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Abstract— We study a class of mean field stochastic games
in discrete time and continuous state space. Each player has
its own individual state evolution described by a stochastic
difference equation which depends not only on the control
of the corresponding player but also on the states of the
other players. Considering the specific structure of aggregate
drift and diffusion terms, we use classical asymptotic indis-
tinguishability properties to prove a mean field convergence in
distribution. The methodology is extended to multiple classes of
players, each class satisfying the asymptotic indistinguishability
property, and a propagation of chaos result is obtained over the
hull trajectory. Finally, we derive combined backward-forward
equations that characterize the mean field equilibria for finite
horizon problems.

I. INTRODUCTION

The central issue in mean field decision problems is the

development of low complexity solutions so that each player

may implement a strategy based on local information in

large populations. For models with mean field coupling,

recent advances have been made in effectively addressing the

high dimensionality issue [7], [9]. In [9], the Nash certainty

equivalence (NCE) methodology has been developed for

controlled McKean-Vlasov dynamics, where the key idea is

to break the large population game into localized optimal

control problems via specifying a consistency relationship

between the individual strategies and the aggregate pop-

ulation effect. A very appealing feature of the resulting

solutions, as asymptotic Nash equilibria, is that each player’s

strategy depends only on its own state and some aggregate

quantities which may be learnable and may be calculated

off-line under given population initial conditions. For related

works using similar ideas in mean field decision problems,

see [12], [24], [23], [2], [22]. Applications to synchro-

nization of coupled oscillators can be found in [26], [25],

and economic and finance in [6]. The authors in [4], [11]

applied mean field games to crowd and pedestrian dynamics.

Numerical methods for solving backward-forward equations

for specific state dynamics and payoff functions can be found

in [1].

In this paper, we study a discrete time mean field stochastic

game with multiple classes of players that are coupled via

their individual dynamics and their payoff functions. By

mean field approximation and normalization of time, we
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tembine@ieee.org.

M. Huang is with School of Mathematics and Statistics, Carleton Univer-
sity, Ottawa, ON K1S 5B6, Canada. mhuang@math.carleton.ca.

derive the limiting continuous time equations. A related

method is developed in [17], [21], [18] for discrete time mean

field Markov decision problems.

Our main contributions can be summarized as follows.

We prove a mean field convergence of difference games

under a specific averaging structure. We characterize the

mean field limit of the empirical measures as a solution of

Fokker-Planck-Kolmogorov equations. The limiting individ-

ual state evolution is characterized by McKean-Vlasov equa-

tion. Then, we formulate the limiting game as differential

population game in which each player optimizes its expected

long-term payoff under individual stochastic dynamics and

mean field limit dynamics.

The mean field solutions are obtained by identifying a con-

sistency relationship between the individual-mass interaction

such that in the population limit each individual optimally

responds to the mass effect and these individual strategies

also collectively produce the same mass effect presumed

initially. This leads to a coupled system of forward-backward

equations.

The rest of the paper is organized as follows. Section II

presents the model description. In Section III we study the

convergence to mean field limit. Section IV focuses on mean

field equilibria and Section V concludes the paper.

We summarize some of the notations in Table I.

TABLE I

SUMMARY OF NOTATIONS

Symbol Meaning

Θ the set of classes
θj class of player j
f drift function (finite dimension)
σ diffusion coefficient
xn

j
(k) state of player j at time t (discrete)

x̃n
j (k) re-scaled state of player j

x̃j(t) limit of the state process of player j
x̄j(t) solution of the McKean-Vlasov equation
zn
j (t) interpolated re-scaled state process of player j at time t

or continuous time solution of SDE
zj(t) limit of state process zn

j (t)
F n(t, w) cumulative distribution function at time t

II. MODEL DESCRIPTION: DIFFERENCE GAMES

Consider a population of players with size n ≥ 2. The

discrete time is indexed by the set

Tn = δnZ+ = {0, δn, 2δn, 3δn, . . .},
where δn > 0. Let Θ = {1, 2, . . . , K} be the set of classes,

