i=s

w′i(t) ‖y(t)− Ciη −Diu(t)‖22
]
.

(26)

with w′i(t) defined as in (23)-(24) by replacing
(
u(t −

1), x̂(t − 1), y(t − 1)
)

with
(
u(t), x̂(t|t − 1), y(t)

)
instead.

Note that the central point in the above least squares im-
plementation of the non-smooth optimization problem is the

squaring of the weights. By squaring the norms as in (25)-
(26), we have also squared the weights so that (25)-(26) and
(7)-(10) are roughly the same. Simple calculations then lead
to the following analytic formulas for the state observer

x̂(t|t− 1) =

s∑
i=1

wi(t− 1)
(
Aix̂(t− 1) +Biu(t− 1)

)
x̂(t) =

(
In + γ

s∑
i=1

w′i(t)C
>
i Ci

)−1[
x̂(t|t− 1) +

γ

s∑
i=1

w′i(t)C
>
i

(
y(t)−Diu(t)

)]
.

Here In is the identity matrix of dimension n. These closed-
form formulas approximately implement the non-smooth
optimization-based observer (7)-(10).

IV. A MORE GENERAL CASE

The observer structure described so far relies on the as-
sumption that for any t, there exists only one index σ(t) ∈ Q
satisfying y(t) = Cσ(t)x(t)+Dσ(t)u(t) and that the number
R defined in (4) is relatively large. This may not be true in
general as it may happen for example that more than one
subsystem have the same (C,D)-matrices. In this type of
situations, we need to seek mode discernibility not from a
single output vector y(t) ∈ Rny but from a set of output
vectors constructed over a time window of a certain size.
In this section we extend the proposed hybrid state observer
to more general situations. The key idea to this extension is
to construct a lifted switched system with inputs and outputs
living in a higher dimensional space. The new output is
formed by vertically concatenating the outputs of system
(1) over a certain time window [t − τ, t]. The new input
is constructed similarly. We obtain the following model

x(t) = A(στ (t− τ))x(t− τ)
+B(στ (t− τ))uτ (t− τ)

yτ (t− τ) = C(στ (t− τ))x(t− τ)
+D(στ (t− τ))uτ (t− τ)

(27)

where the notations uτ (t), yτ (t), στ (t) are defined as

yτ (t) =
[
y(t)> · · · y(t+ τ − 1)>

]> ∈ Rτny ,

uτ (t) =
[
u(t)> · · · u(t+ τ − 1)>

]> ∈ Rτnu ,
στ (t) = σ(t) · · ·σ(t+ τ − 1) ∈ Qτ .

(28)

The matrices A, B, C and D are defined for any word σ̄ =
σ1 . . . στ ∈ Qτ , as

A(σ̄) = Aστ · · ·Aσ1
,

B(σ̄) =
[
Aστ . . . Aσ2

Bσ1
Aστ . . . Aσ3

Bσ2

· · · AστBστ−1 Bστ
]
,

C(σ̄) =
[
(Cσ1)

>
(Cσ2Aσ1)

> · · ·
(
CστAστ−1 · · ·Aσ1

)>]> ,
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D(σ̄) =


Dσ1 0 . . . 0

Cσ2Bσ1 Dσ2 . . . 0

Cσ3
Aσ2

Bσ1
Cσ3

Bσ2

. . . 0
...

...
...

...
CστAστ−1

. . . Aσ2
Bσ1

(∗) . . . Dστ

 ,

where (∗) stands for CστAστ−1
. . . Aσ3

Bσ2
. We can view

the lifted system (27) as a switched system in a similar way
as (1). The set of discrete states of the system (27) is the
finite set Qτ , i.e., it is assumed that all switching paths are
admissible. The state estimator discussed in the preceding
sections can be applied to (27) with a few changes : At time
t, we construct a state smoother to obtain

x̂(t− τ |t) = arg min
η∈Rn

[
γ1 ‖η − x̂(t− τ)‖22 + γ

∑
σ̄∈Qτ+1

wσ̄(t)

× ‖yτ+1(t− τ)− C(σ̄)η −D(σ̄)uτ+1(t− τ)‖2
]

and from x̂(t− τ |t), we predict the state at time t as

x̂(t) = arg min
η∈Rn

∑
σ̄∈Qτ

w′σ̄(t)×

‖η −A(σ̄)x̂(t− τ |t)− B(σ̄)uτ (t− τ)‖2 .

wσ̄(t) and w′σ̄(t) are defined respectively from
(
uτ+1(t −

τ), x̂(t− τ), yτ+1(t− τ)
)

and
(
uτ (t− τ), x̂(t− τ |t), yτ (t−

τ)
)

similarly as in (9). Note that the smoothing step can be
removed by setting both γ and γ1 to zero.

V. NUMERICAL EXPERIMENTS

We now illustrate the performance of the new state ob-
server on a three-modes switched linear system having state
dimension equal to 3, 2 inputs and 2 outputs. The dynamics
of the three modes are described by an equation of the form
(1) with the following matrices.

A1 =

0.83 0 0.07
0 0.80 −0.10

0.07 −0.10 0.72

 , B1 =

0.17 −1.40
−2 −0.65
0 0


C1 =

[
−1 0.90 −1

−0.93 0 1

]
, D1 =

[
0 −1.50

0.07 −1.33

]

A2 =

 0.33 0.58 −0.09
−0.40 0.15 −0.50
−0.43 0.30 0.43

 , B2 =

−0.33 0
0.68 0.88
−0.81 −0.90


C2 =

[
0.02 −0.35 0.33
−0.37 0 −0.79

]
, D2 =

[
−0.97 0
−0.02 0

]

A3 =

−0.15 −0.17 0.48
−0.28 −0.40 −0.23
−0.42 0.32 −0.02

 , B3 =

 0 −0.85
−0.80 −0.63
−0.21 −1.16


C3 =

[
0 0 0.38
0 0.64 −0.46

]
, D3 =

[
0 0.88

−1.11 0.27

]
.

We select the input sequence to be the realization of a
random vector process u ∼ N (0, I2). The initial state is
also generated at random from a centered normal distribution.
The design parameters ε and γ are set to 10−5 and 1
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Fig. 1. True state (black solid) and estimated state (red dashed) trajectories
obtained using the observer of Section III-B.

respectively. Running first the observer on noise-free data,
a perfect reconstruction of the continuous state is obtained
despite a quite small value for R in Eq. (4): R = 0.17 and
R/µ = 0.085. Second, to make the simulation more realistic,
the output is disturbed by a certain amount of noise ; we
also let the state be corrupted by a process noise. In both
cases, the signal to noise ratio is about 20 dB. Note that the
covariances of these noises are unknown by the algorithm.
That is the structure of the noise is not explicitly handled by
the observer. The results depicted in Figure 1 show that the
proposed estimate scheme is able to overcome this challenge.
For all the three forms of the observer discussed in the paper,
convergence occurs quite quickly after the initial time.

VI. CONCLUSION

In this paper we have presented a new hybrid observer
for switched linear systems. While the majority of existing
techniques rely on a prior explicit determination of the
discrete state, the method of this paper is a non-smooth
yet continuous optimization-based estimation approach. To
recursively obtain an estimate of the state, we optimize at
each time a weighted cost function over the entire set of
subsystems. The considered cost function has the attractive
property of being tolerant to gross fitting errors, thus al-
lowing for an optimization over all the subsystems without
prior identification of the discrete mode. On a non-trivial
numerical example, the developed method has proved to be
viable. Relaxing the condition of Theorem 1 is still an open
problem to be considered in future research.
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