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Abstract— The paper deals with the problem of active fault
detection and control for multiple models. It is assumed that a
fault detector is given and the goal is to design an input signal
generator such that detection and control aims are achieved.
Since these two aim are conflicting, it is necessary to express
a desired compromise between them. The paper investigates
three formulations that allow for respecting both competing
aims. In the first formulation both aims are combined into a
single criterion. In other two formulations, one aim is reflected
in the criterion and the other aim is enforced as a constraint.

I. INTRODUCTION

Ever increasing requirements on safety, availability, and
low costs require to use adequate methods for detecting an
undesirable behavior of a monitored system. Although pas-
sive fault detection methods [1] perform quite well in many
applications, there are situations in which faults can remain
undetected because of an operating regime. It motivates the
development of active fault detection methods that can deal
with such situations by introducing an auxiliary input signal.

An active fault detection method based on the sequential
probability ratio test was considered in [2], [3]. Another
approach to active fault detection for systems with energy
bounded noises was treated in [4]. Since the inputs of
a system are usually utilized for control, it is necessary
to tackle the problem of simultaneous control and active
detection. Early works [5], [6] studied the relationships and
limitations of the integrated fault detection and control, and
more detailed treatement was given in [7], [8], [9].

A unifying general formulation of the active fault detection
and control problem for stochastic systems accompanied by a
formal solution based on closed loop information processing
strategy (IPS) was introduced in [10]. The importance of the
unified formulation consists in the ability to derive and study
individual special cases in a coherent way. Although the
formal solution is not computationally tractable, it provides
a basis for proposing suitable approximate solutions.

The goal of the paper is to present three problem formula-
tions to active fault detection and control for a given detector.
Since the optimal solution based on the closed loop IPS is
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intractable, a design procedure based on the open loop IPS
and the upper bound on the probability of misclassification
introduced in [9] is proposed.

II. PROBLEM FORMULATION

Consider a system that can be described at each time
step k ∈ T = {0, 1, . . . , F} of the finite horizon F <∞ by
one of two linear stochastic models of the structure

xk+1 = Aµk
xk + Bµk

uk + Gµk
wk, (1)

yk = Cµk
xk + Hµk

vk, (2)

where the couple xk, µk represents the unmeasured state of
the system. The state variable µk ∈ M = {1, 2} indicates
the model in effect at time step k, and the vector xk ∈ Rnx

collects remaining state variables. The input and output are
denoted as uk ∈ Uk and yk ∈ Rny respectively. The set
of admissible inputs Uk ⊆ Rnu represents a priori known
constraints that usually stem from physical or logical limi-
tations imposed by the system. The state noise wk ∈ Rnw

and measurement noise vk ∈ Rnv are mutually independent
white noises with a Gaussian distribution with zero means
and unit covariance matrices. They are also independent of
the initial state [x0, µ0]T . The initial condition x0 has the
Gaussian distribution with a known mean value x̂0|−1 and a
covariance matrix P0|−1. The probability function P (µ0) is
also known. Finally, it is assumed that the state variable µk
is constant over the whole horizon F , and the system
matrices Aµk

, Bµk
, Gµk

, Cµk
, and Hµk

are given.
When the system matrices with µk = 1 describe the

normal operation of the system and the other set of matrices
represents the faulty behavior, then the estimation of the state
variable µk can be regarded as a fault detection problem. In
the most general case, the aim is to design a system that
generates decisions about the fault in the system and also an
input signal that should improve the quality of detection and
simultaneously control the system. A general solution to this
problem and particular special cases were discussed in [10].
In this paper a special case in which a detector is given in
advance is considered.

The problem of active detection and control with a given
detector is depicted in Fig. 1. A given detector D analyzes
the system S by means of the input-output data and generates
the decision dk about a potential fault at each time step. The
goal is to design an input signal generator C that generates
input uk such that the detection and control aims are pursued
and the given detector D is taken into account.

The given detector is fixed in advance and described at
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Fig. 1. The schema of active detection and control with a given detector.