and 1 ≤ K < ∞ is the total number of classes. The class
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of player j is denoted by θj ∈ Θ. Each player j has its own

state xn
j (t) ∈ X = R at time t. We define the population

profile at time t as the random measure

Mn(t) =

n
∑

j=1

ω̄n
j δxn

j
(t), (1)

where ω̄n
j > 0 is the individual weight of player j in a

population of size n. The population profile process is given

by Mn =
∑n

j=1 ω̄n
j δxn

j
where xn

j = (xn
j (t))t∈Tn

. We define

the cumulative distribution function

Fn(t, w) =

n
∑

j=1

ω̄n
j 1l{xn

j
(t)≤w}.

We normalize the weight such that
∑n

j=1 ω̄n
j = 1. Then,

Mn(t) is a probability measure over X for each fixed t,

and Mn is probability measure-valued process. We restrict

our attention to the case where the weight is uniform ω̄n
ij =

1
n

. The case of different weights and combination of major

and minor players can be found in [8], [22], [17] for linear-

quadratic Gaussian (LQG) mean field games. See also [3]

for more general stochastic differential games with major

and minor players. In this paper, the individual dynamics

have the following form:

xn
j (k + 1) = xn

j (k) + Φn
θj

(k, xn
j (k), un

j (k), xn
1 (k) . . . , xn

n(k))

+ Ψn
θj

(k, xn
j (k), un

j (k), xn
1 (k), . . . , xn

n(k))

×
(

B
n
j (k + 1) − B

n
j (k)

)

, (2)

xn
j (0) = xj ,

j ∈ {1, 2, . . . , n},
where un

j (t) ∈ Uθj
is the control of player j at time t.

Φn
θj

(t, .), Ψn
θj

(t, .) are measurable and uniformly Lipschitz

continuous functions, B
n
j (t) are mutually independent Brow-

nian motions (Wiener processes) defined over a complete

probability space (Ω,F , P).
For the clarity of the presentation, we take an averaging

structure in (2),

Φn
θj

(k, .) = δn

n
∑

i=1

ωn
ijfθj

(xn
j (k), un

j (k), xn
i (k)),

Ψn
θj

(k, .) =
n
∑

i=1

ωn
ijσθj

(xn
j (k), un

j (k), xn
i (k)),

where σθj
(.) ≥ σ∗ > 0 and σθj

(.) is bounded, differentiable

and Lipschitz with Lipschitz constant Lσ ≤ c, and ωn
ij > 0

is a strictly positive weight (the relative weighted of i to the

player j). Then the individual dynamics of player j are given

by

xn
j (k + 1) = xn

j (k) + δn

n
∑

i=1

ωn
ijfθj

(xn
j (k), un

j (k), xn
i (k))

+
n
∑

i=1

ωn
ijσθj

(xn
j (k), un

j (k), xn
i (k))

(

B
n
j (k + 1) − B

n
j (k)

)

,

(3)

xn
j (0) = xj ,

where the drift fθj
(x, u, w) and the noise coefficient

σθj
(x, u, w) are defined on X × Uθj

× X . We re-scale the

processes with step size δn which plays the role of intensity

of interaction. For k ∈ N, x̃n
j (k) := xn

j (kδn), ũn
j (k) :=

un
j (kδn), M̃n(k) := Mn(kδn), tnk := kδn. The functions Fn

and F̃n are defined similarly. For kδn ≤ t′ < (k + 1)δn,

define the interpolated process in continuous time as

zn
j (t′) = x̃n

j (k) +
(t′ − kδn)

δn

(x̃n
j (k + 1) − x̃n

j (k))

= xn
j (kδn) +

(t′ − kδn)

δn

(xn
j ((k + 1)δn) − xn

j (kδn)).

Note that zn
j (tnk ) = xn

j (tnk ) = x̃n
j (k).

