
  

  

Abstract—Since the 1950s, we have developed mature 
theories of modern control theory and computational 
neuroscience with almost no interaction between these 
disciplines. With the advent of computationally efficient 
nonlinear Kalman filtering techniques, along with 
improved neuroscience models that provide increasingly 
accurate reconstruction of dynamics in a variety of 
important normal and disease states in the brain, the 
prospects for a synergistic interaction between these fields 
are now strong. I show recent examples of the use of 
nonlinear control theory for the assimilation and control of 
single neuron and network dynamics, as well as the 
modulation of oscillatory waves in the cortex, and the 
assimilation of epileptic seizures. A control framework for 
modulating Parkinsonian dynamics is presented, and a 
perspective offered.  As the computational models of 
dynamical diseases such as Parkinson’s disease improve, 
embedding those models within rigorous model-based 
control frameworks is now feasible. 

I. INTRODUCTION 
ODEL  based predictor-controller 

systems employ a computational model 
to observe a dynamical system, assimilate data 
through sensors, reconstruct and estimate the 
remainder of the unmeasured variables and 
parameters using the model, and then calculate 
a control vector to generate a desired 
manipulation of the system. The result of the 
actual system dynamics is then compared with 
the predicted outcome, the expected errors 
within the model are updated and corrected, 
and the process repeats iteratively. This 
extremely powerful recursive control 
engineering framework has never been applied 
to the range of significant applications to bio-
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medical applications that it warrants. 
 Model based predictor-controller 

algorithms were developed in parallel with the 
US space program in the 1960s. The most 
prominent of such strategies was the Kalman 
filter [1], which for linear systems is a 
maximum likelihood estimator that gives the 
optimal tracking of system state and 
calculation of control vectors to modulate such 
states. The dual theorems of observability and 
reachability for such systems have been 
considered one of the most important 
developments in mathematics of the 20th 
century [2]. Observability and reachability 
theorems essentially state that if you can 
observe a system’s state variables, you can 
optimally control it (reach a given state). 
Incredibly, these theoretical concepts have 
been largely absent in the observation and 
control of complex biological systems.  

 Of course the linearized equations of 
motion of missile guidance are a far cry from 
more complex biological system applications. 
In the decades since Kalman’s seminal work in 
the 1960s, the extended (linearized) Kalman 
filter approaches for nonlinear systems have 
met with mixed success. Even the simplest of 
nonlinear system dynamics, such as sine and 
cosine functions to convert bearings to 
common coordinates, are notorious for being 
terrible candidates for linearized Kalman 
approaches [3].  

 It was the advent of true nonlinear 
predictor-controller algorithms that has opened 
for us an entirely new set of possibilities for 
biological systems. These methods have been 
in large part driven by the meteorological use 
of nonlinear convection models of the 
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atmosphere in data assimilation and weather 
prediction, termed ensemble Kalman filtering 
[4-5]. In parallel with this meteorological 
work, Julier and Uhlmann [3,6] published a 
nonlinear Kalman strategy termed the 
unscented Kalman filter (UKF). These 
strategies were based on using fundamental 
nonlinear models directly, while iterating the 
noise and error expectations through these 
nonlinear equations. The Bayesian framework 
for updating predictions with measurements 
remains the same as linear Kalman filtering. 
By employing an optimized sparse sampling of 
the possible dynamics, the UKF can be 
computationally efficient.  

 The UKF can be viewed as a very efficient 
and selective ‘particle filter’. Particle filtering 
creates a large number of initial conditions 
based upon the probability distribution 
function of the errors in a system, and iterates 
all of the ‘particles’ through the linear or 
nonlinear equations of the system. This brute 
force Monte Carlo scheme can be extremely 
powerful, but is computationally very 
inefficient. There have been a wide variety of 
schemes for selecting subsets of initial 
conditions (reviewed nicely in [7]). There are 
several computational neuroscience 
applications of particle filtering in recent years 
including [8] and [9], each nicely outlining the 
natural links with Bayesian state estimation. 
But as [7] exhaustively demonstrates, UKF is 
not only more efficient, but often more 
accurate, than particle approaches.  

 It is truly remarkable how well UKF 
methods can estimate state in highly nonlinear, 
even nondifferentiable systems. Although 
heavily used now in robotics [10], this 
nonlinear filtering work has been developed in 
almost complete isolation from biology and 
medicine. It was a groundbreaking study by 
[11] that demonstrated a clear strategy for 
applying UKF to a model single neuron. In 
their work, [11] were not at all optimistic that 

spatiotemporal applications of cell-to-cell 
interactions would be tractable. 

