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Abstract— This paper investigates control laws allowing mo-
bile, autonomous agents to optimally position themselves on the
line for distributed sensing in a nonuniform field. We show that
a simple static control law, based only on local measurements
of the field by each agent, drives the agents to the optimal
positions in time that is quadratic in the number of agents.
Further, we exhibit a dynamic control law which, under slightly
stronger assumptions on the capabilities and knowledge of each
agent, drives the agents to the optimal positions an order of
magnitude faster, namely in time that is linear in the number
of agents. Both algorithms are fully distributed and robust to
unpredictable loss and addition of agents.

I. INTRODUCTION

Widespread deployment of networks of sensors and au-
tonomous vehicles is expected to revolutionize our ability
to monitor and control physical environments from remote
locations. However, for such networks to achieve their full
range of applicability, they must be capable of operating in
uncertain and unstructured environments without centralized
supervision. Realizing the full potential of such systems
will require the development of protocols that are fully
autonomous, distributed, and adaptive in the face of rapidly
changing environments.

An important problem in this context is the coverage prob-
lem. A collection of mobile sensors need to determine how
to distribute themselves over a region given an observation
field they can measure; the sensors should be positioned
so that the likelihood of detecting an event of interest is
maximized. If the probability distribution of the event is
uniform over the area, then the optimal solution will involve
a uniform spacing out of the agents. On the other hand if
this probability distribution is not uniform, then the sensors
should be more densely positioned in the subregions that
have higher event probability.

There is a considerable literature on coverage algorithms
for groups of dynamic agents, which we do not survey in its
entirety here; we will refer the reader to [12], [6], [5], [9], [2],
[1], [3], [4], [11] and the references therein. In [5], uniform
coverage algorithms are derived using Voronoi cells and
gradient laws for distributed dynamical systems. Uniform
constrained coverage control is addressed in [12] where the
constraint is a minimum limit on node degree. Virtual poten-
tials enable repulsion between agents to maximize coverage
and attraction between agents to enforce the constraint. In
[9], gradient control laws are proposed to move sensors to

The authors are with Department of Mechanical and Aerospace
Engineering, Princeton University, Princeton, NJ 08544, USA,
naomi@princeton,edu, aolshevs@princeton.edu

This research was supported in part by AFOSR grant FA9550-07-1-0-
0528 and ONR grant N00014-09-1-1074.

a configuration that maximizes expected event detection fre-
quency. Local rules are enforced by defining a sensing radius
for each agent, which also makes computations simpler. The
approach is demonstrated for a nonuniform but symmetric
density field with and without communication constraints.
Further results for distributed coverage control are presented
in [6] for a coverage metric defined in terms of the Euclidean
metric with a weighting factor that allows for nonuniformity.
As in [6], the methodology makes use of Voronoi cells and
Lloyd descent algorithms. The papers [3], [4] identified a
class of non-convex regions for which the coverage problem
may be solved by reduction to the convex case through a
well-chosen transformation of the region. The papers [1], [2]
explored an optimization-based approach to some variations
of the covering problem.

The paper [11] considered the general nonuniform cover-
age problem with a non-Euclidean distance, and it proposed
and proved the correctness of a coverage control law in the
plane. However, the control law of [11] is only partially
distributed, in that it relies on a “cartogram computation”
step which requires some global knowledge of the domain.

Our work builds on the results of [11] to design a
control law for the nonuniform coverage problem in the
one-dimensional case when the agents are positioned on
the line. We develop fully distributed coverage control laws
for a nonuniform field in this setting, and moreover, we
prove quantitative convergence bounds on the performance
of these algorithms. Interestingly, we find that relatively
modest increases in the capabilities and knowledge of each
agent can translate into considerable improvements of the
global performance. These improvements are obtained by
implementing more sophisticated distributed algorithms; in
particular, we make heavy use of the technique of lifting
Markov chains, introduced in [7], and subsequently used to
accelerate distributed computation in [8].

We begin with an introduction to the nonuniform coverage
problem in Section II. In Section III, we present our first
fully distributed control law for the coverage problem. The
execution of this control law only requires the agents to be
able to measure distances to their neighbors and measure the
field around their location. The main result of this section
is Theorem 1, which demonstrates the correctness of the
algorithm and gives a quantitative bound on its performance.
We show that it takes n agents on the order of n2 discrete-
time updates to come close to the optimal configuration
regardless of the initial conditions.