Lemma 1: Under the above formulation, the individual

dynamics can be written in the following form:

x̃n
j (k + 1) = x̃n

j (k) + δn

∫

w

fθj
(x̃n

j (k), ũn
j (k), w)M̃n

j,k(dw)

+

∫

w

σθj
(x̃n

j (k), ũn
j (k), w)M̃n

j,k(dw)

×
(

B
n
j (k + 1) − B

n
j (k)

)

x̃n
j (0) = x̃j ,

where

M̃n
j,k =

n
∑

i=1

ωn
ijδx̃n

i
(k).

Proof: Consider the stochastic difference equation:






xn
j (tnk+1) = xn

j (tnk ) + δn

∑n
i=1 ω̄n

ijfθj
(xn

j (tnk ), un
j (tnk ), xn

i (tnk ))

+
∑n

i=1 ω̄n
ijσθj

(xn
j (tnk ), un

j (tnk ), xn
i (tnk ))

(

B
n
j (tnk+1) − B

n
j (tnk )

)

xn
j (0) = xj ,

Using the above re-scaling process, one gets






x̃n
j (k + 1) = x̃n

j (k) + δn

∑n
i=1 ω̄n

ijfθj
(x̃n

j (k), ũn
j (k), x̃n

i (k))
+
∑n

i=1 ω̄n
ijσθj

(x̃n
j (k), ũn

j (k), x̃n
i (k))

(

B
n
j (k + 1) − B

n
j (k)

)

x̃n
j (0) = xj ,

Now, we use the fact that

∫

w∈X
φ(w)Mn

tn
k
(dw) =

n
∑

i=1

ω̄n
i φ(xn

i (tnk )),

which is equivalent to

∫

w∈X
φ(w) M̃n

k (dw) =
n
∑

i=1

ω̄n
i φ(x̃n

i (k)),

the above system of stochastic difference equation can be

written as






















x̃n
j (k + 1) = x̃n

j (k) + δn

∫

w
fθj

(x̃n
j (k), ũn

j (k), w)×
[
∑n

i=1 ω̄n
ijδx̃n

i
(k)

]

(dw)

+
∫

w
σθj

(x̃n
j (k), ũn

j (k), w)×
[
∑n

i=1 ω̄n
ijδx̃n

i
(k)

]

(dw)
(

B
n
j (k + 1) − B

n
j (k)

)

x̃n
j (0) = xj ,

Denote

M̃n
j,k =

n
∑

i=1

ωn
ijδx̃n

i
(k).
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Then






x̃n
j (k + 1) = x̃n

j (k) + δn

∫

w
fθj

(x̃n
j (k), ũn

j (k), w)M̃n
j,k(dw)

+
∫

w
σθj

(x̃n
j (k), ũn

j (k), w)M̃n
j,k(dw)

(

B
n
j (k + 1) − B

n
j (k)

)

x̃n
j (0) = xj .

III. MEAN FIELD CONVERGENCE: MAIN RESULTS

In this section we focus on the mean field convergence

of the process Mn and the characterization of its limit. We

will work on a σ-field Ft generated by the Brownian motion

up to time t. We provide three main mean field convergence

results.

(R0) We show the existence of the limit

µ̃j,k := lim
n

n
∑

i=1

ω̄n
ijδx̃n

i
(k),

for the weight ω̄n
ij = 1

n
for any control that preserves

the asymptotic indistinguishability in law.

(R1) By use of a vanishing time step-size, i.e., δn → 0, we

derive a continuous time equation when the population

size n → +∞. We characterize the stochastic limit

as a solution to the macroscopic stochastic differential

McKean-Vlasov equation for which we have sufficient

conditions that ensure uniqueness of the trajectory.

dx̃j(t) =

[
∫

w

fθj
(x̃j(t), ũj(t), w)µ̃j,t(dw)

]

dt

+

[
∫

w

σθj
(x̃j(t), ũj(t), w)µ̃j,t(dw)

]

dBj(t),

x̃j(0) = xj .