 Simultaneous with the work of [11], we 
demonstrated that mammalian cortex can 
generate a wide variety of spatiotemporal 
structures to accompany typical oscillation 
frequencies observed in motor, sensory, and 
navigational cognitive phenomena [12]. In this 
work, we also demonstrated that a 
fundamental model of general cortical 
dynamics, the networked differential equations 
of Wilson and Cowan [13-14], can replicate all 
of the qualitative dynamics seen in these 
experiments: ring, plane, spiral, and irregular 
waves.  

 We have extended the work of [11] to cell-
to-cell interactions in a spatiotemporal system 
[15]. Our control system was designed to 
speed up, slow down, or quench 
spatiotemporal oscillations in cortex. We 
performed this work using a model of the 
middle layers of cortex, reflecting cellular 
dynamics as well as cell-to-cell 
communications, and we incorporated an 
‘observer’ model to track and filter the real 
system, as well as generate the control vector 
to modulate the system. We proved that the 
use of an observer system is a substantial 
improvement in the tracking and control of 
such systems when noise is sufficiently high 
[15]. It is now increasingly recognized that 
transient cortical oscillations, seen 
ubiquitously in sensory and motor cortices, 
reveal spatiotemporal wave patterns when 
modern multisite optical [16] or electrical [17] 
measurements are made. We are unaware of 
any previous nonlinear state estimation for 
such spatiotemporal neuronal data. 

 Nevertheless, incorporating the results of 
[15] directly into real-time experiments faces a 
variety of technical issues that must be 
addressed. In order to stabilize our algorithms, 
we needed to empirically adjust the covariance 
of the estimated state. This is a universal 
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problem in all nonlinear ensemble Kalman 
filters, and even the seminal work of [6] 
incorporated a multiplier to adjust estimated 
covariance. Later, in the meteorological 
literature, [18-19] termed this strategy 
covariance inflation, and we followed the 
formalism of [20] in adjusting our covariance 
estimate of state.  There have been a variety of 
additional schemes suggested for adjusting 
covariance inflation, and an efficient method 
for handling real-time biological systems 
awaits development. 

We have explored taking the foundational 
ionic dynamical equations of neuronal 
excitability, the Hodgkin-Huxley equations 
[21], and incorporated them into an ensemble 
Kalman framework [22]. We found that not 
only can we measure voltage alone and 
reconstruct the entire set of parameters and 
variables in the setting of significant noise, but 
we can deliberately damage this model 
(assuming for instance constant values of the 
sodium rate variable), and still achieve 
adequate reconstruction. Assigning trivial 
dynamics is what [11] did with neuronal 
threshold, and works because of the iterative 
nature of the UKF framework. For slow 
variables or parameter fitting this is 
reasonable. For fast variables, such as sodium, 
the instantaneous tracking abilities belie the 
decrement in prediction from the substitution 
of a non-predictive formulation for fast 
dynamics. In UKF constant parameters with 
trivial dynamics can be tracked if the iteration 
time constant is fast compared with the 
dynamical parameter being tracked. Obviously 
one can only carry this so far in a model, but 
again, the potential robustness of ensemble 
Kalman filters to neuronal model inadequacy 
is intriguing.  

We have also done considerable work to 
explore the metabolic dynamics of potassium 
flow into and out of cells and compartments 
during neuronal activity [23-24]. We found 

that combining such dynamics with 
biophysical neuron dynamics was possible, 
and showed how measuring voltage could 
permit reconstruction of potassium dynamics 
in the extracellular space, and vice versa [22].  

Another finding is that such use of a 
Bayesian assimilation of data, combined with 
UKF, offers the prospect of an improvement in 
dynamic clamp approaches [22], where the 
typical data assimilation technique of direct 
insertion [25] has been shown to be non-
optimal compared with an optimized ensemble 
Kalman strategy.  

We can incorporate the metabolic model for 
the flow and diffusion of potassium from 
neuron, to extracellular space, into the 
buffering glial compartments, and to the 
distant reservoir such as the vascular system in 
vivo or the perfusion bath in vitro [23-24]. We 
have taken dual recordings from different 
types of neurons undergoing epileptic seizures, 
and shown that we can validate the ability to 
use a combined model of cellular dynamics 
along with potassium dynamics to record from 
one cell type, excitatory or inhibitory, and 
reconstruct the dynamics of the contrasting 
cell type [26]. Of importance in this work was 
the finding that without the incorporation of 
the potassium dynamics from [23-24], we 
were unable to track and reconstruct the 
cellular dynamics in the complex seizure 
patterns we were observing [26]. 