In Section IV, we present another fully distributed control
law for coverage. The execution of this control law requires
more capabilities on the part of the agents: they store
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several numbers in memory, communicate these numbers to
their neighbors at every round, and moreover, they know
approximately (within a constant factor) how many agents
there are in total. Subject to these assumptions, we derive
a considerable speedup over the simple static control law
of Section III. The main result of this section is Theorem
6, which demonstrates the correctness of the algorithm and
proves that it takes a network of n agents on the order of n
discrete-time updates to come close to the optimal positions.
This is an order of magnitude improvement over the control
law of Section III.

II. NONUNIFORM COVERAGE

We introduce the nonuniform coverage problem in this
section; our exposition closely follows the expositions of
[11], [5]. We consider n mobile agents initially situated at
arbitrary positions x1(0), x2(0), . . . , xn(0) which, for sim-
plicity, we will henceforth assume to be located in the inter-
val [0, 1]. There is a strictly positive, piecewise-continuous
function ρ : [0, 1]→ (0,∞), which measures the density of
information or resource at each point. The goal is to bring the
agents from their initial configuration to a static configuration
that allows them to optimally sense in the density field ρ.
Intuitively, we would like more agents to be positioned in
areas where ρ is high, and fewer agents positioned in areas
where ρ is low.

More formally, for a, b ∈ [0, 1] we define the metric

dρ(a, b) =

∫ max(a,b)

min(a,b)

ρ(z)dz.

It is easy to see this defines a valid metric between points
in [0, 1]. Relative to the ordinary distance |a− b|, this metric
expands regions where ρ is large and shrinks regions where
ρ is small. We will find it convenient later to refer to the
quantities ρmax = supz∈[0,1]ρ(z) and the similarly-defined
ρmin.

Following [11], we define the coverage of a set of points
x1, . . . , xn relative to the density field ρ as

Φ(x1, . . . , xn, ρ) = max
y∈[0,1]

min
i=1,...,n

dρ(y, xi).

Given the positions x1, . . . , xn of the agents and the density
field ρ, computing Φ requires computing the distance dρ from
any point in [0, 1] to the closest xi. The coverage metric Φ
is then the largest of these distances. A smaller Φ implies
the vehicles achieve better coverage of the domain [0, 1]. We
use Φ∗ to denote the best (smallest) possible coverage

Φ∗ = inf
(x1,...,xn)∈[0,1]n

Φ(x1, . . . , xn, ρ).

In this paper, we are concerned with designing control
laws which drive agents towards positions with coverage Φ∗.
As pointed out in [11], the problem of optimal positioning
with a nonuniform distance is closely related to information
gathering and sensor array optimization problems. A typical
problem is to minimize shortest response time from a collec-
tion of vehicles to any point in a terrain of varying roughness.
In that case, the non-Euclidean distance dρ appears because

rougher bits of terrain take longer to traverse. Another such
problem is the detection of acoustic signals; the objective
is to place sources so they can detect a source anywhere in
an inhomogeneous medium. In that case, the non-Euclidean
distance dρ appears as a result of the spatially varying
refractive index of the environment.

III. A STATIC COVERAGE CONTROL LAW

We now describe and analyze a simple distributed control
law that drives the vehicles towards optimal coverage. First,
we need to define the notion of a ρ-weighted median between
points.
Definition The α-median mα

ρ (a, b) is defined as the point
c ∈ (a, b) which satisfies∫ c

a

ρ(z)dz = α

∫ b

c

ρ(z)dz.

Due to the strict positivity of ρ, it is easy to see that a unique
such point exists for any α ≥ 0.