(R3) For a non-vanishing step-size satisfying δn → δ > 0,

we characterize the limit as a discrete version of the

McKean-Vlasov equation. We show that the dynamics

given in Lemma 1 converge to

x̃j(k + 1) = x̃j(k) + δ

∫

w

fθj
(x̃j(k), ũj(k), w)µ̃j,k(dw)

+

∫

w

σθj
(x̃j(k), ũj(k), w)µ̃j,k(dw) (Bj(k + 1) − Bj(k))

x̃j(0) = xj .

When choosing ω̄n
ij = 1

n
, the measure {µ̃j,t}j has the same

law as represented by (µ̃θ̄,t)θ̄∈Θ which is a solution of the

Fokker-Planck-Kolmogorov equation

∂

∂t
µ̄θ̄,t(x̄) +

∂

∂x̄

[

f̄θ̄,t(x̄, ū, µ̄t)µ̄θ̄,t

]

=
1

2

∂2

∂x̄2

[

σ̄2
θ̄,t

(x̄, ū, µ̄)µ̄θ̄,t

]

,

θ̄ ∈ Θ, µ0(x̄) fixed,

where

f̄θ̄,t(x̄, ū, µ̄) =

∫

w

fθ̄(x̄, ū, w) µ̄t(dw), (4)

σ̄θ̄,t(x̄, ū, µ̄) =

∫

w

σθ̄(x̄, ū, w) µ̄t(dw). (5)

Cost functional criterion: Following the same lines, the

weak convergence of the total payoff function can be estab-

lished: Ln
j,T (uj , u−j, M

n, x0) =

E

(

g(Mn
T )+

∑

s∈Tn,s≤T

n
∑

i=1

ωn
ijc

n
θj

(xn
j (s), un

j (s), xn
i (s)) | x0

)

where cn
θj

= δncθj
is an integrable function relatively to the

measure Mn
t , g is a terminal payoff (regular) and u−j =

(uj′)j′ 6=j . We assume that the functions cθ(.) are Lipschitz

continuous with Lipschitz constant Lc. The convergence

comes from the fact
∑n

i=1 ωn
ijcθj

(xn
j (s), un

j (s), xn
i (s)) can

be written as
∫

cθj
(xn

j (s), un
j (s), w)Mn

s (dw)

which converges to

c̄θj
(xj(s), uj(s), µs) :=

∫

w

cθj
(xj(s), uj(s), w)µs(dw)

(by weak convergence of Mn to µ). Assuming A1-A2, we

express the finite horizon payoff in terms of the norm ‖
µs − Mn

s ‖. Since we work on a compact interval [0, T ],
we have the convergence of individual payoff function to

Lj(uj , µ, x0) = E

(

g(µT ) +

∫ T

0

c̄θj
(xj(s), uj(s), µs) ds

)

(6)

We prove the result (R0) for specific weights via the

asymptotic indistinguishability per class. The proof of the

result (R2) is similar to (R1). The proof can be easily

extended to the case where σn = σ + o( 1
n
). The details

of the proof of (R1) follows from the following theorem:

Theorem 1: Assume

A1. f(.) is a Lipschitz continuous function with Lipschitz

constant Lf and σθj
(x, u, w) defined on X ×Uθj

×X is

a Lipschitz continuous function with Lipschitz constant

Lf . There exists σ∗ > 0 such that σ(x, u, w) ≥ σ∗ > 0
for all (x, u, w).

A2. The law of the initial measure µ̃0(w) has a continuous

density bounded by c′e−d′|w|2 for some positive con-

stants c′ and d′.

Let F̃n be defined as in Section II. Then for any T < +∞,

there exists cT > 0 such that

E ‖ F̃n(tnk , .)−F̃ (tnk , .) ‖1≤ cT

[

‖ F̃0 − F̃n
0 ‖1 +

1√
n

+
√

δn

]

,

where F̃ (t, ., .) (for each class) is the solution of

∂

∂t
F̄θ̄,t(x̄) +

[
∫

w

fθ̄,t(x̄, ū, w)
∂

∂w
F̄θ̄,t(w)dw

]

∂

∂x̄
F̄θ̄,t(x̄)

=
1

2

∂

∂x̄

[

(
∫

w

σθ̄(x̄, ū, w)∂wF̄θ̄,t(w)dw

)2

∂x̄F̄θ̄,t(x̄)

]

θ̄ ∈ Θ, µ̄0(x̄) fixed.