All neurons are different – we therefore need 
to account for significant parameter variations 
in our model systems. We need a method that 
treats heterogeneity in neurons formally, and 
our solution is what we term the ‘consensus 
set’ of parameters. It turns out that it is 
straightforward in ensemble Kalman filters to 
let the filters seek a local mean field for model 
parameter averaging. Surprisingly, such local 
mean fields frequently converge to values 
close to the true mean values, but it is not at all 
clear that such convergence to the true values 
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is necessary. I say this because we need to 
track dynamics, and not validate models in 
systems where we can never truly replicate the 
full underlying biophysics. We therefore 
developed a consensus set to optimize the 
mean field parameters for a region in space, 
and afford tracking of such noisy 
heterogeneous systems [27].  

Parkinson’s disease is an arena for these 
model-based control techniques that is very 
much unexplored. With the advent of solid 
fundamental models for the regions of the 
brain involved in generating Parkinsonian 
dynamics [28], and the control theoretic tools 
mentioned above, a fusion of such models with 
control strategies is now very timely.  

One of the primary advantages of using a 
model-based control observer for Parkinson’s 
disease is that one would like to be a surgical 
minimalist – implanting the smallest number 
of electrode shafts into deep targets in the 
brain as possible. One electrode with multiple 
contacts for sensing and stimulation, into one 
deep nucleus, would be the ideal. But the 
interconnected nuclei in the basal ganglia of 
the brain where the pathological dynamics of 
Parkinson’s disease are generated would 
require several electrodes to adequately 
observe the system. So one can use a model of 
the network, and an ensemble Kalman filter, to 
perform such reconstruction. Driving such a 
model with the same control signals delivered 
to the brain would also enable us to achieve 
more sophisticated control of such deep brain 
circuitry.  

We have explored these issues in some 
detail in [29]. One of the key questions in 
observing complex brains with complex 
models is to reduce the complexity of the 
models, preserving their dynamics, in order to 
increase the accuracy of tracking and 
reconstruction. A variety of strategies for such 
model reduction with preservation of 
dynamical fidelity have been explored in [23] 

and [28]. In [29], we examine in some detail 
the use of reduced models of thalamic neurons 
to assimilate signals from the basal ganglia, as 
well as to estimate the reliability of the 
thalamus in control paradigms for Parkinson’s 
disease.  

Another rich area for exploration in 
Parkinson’s disease is the area of control law 
design. Most controller designs in use are 
variations of proportional-integral-differential 
(PID) schemes. In collaboration with Patrick 
Gorzelic and Alok Sinha, we are completing a 
comprehensive analysis of several PID control 
law schemes for Parkinson’s disease control. 
More sophisticated geometrical control 
schemes are very much worth exploring in the 
future. 

This paper has reviewed some of the recent 
progress in the fusion of computational 
neuroscience with modern control theory. A 
more comprehensive treatment of this fusion 
can be found in [30]. It is the author’s 
impression that we are just at the beginning of 
a very fruitful synergy between the 
computational modeling of dynamical disease 
and our ability to better control such 
conditions. 

ACKNOWLEDGMENT 
The author thanks A. Sinha, P. Gorzelic, T. 

Sauer, G. Ullah, and J.-Y. Wu for their 
invaluable collaborations.  

REFERENCES 
[1] Kalman R E. A new approach to linear filtering and prediction 

problems Trans. ASME D 82 35–45, 1960. 
[2] Casti, JL, Five More Golden Rules: Knots, Codes, Chaos, and 

Other Great Theories of 20th-Century Mathematics, John Wiley 
& Sons, New York, 2000, pp 101-154 

[3] Julier, S. J., and Uhlmann, J. K. A new extension of the Kalman 
filter to nonlinear systems, SPIE, 3068, 182-193, 1997. 

[4] Evensen, G., and Van Leeuwen, P. J. An ensemble Kalman 
smoother for non-linear dynamics Mon. Wea. Rev., 128, 1852-
1867, 2000. 

[5] Evensen, G., Sequential data assimilation with a non-linear 
quasi-geostrophic model using Monte Carlo methods to forecast 
error statistics J. Geophys Res., 99, 10143-10162, 1994. 

[6] Julier, S. J. and Uhlmann, J. K. A consistent, debiased method 
for converting between polar and cartesian coordinate systems 
SPIE, 3086, 110-121, 1997. 