We can now state the coverage control law. We will
assume for convenience that agents are labeled 1, . . . , n from
left to right. This makes it easier to state what follows;
however, the actual implementation of the algorithm does
not require the use of these labels.
A static coverage control law: the agents iterate as

x1(t+ 1) = m1/2
ρ (0, x2(t))

xi(t+ 1) = m1
ρ(xi−1(t), xi+1(t)), i = 2, . . . , n− 1

xn(t+ 1) = m2
ρ(xn−1(t), 1)

We first briefly outline how this scheme may be imple-
mented without knowledge of the labels 1, . . . , n by the
nodes. A node i will initially check whether it has a left
neighbor and a right neighbor, or whether it is a “border
agent” with a single neighbor. Suppose it has two neighbors.
Then, it will measure the distance dL to its left neighbor and
dR to its right neighbor, and denoting its position (which
it does not know) by xi, will measure ρ in the interval
[xi − dL, xi + dR]. This gives it enough information to
compute the 1-median of the positions of its neighbors,
and it moves to this location. “Border agents” can similarly
implement this control law without knowledge of their labels.

Next, we remark that this scheme may be interpreted
as a distributed implementation of the cartogram approach
introduced in [11] specialized to the line. Intuitively, each
of the middle nodes 2, . . . , n− 1 seeks to position itself “in
the middle” of its neighboring agents while stretching areas
with high ρ and shrinking areas with low ρ; this is precisely
the distributed computation of the cartograms used in [11].

Our goal in this section is to prove that this iteration solves
the coverage control problem and to provide quantitative
bounds on its performance. The main result of this section
is the following theorem.

Theorem 1: Each xi(t) has a limit, and the limiting set of po-
sitions have coverage Φ∗. Moreover, after O(n2 log(nε

ρmax

ρmin
))

rounds, each agent is within ε of its final limit.
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We next turn to the proof of this theorem. We first write
down the optimality conditions for achieving Φ∗.
Lemma 2. The equations

2dρ(0, x1) = dρ(x1, x2) = · · · dρ(xn−1, xn) = 2dρ(xn, 1) (1)

have a unique solution which achieves coverage Φ∗. More-
over,

Φ∗ =
1

2n
dρ(0, 1).

We next introduce a change of variables which makes our
static control law easier to analyze. We define

F (x) =

∫ x

0

ρ(z)dz,

and note that F (1) = dρ(0, 1). Moreover, for any two points
a < b in [0, 1],

dρ(a, b) = F (b)− F (a),

and
F (mα

ρ (a, b)) =
F (a) + αF (b)

1 + α
. (2)

The next lemma restates our coverage control law in a
particularly convenient form.
Lemma 4: Assuming there are at least two agents, let us
define

d0(t) = 2F (x1(t))

di(t) = F (xi+1(t))− F (xi(t)), i = 2, . . . , n− 1

dn(t) = 2(F (1)− F (xn(t)))

and let d(t) be the vector in Rn+1 which stacks the variables
di. Finally, for n ≥ 5 we define

Un =



−4 4
2 −5 3

3 −6 3
. . . . . . . . .

3 −6 3
3 −5 2

4 −4


Then d(t) follows the dynamics

d(t+ 1) = (I +
1

6
Un+1)d(t).

Lemma 5: Let k ≥ 5 and let Pk = I + Uk/6. Then the
spectrum of Pk is real. Labeling it from smallest to largest
as λk(P ) ≤ · · · ≤ λ2(P ) ≤ λ1(P ) = 1, we have

max(|λk(P )|, |λ2(P )|) ≤ 1− 1

3k2
.

Proof: Consider an undirected line graph on k nodes with
self loops at each node, as in Figure 1; we will assign weights
to the edges as shown in that figure. Moreover, we will
define wi be the sum of all the weights incident on node
i, i.e. wi =

∑n
j=1 wij . Clearly, (w1, w2, . . . , wn, wn+1) =

(3, 6, . . . , 6, 3). With these definitions in place, we observe
that for all i, j, Pij = wij/wi.

Fig. 1. The weighted graph capturing the transition matrix Pk for k ≥ 5:
Pij = wij/wi where wij is the weight of the edge (i, j) and wi is the
sum of all the weights incident on node i.