Note that the last equation of Theorem 1 is obtained by

integration of the Fokker-Planck-Kolmogorov equation.
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A. Propagation of chaos

Next, we focus on a methodology of proving a mean field

convergence of the population profile process Mn based on

asymptotic indistinguishability leading to the propagation of

chaos properties1 (also called the decoupling property at the

limit) of stochastic difference games with discrete time state

processes. We use the works in [14], [16], [15] to prove the

mean field convergence of a class of mean field stochastic

dynamic games with multiple classes of large populations.

We further establish a connection to a controlled de Finetti

Theorem which states that for any fixed control law (can be a

function of the mean field limit), an infinite indistinguishable

(or exchangeable) sequence {xj}j is a mixture of i.i.d.

sequences and next show the propagation of chaos property

[13], [5].

Definition 1: We say that a process xn = (xn
1 , . . . , xn

n)
satisfies the indistinguishability property2 if the law of xn is

invariant by permutation of its n components over the index

set {1, . . . , n}.
Example 1: As an example, the system (3) satisfies the

indistinguishability property (for the full population) if all the

functions fθj
reduces to the same function f and the controls

have the same law. In particular, for the same value of θj ,

the system (3) becomes asymptotically indistinguishable.

By defining the class of θ̄ as the set of players such that

θj = θ, i.e {j ∈ {1, . . . , n}, | θj = θ}, the system (3) sat-

isfies an asymptotic indistinguishability per class property.

This means that the (asymptotic) law of xn (resp., x̄n) for a

given un is invariant by permutation within the same class

θ̄.

We are within the framework of [14], [5] which states that

under the asymptotic indistinguishability per class, the con-

vergence in law of the process Mn to µ and the propagation

of chaos (for the hull trajectory) are equivalent. Under un-

controlled large populations, [16] has established the “prop-

agation of chaos” - that is, if the individual initial behaviors

are approximately independent and identically distributed,

then their behaviors are also asymptotically approximately

independent on any finite time interval and described by a

common stochastic process where the asymptotic is taken in

the population size.

Note that in general the chaoticity property may not hold

in the stationary regime. In particular two randomly picked

players in the infinite population may not be independent

in the stationary regime, i.e., the statistical independence

property may not hold (they can be correlated via the payoffs

and/or the individual states). We mention a particular case

where the rest point m∗ (stationary distribution in t) of

the Fokker-Planck-Kolmogorov (FPK) equation is related

to the δm∗ -chaoticity. If the FPK has a unique global

attractor m∗ for any initial condition and any control then

the propagation of chaos property holds for the measure

1This follows the works by de Finetti (1931), Hewitt & Savage (1955),
Aldous (1983), Sznitman (1991), Graham (2000), Tanabe (2006), McDonald
(2007) etc.

2It is also called exchangeability property. Note that this property does
not means that the players identical.

δm∗ . Beyond this particular case, one may have multiple

rest points but also the double limit limn limt Mn(t) may

differ from limt limn Mn(t) leading to a non-commutative

diagram. Thus, an in-depth study of the dynamical system

is required if one wants to analyze a performance metric in

the stationary regime. An example of different double limits

is provided in [19].

Denote by µn the law of xn = (xn
1 , . . . , xn

n) :

µn = L(xn
1 , . . . , xn

n)

and by µn,1 the marginal of µn relatively to the first

component, i.e., the canonical projection via the mapping

(xn
1 , . . . , xn

n) 7−→ xn
1 .

Lemma 2 ([20]): (i) The law of xn
j is EMn where E

denotes of the expectation operator for the random measure.