6490



  

[7] Simon, D. Optimal state estimation Wiley-Interscience, 
Hoboken 2006. 

[8] Brockwell AE, Rojas AL, Kass RE. Recursive bayesian 
decoding of motor cortical signals by particle filtering. J 
Neurophysiol. 2004 Apr;91(4):1899-907. 

[9] Paulin MG. Evolution of the cerebellum as a neuronal machine 
for Bayesian state estimation. J Neural Eng. 2005 
Sep;2(3):S219-34.  

[10] Thrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press, 
Cambridge, 2005. 

[11] Voss, H. Timmer, J., Kurths, J. Nonlinear dynamical system 
identification from uncertain and indirect measurements. Int. J. 
Bifurcation and Chaos, 14, 1905-33, 2004. 

[12] Huang X, Troy W C, Yang Q, Ma H, Laing C R, Schiff S J and 
Wu J Y (2004) Spiral waves in mammalian neocortex J. 
Neurosci. 24 9897–902 

[13] Wilson H R and Cowan J D (1972) Excitatory and inhibitory 
interactions in localized populations of model neurons Biophys. 
J. 12: 1–24 

[14] Wilson H R and Cowan J D (1973) A mathematical theory of the 
functional dynamics of cortical and thalamic nervous tissue, 
Kybernetik 13: 55–80 

[15] Schiff SJ, Sauer T, Kalman Filter Control of a Model of 
Spatiotemporal Cortical Dynamics, Journal of Neual 
Engineering 5: 1-8, 2008. 

[16] Xu W, Huang X, Takagaki K and Wu J-Y (2007) Compression 
and reflection of visually evoked cortical waves Neuron 55 119–
29 

[17] Rubino D, Robbins K A and Hatsopoulos N G (2006) 
Propagating waves mediate information transfer in the motor 
cortex Nat. Neurosci. 9: 1549–57 

[18] Anderson J L. An ensemble adjustment Kalman filter for data 
assimilation, Mon. Wea. Rev., 129, 2884–2903, 2001. 

[19] Anderson J.L. A local least-squares framework for ensemble 
filtering, Mon. Wea. Rev., 131, 634–642, 2003. 

[20] Hunt B, Kostelich E J and Szunyogh I (2007) Efficient data 
assimilation for spatiotemporal chaos: A local ensemble 
transform Kalman filter Physica D 230: 112–26 

[21] Hodgkin AL, A. F. Huxley. A quantitative description of 
membrane current and its application to conduction and 
excitation in nerve. J. Physiol. 1952;117;500-544 

[22] Ullah G, Schiff SJ, Tracking and Control of Neuronal Hodgkin-
Huxley Dynamics, Phys Rev E 79,040901(R), 2009. 

[23] Cressman JR, Ullah G, Ziburkus J, Schiff SJ, and Barreto E, The 
Influence of Sodium and Potassium Dynamics on Excitability, 
Seizures, and the Stability of Persistent States: I. Single Neuron 
Dynamics. Journal of Computational Neuroscience, 26:159–170, 
2009. 

[24] Ullah G, Cressman JR, Barreto E, and Schiff SJ, The Influence 
of Sodium and Potassium Dynamics on Excitability, Seizures, 
and the Stability of Persistent States: II. Network and Glial 
Dynamics. Journal of Computational Neuroscience, 26:171–183, 
2009. 

[25] Cornick M, B. Hunt, E. Ott, H. Kurtuldu, and M. F. Schatz, 
“State and parameter estimation of spatiotemporally chaotic 
systems illustrated by an application to Rayleigh–Bénard 
convection,” Chaos 19, 013108, 2009 

[26] Ullah G,  Schiff SJ, Assimilating seizure dynamics. PLoS 
Comput Biol, 6(5), e1000776, 2010. 

[27] Sauer TD, and SJ Schiff, Data assimilation for heterogeneous 
networks: the consensus set. Phys Rev E 79, 051909, 2009. 

[28] Rubin JE, Terman D (2004). High frequency stimulation of the 
subthalamic nucleus eliminates pathological thalamic 
rhythmicity in a computational model. J Comput Neurosci, 
16(3), 211-235.  

[29] Schiff SJ (2010). Towards model-based control of Parkinson's 
disease. Philos Transact  Roy Soc A 368(1918), 2269-2308. 

[30] Schiff SJ. Neural Control Engineering. MIT Press, Cambridge, 
2011.  
 

6491