Define the inner product 〈x, y〉 =
∑k
i=1 wixiyi. Then,

〈x, Py〉 =

n∑
i,j=1

wijxiyj =

n∑
i,j=1

wjixiyj = 〈Px, y〉,

so that P is self-adjoint in this inner product, and in
particular its spectrum must be real. Observing that the
largest eigenvalue of P is 1 with the eigenvector of all ones,
some straightforward manipulations with the Courant-Fisher
theorem give

λ2(P ) = max
〈x,1〉=0,〈x,x〉=1

〈x, Px〉

= 1− min∑
i wixi=0,

∑
i wix

2
i=1

k−1∑
i=1

wi,i+1(xi+1 − xi)2

We now lower bound the last term on the right hand side
using a variation of the argument from [10]. The minimum
is achieved at some vector x (since we are minimizing a
continuous function over a compact set); use the notation y
for the minimizer. Consider the vector with i’th entry is wiyi.
Let m denote the index of its smallest entry and M the index
of its largest entry; without loss of generality, we may assume
m < M . Observe that the constraint

∑
i wiyi = 0 implies

that ym < 0 while the constraint
∑
i wiy

2
i = 1 implies that

the average value of wiy2i is 1/k, which means wMy2M ≥
1/k or yM ≥ 1/

√
wMk ≥ 1/

√
6k. Thus 1√

6k
≤ yM −

ym =
∑M−1
i=m yi+1 − yi. Applying Cauchy-Schwarz, 1

6k ≤
k
∑M−1
i=m (yi+1 − yi)

2, and therefore,
∑k−1
i=1 wi,i+1(yi+1 −

yi)
2 ≥ 1

2k2 . Putting it all together, this implies the desired
bound on λ2.

A similar argument (which is also a variation of an
argument from [10]) proves the bound for λk. q.e.d.

Theorem 1 now follows as a consequence of the previous
lemma.
Remark: Observe that the coverage control law we have
presented in this section is naturally robust to addition and
deletion of agents as well as changes in ρ. Indeed, as long as
the density and the number of agents stop changing at some
point, the algorithm is guaranteed to converge to the optimal
configuration. An open problem is to prove performance
bounds for this algorithm in the scenario when the number
of agents and the density are continually changing.

IV. A DYNAMIC COVERAGE CONTROL LAW

In this section, we propose another control law for the
nonuniform coverage problem on the line. We draw heavily
on the paper [7], which described a fast “non-reversible
Markov sampler” for sampling a uniform random number
from {1, . . . , n}. We show that it is possible to use this
sampler as the basis for a coverage control law which works
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an order of magnitude faster than the static control law we
have described in the previous section.

Here, we make stronger stronger assumptions on the
capabilities and knowledge of each agent. We now assume
that agents can store numbers in memory, transmit numbers
to their neighbors, and can detect when their neighbors move
to a new location. However, every node will only be storing
and transmitting/sensing two numbers per every step of the
control law, so that the additional effort expended is not
excessively onerous. Finally, we will assume that each agent
has an estimate U of the total number of agents, and that
this estimate is accurate within a constant factor c:

n

c
≤ U ≤ cn. (3)

We refer to the control law of this section as the “dy-
namic coverage control law,” since in contrast with the
control law of the previous section, the feedback law has
dynamics of its own. This control law follows two steps: an
initial measurement phase, and the subsequent communica-
tion/measurement/movement stages.
Dynamic control law: Nodes keep track of the variables
zi(t), z

′
i(t), initialized in the first step as

z1(t) =
1

2

∫ m1
ρ(x1(0),x2(0))

0

ρ(z)dz

zi(t) =
1

2

∫ m1
ρ(xi(0),xi+1(0))

m1
ρ(xi−1(0),xi(0))

ρ(z)dz i = 2, . . . , n− 1

zn(t) =
1

2

∫ 1

m1
ρ(xn−1(0),xn(0))

ρ(z)dz

and z′i(0) = zi(0) for each i. At each step, nodes transmit
their variables zi(t), z′i(t) to their neighbors, and then set
their values zi(t+ 1), zi′(t+ 1) to be linear combinations of
their previous values and the values they have just received.
The linear combination taken by each agent is derived from
a rule based on Figure 2. Note that this figure contains nodes
labeled 1, . . . , n and 1′, . . . , n′. Node i sets zi(t+ 1) to be a
linear combination of those values zk(t) which have edges
going from k to i; the coefficient it puts in front of zk(t) is
the label on the edge. The value of zi′(t+ 1) is determined
in the same way. For example, agent 1 updates as

z1(t+ 1) = (1− 1

U
)z′1(t) +

1

2U
z′2(t)

z′1(t+ 1) =
1

2
(1− 1

U
)z′2(t) +

1

U
z′1(t)

.