(ii) The process x̃n is asymptotically indistinguishable within

each class. The population profile process Mn converges to

µ in law if and only if

lim
n

∫

(

L
∏

l=1

φl(x
n
jl

)

)

µn(dxn) =

L
∏

l=1

(

∫

φldµ) (7)

for any fixed natural number L ≥ 2 and a collection of

measurable bounded functions {φl} and any fixed class θ̄.

The above result says that the state law of any generic player

j is L(zn
j ) = EMn.

B. Macroscopic McKean-Vlasov equation

We extend the mean field convergence result when each

individual controls its state evolution and optimizes a long-

term coupling payoff in parallel. We prove that for any fixed

time t > 0, and any fixed admissible control trajectory, the

individual process x̃n
j (t) is not far from a process x̄j(t)

solving the individual McKean-Vlasov equation. Using the

Monge-Kontorovich distance, we show that (x̄n
j (t))t∈[0,T ]

converges to (x̄j(t))t∈[0,T ] for any T < +∞. Recall that,

given two measures µ, ν, the Monge-Kontorovich distance

(also called Wasserstein distance) between µ and ν is

W1(µ, ν) = inf
X∼µ,Y ∼ν

E|X − Y |.

The Monge-Kontorovich distance metrizes the weak topol-

ogy.

Lemma 3: Under A1-A2, the McKean-Vlasov system

dx̄θ̄(t) =

∫

w

fθ̄(x̄θ̄(t), uθ̄(t), w)µt(dw)dt

+

∫

w

σθ̄(x̄θ̄(t), uθ̄(t), w)µt(dw)dB(t) (8)

x̄(0) = q

has a unique solution.

Proof: From the assumptions A1-A2, the standard

assumptions [10] ensuring uniqueness of the solution of SDE

(8) are satisfied.

Let x̃n(t) be the random vector (x̃n
1 (t), x̃n

2 (t), . . . , x̃n
n(t)).

Then, x̃n(t) satisfies

x̃n(t + 1) = x̃n(t) + Σn(t)(B(t + 1) − B(t)) + δnGn(t),
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where Gn is the n-dimensional vector with j-th component

Gn
j =

n
∑

i=1

ωn
ijfθj

(x̃n
j (t), un

j (t), x̃n
i (t)).

The term Σn is defined similarly.

Let µ̃n
t be the law of x̃n(t) = (x̃n

1 (t), x̃n
2 (t), . . . , x̃n

n(t))
generated by the individual dynamics. Then µ̃n

t is charac-

terized by Fokker-Planck-Kolmogorov forward equation. We

construct independent processes x̄j(t) satisfying B̄j = B̃j

and

‖ x̄(0) − x̃n(0) ‖≤ c√
n
→ 0

when n → +∞.

Proposition 1: Let B̃j = B̄j . For any t and a control uj(t),
there exists c̃t > 0 such that

E
(

‖ x̃n
j (t) − x̄j(t) ‖

)

≤ c̃t√
n

.

Moreover, for any T < ∞, there exists cT > 0 such that

W1

(

L((x̃n
j (t))t∈[0,T ]),L((x̄j(t))t∈[0,T ])

)

≤ cT√
n

.

Proof: This is direct consequence of the Theorem 1.

As a corollary of the Proposition 1, one gets the mean field

convergence of (x̃n
j (t))t by considering the distance

d∞ :=
∑

l∈N

1

2l
dl(x̃

n, x̃),

where

dl(x̃
n, x̃) = sup

t∈[−l,l]

d(x̃n(t), x̃(t)).

IV. MEAN FIELD EQUILIBRIA

A. Characterization of mean field equilibria

Combining (6) and the individual dynamics, one may

formulate the following problem:

inf
uj

E

(

g(xj,T ) +

∫ T

0

c̄θj
(xj(s), uj(s), µs) ds

)

,

subject to (8) where µs is the mean field limit at time s. We

say that the control law u∗ is an ǫ-best response to µ if for

any j and any adapted control law uj , one has,

Ln
j,T (u∗

j , u
∗
−j, µ, x0) ≥ Ln

j,T (uj , , u
∗
−j, µ, x0) − ǫ.

Using a similar argument as in Theorem 1 and good initial

estimations and step-size, it can be shown that the rate of

convergence is in the order of n− 1

2 . Hence, we have that for

any ǫ > 0 there exist a population size nǫ such that for all

n ≥ nǫ,

Ln
j,T (u∗

j , u
∗
−j, µ, x0) ≥ Lj(uj , µ, x0)

+ O(
1√
n

+
√

δn + ǫ0);

which is in order of

Ln
j,T (uj , u

∗
−j, µ, x0) + O(

1√
n

+
√

δn + ǫ0),

where ǫ0 is the initial error gap. Assuming that ǫ0, δn, 1√
n

are all small enough such that each component is at most ǫ

for n sufficiently large, we have 3ǫ-equilibria from the mean

field equilibria.

Hamilton-Jacobi-Bellman-Fleming optimality at the limit

is the following: If there exists a twice continuously differ-

entiable function vj,t(xj) such that:

− ∂tvj,t(xj) = inf
uj

{

c̄θj
(xj , uj, µt)

+ (f̄t(xj , uj , µt)∂xvj,t(xj))

+
1

2
σ̄2

θj
(xj , uj, µt)∂

2
xxvj(xj)

}

,

vj,T (xj) = g(xj),

then vj,t is an optimal payoff associated to the best-response

to the mean field µ. This means that the control law solving

the backward HJBF gives an ǫ-best response to the finite

system for n sufficiently large.

Definition 2: An adapted control law u∗ is an ǫ-mean

field equilibrium if u∗ is an ǫ-best response to µ∗ and

µ∗ is generated by the individual control law u∗ (i.e. if

every player j plays u∗
j then the mean field limit is µ∗ and

conversely, the control u∗
j is an ǫ-best response relatively to

the payoff of player j.)

The optimal feedback control criterion leads to Hamilton-

Jacobi-Bellman-Fleming equation combined with Fokker-

Planck-Kolmogorov equation and macroscopic McKean-

Vlasov version of limiting individual dynamics. Thus, we

have the following coupled system of backward-forward

equations:







































































−∂tvj,t(xj) = infuj

{

c̄θj
(xj , uj, µt)

+(f̄t(xj , uj , µt)∂xvj,t(xj))

+ 1
2 σ̄2

θj
(xj , uj , µt)∂

2
xxvj(xj)

}

,

vj,T (xj) = g(xj),
dx̄θ̄(t) =

∫

w
fθ̄(x̄θ̄(t), uθ̄(t), w)µt(dw)dt

+
∫

w
σθ̄(x̄θ̄(t), uθ̄(t), w)µt(dw)dB(t),

x̄(0) = q,
∂
∂t

µθ̄,t + ∂
∂x

[

f̄θ̄,t(x, u, µt)µθ̄,t

]

= 1
2

∂2

∂x2

[

σ̄2
θ̄,t

(x, u, µt)µθ̄,t

]

,

θ̄ ∈ Θ, µ0(.) ∈ ∆(X ).

A natural question is now the existence of solutions to the

above system. This is a backward forward system. In general

such a system need not have a solution. Also, uniqueness

cannot be guaranteed in general. We leave the detailed

analysis of existence and uniqueness issues for specific

structures of f and σ for future work.

V. CONCLUSION AND FUTURE WORK

We have studied mean field stochastic difference games

and established a mean field convergence to controlled

stochastic equations of McKean-Vlasov type under suitable

conditions. Using Itô-Dynkin’s formula, we derived a mean

field HJBF and FPK equations characterizing mean field

equilibria.
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We have proved the mean field convergence only for

specific weights ω̄n
ij . The convergence remains an open

question for general coefficients as well as the case of

discontinuous mapping (namely the drift and the variance).

Another direction is the existence and uniqueness of a

solution to the mean field backward-forward equation (of

McKean-Vlasov type) under specific drift, noise and payoff

functions.
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