After updating their variables zi, zi′ , the agents move as
follows. Agent 1 moves to the position c that satisfies∫ c

0

ρ(z)dz = z1(t) + z1′(t).

Each other agent i > 0 waits for the agent to the left of it
to move to the position xi−1(t+ 1), and then moves to the
position c that satisfies∫ c

xi−1(t+1)

ρ(z)dz = zi(t) + zi′(t).

While the above update rule is somewhat involved, it has
a simple interpretation. Consider the Markov chain of Figure
2. If zi(t) is the probability of being at node i at time t, and
z′i(t) is the probability of being at node i′ at time t, then the
variables zi(t), zi′(t) satisfy the above recursion.

Indeed, this recursion is an adaptation of the “non-
reversible Markov chain sampler” from [7]. It was observed
in that paper that while an ordinary “diffusive” Markov chain
on the line graph which, say, moves to the right and left each
with probability 1/2 takes on the order of n2 steps to come
close to the uniform distribution, the “guided” Markov chain
of Figure 2 takes on the order of n steps to come close to
the uniform distribution. The dynamic coverage control law
of this section is an attempt to harness this insight for the
coverage problem.

Our goal in this section is to prove that this iteration solves
the coverage control problem and to demonstrate that it is
an order of magnitude faster than the static control law of
the previous section. The main result of this section is the
following theorem.

Theorem 6: Each xi(t) has a limit, and the limiting set of po-
sitions have coverage Φ∗. Moreover, after O(n log(ρmaxn

ρminε
))

rounds of updates, each agent is within ε of its final limit.

The proof closely mimics the proof of the re-
lated results from [7]. Let z(t) denote the row vector(
z1(t) . . . zn(t) z1′(t) . . . zn′(t)

)
. Let K to denote

the matrix that maps z(t) to z(t + 1) through right-
multiplication:

z(t+ 1) = z(t)K.

Observe that K is a nonnegative, irreducible stochastic ma-
trix. Standard results in Markov chain theory imply that the
above iteration converges to a scaled multiple of the station-
ary probability vector of the chain. Thus we can immediately
conclude that each zi(t) has a limit, and consequently, the
positions of the agents under the dynamic coverage control
law have limits as well. Moreover, observe that the vector
of all ones is a right eigenvector of K, which implies that∑n
i=1 zi(t) + zi′(t) does not change after the execution of

each update. Since
∑n
i=1 zi(0) + zi′(0) = F (1), we can

immediately conclude that no agent ever moves outside of
[0, 1].

Lemma 7: The stationary probability of the Markov chain
in Figure 2 is

π1 = π1′ = πn = πn′ =
1

4(n− 1)

and for all other nodes,

πi = πi′ =
1

2(n− 1)
.

This lemma implies that

lim
t
z1(t) = lim

t
z1′(t) = lim

t
zn(t) = lim

t
zn′(t) =

F (1)

4(n− 1)
,

(4)
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Fig. 2. The Markov chain representing the update equations of the dynamic coverage control law.

and
lim
t
zi(t) = lim

t
zi′(t) =

F (1)

2(n− 1)
, (5)

which implies by Lemma 2 that the limiting set of positions
do have optimal coverage Φ∗. It remains to bound the time
until the agents approach these positions.

We find it convenient to use the largest l1 distance between
the rows of Kt and their ultimate limit as a measure of
convergence. In particular, let (Kt)i mean the i’th row of
Kt, and let

v(t) = max
i
||(Kt)i − π||1.

We use t(n, ε) to denote the time until v(t) permanently
sinks below ε.
Lemma 8 t(n, ε) = O(n log 1/ε).

The proof follows closely the proof of the main result of
[7], and we omit it here.
Lemma 9 After O(log n(nF (1)/ε)) steps, we will always
have

|zi(t)− πiF (1)| ≤ ε

2n
.

Proof: We show that after O(n log n/ε′) iterations, the
inequality

|zi(t)− πiF (1)| ≤ ε′

2n
F (1) (6)

is satisfied. Taking ε′ = ε/F (1) in this statement yields the
lemma.

To prove Eq. (6), observe first that scaling the density ρ
multiplies both sides by the same number so that we may
assume without loss of generality that F (1) = 1. In this
case, zi(t) is the probability that the random walk that starts
at node k with probability zk(0) is at node i at time t. This
is a convex combination of the entries of the i’th column of
Kt. By the previous Lemma, the i’th entry of each row is
not more than ε′/(2n) from πi after O(n log n/ε′) steps, and
the convex combination of these entries must have the same
property. q.e.d.

Theorem 6 now follows by a straightforward application
of Lemma 9 to the density ρ/ρmin.

Remark: We remark that it is possible to describe a modi-
fication of this algorithm that is robust to unpredictable loss

and deletion of agents, and we briefly sketch this modifica-
tion here. When a node is added, it sets its zi(t), zi′(t) to
zero, and the algorithm proceeds as before. If an agent k dies,
then its neighboring agents can infer its values zk(t), zk′(t)
from either the previous transmission of agent k or agent
k’s position when it dies; they can then increase their own
values zk−1, z(k−1)′ , zk+1, z(k+1)′ in such a way as to keep∑
i zi(t) + zi′(t) the same. As long as the number of agents

stabilizes eventually, the control law will converge to the
correct answer. An open problem is to prove a guarantee on
performance if the number of agents is continually changing.

V. SIMULATIONS
We report here on several simulations of our coverage

control laws. We are able to observe that quite often the
performance is considerably better than the theoretical upper
bounds derived in this paper, and that the dynamic control
law of Section IV gives a considerable practical speedup over
the static control law of Section III.

Figure 3 shows the results from a simulation with random
initial conditions. In this case, xi(0) is the i’th largest value
of n random variables, all uniform on [0, 1]. The density ρ
was uniform on [0, 1]. Moreover, we assumed that each agent
knows the total number of agents in the system, i.e. U =
n. The top figure shows some snapshots from the progress
of both algorithms, while the bottom figure shows the time
until the stopping condition

∑n
i=1(xi(t) − limt xi(t))

2 ≤
10−4 holds for the first time. The randomness of the initial
conditions seems to result in a reasonably quick convergence.
We see that for the range of parameters in the graph the
static control law has a convergence time which grows slower
than the quadratic growth proved in Theorem 1, while the
dynamic control law has convergence time which appears
to grow somewhat slower than the linear upper bound of
Theorem 6.

On the other hand, it is not hard to find examples for
which the bounds on growth rates from Theorems 1 and 6
do occur. In Figure 4, we see the performance when every
agent starts with xi(0) = 1; every other aspect is the same
as the simulation in Figure 3. We see that in this case the
convergence times do seem to grow quadratically for the
static control law, and linearly for the dynamic control law.
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Fig. 3. Top figure displays the progress of both the static (red) and dynamic
(blue) coverage control laws. In both cases, the initial condition consists of
15 nodes with the same randomly generated positions. The update number
is represented on the x-axis, the distribution of agents in [0, 1] on the y-
axis. The bottom shows the number of agents on the x-axis, and the number
of update rounds until agents are close to their final values on the y-axis.
Initial conditions are random as well, and each point on the bottom graph
is an average of 80 runs.

VI. CONCLUSIONS

We have investigated distributed control laws for mobile,
autonomous agents to position themselves on the line for
optimal coverage in a nonuniform field. Our main results are
stated in Theorems 1 and 6. Theorem 1 gives a quantitative
upper bound on the convergence time of a simple control
law for coverage. Theorem 6 discusses a more complicated
control law which, while making stronger assumptions on
the capabilities of each agent, manages to accomplish the
coverage task an order of magnitude faster in the worst case.

Our work suggests a number of open questions. It is of
interest to understand whether the increased capabilities of
the agents in Section IV are really necessary to achieve better
performance. In addition, it would be interesting to explore
whether the results described here extend to two and higher
dimensions, and in particular, whether a dynamic control law
such as the one in Theorem 6 might be useful for speeding
up performance in more general settings.
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