each time step k ∈ T by the relation

dk = σk
(
yk0 ,u

k−1
0

)
, (3)

where σk(yk0 ,u
k−1
0 ), k ∈ T are given functions. The

notation yji represents a sequence of the variables yk from
the time step i up to the time step j. If i > j then the
sequence yji is empty and the corresponding variable is
simply left out from an expression. The designed input signal
generator C can generally be described as

uk = γk
(
yk0 ,u

k−1
0

)
, (4)

where γk(yk0 ,u
k−1
0 ), k ∈ T is a sequence of functions to

be designed.
In order to evaluate the quality of the input signal gener-

ator C in terms of detection and control aims, a criterion
is needed. It is assumed that the detection and control
aims have already been expressed by a designer for each
time step k ∈ T using the cost functions Ld

k(µk, dk)
and Lc

k (xk,uk), respectively. The cost function Lc
k (xk,uk)

is convex, and the cost function Ld
k(µk, dk) satisfies the

inequality Ld
k(µk, µk) ≤ Ld

k(µk, dk) for all µk ∈ M,
dk ∈ M, dk 6= µk at each time step k ∈ T , and the strict
inequality holds at least at one time step. Since the values
of these cost functions are random variables, it is common
to define detection and control criteria as

Jd
(
γF0
)

= E

{
F∑
k=0

Ld
k(µk, dk)

}
, (5)

Jc
(
γF0
)

= E

{
F∑
k=0

Lc
k (xk,uk)

}
, (6)

where E{·} is the expectation operator. The input signal
generator C that is optimal according to the first criterion
usually differs from the system C obtained by minimizing
the second criterion. Therefore it is necessary to define a
desired compromise between the detection and control aims
and solve a multi-objective optimization problem [11].

This paper investigates three different problem formula-
tions that allow for incorporation of both criteria into the
design procedure. Although a problem formulation consisting
in combining both criteria into a single criterion is the
simplest way, it does not always yield a desirable result.
In many situations the aim is not to minimize both criteria
at the same time, but rather to maintain one criterion below

a specified threshold while minimizing the other one. The
following three problem formulations are considered.
• Fault detection and control problem I (FDC I). The

detection and control aims are weighted and combined into a
single criterion. This problem formulation could be useful in
situations when both cost functions express the same quantity
(e.g. time, money, energy). The goal is to minimize the
criterion

J
(
γF0
)

= E

{
F∑
k=0

Lk(µk, dk,xk,uk)

}
, (7)

subject to

uF0 ∈ U ,

where Lk(·) = αkL
d
k(µk, dk) + (1 − αk)Lc

k (xk,uk) is an
overall cost function, αk ∈ [0, 1] is the weighting factor
chosen by a designer, and U = U0 × U1 · · · × UF is the
set of admissible input sequences.
• Fault detection and control problem II (FDC II). The

control aim is placed into the criterion, and the detection aim
is used as a constraint. This problem formulation should be
preferred when a specified level of the detection criterion (ex-
pressing e.g. the maximum probability of misclassification)
has to be guaranteed. The goal is to minimize the criterion

Jc
(
γF0
)

= E

{
F∑
k=0

Lc
k (xk,uk)

}
, (8)

subject to

E

{
F∑
k=0

Ld
k(µk, dk)

}
≤ Ld

max, uF0 ∈ U (9)

where Ld
max is the maximum acceptable level of the detection

criterion.
• Fault detection and control problem III (FDC III). The

detection aim is placed into the criterion, and the control aim
is enforced as a constraint. This problem formulation could
be utilized for example in a situation where the input signal
generator should excite the system to confirm or reject the
suspicion that a sensor is failing, but the control criterion
(e.g. the maximum allowable energy of the inputs) must not
exceed a certain value. The goal is to minimize the criterion

Jd
(
γF0
)

= E

{
F∑
k=0

Ld
k(µk, dk)

}
, (10)

subject to

E

{
F∑
k=0

Lc
k (xk,uk)

}
≤ Lc

max, uF0 ∈ U , (11)

where Lc
max is the maximum acceptable value of the control

criterion.
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III. OPTIMAL SOLUTION

The solutions to the posed problem formulations FDC
I, FDC II, and FDC III can be obtained using different
assumptions on the availability of the outputs at individual
time steps. There are three basic information processing
strategies (IPS): open loop (OL), open loop feedback (OLF)
and closed loop (CL) [12]. The mutual relationships between
all three IPS’s and the benefit of the CL IPS in the context of
the active change detection problem were discussed in [13].
Although the design procedure presented in this paper is
based on the OL IPS, a general solution utilizing the CL
IPS is briefly discussed.

In the case of FDC I, the optimal solution based on the
CL IPS can be obtained by solving the backward recursive
equation

V ∗k
(
yk0 ,u

k−1
0

)
= min

uk∈Uk
E
{
Lk(µk, σk(yk0 ,u

k−1
0 ),xk,uk)+

V ∗k+1

(
yk+1
0 ,uk0

)∣∣yk0 ,uk0}, (12)

where E{·|·} is the conditional expectation operator, and
the cost-to-go function V ∗k (yk0 ,u

k−1
0 ) (also called Bellman

function) expresses the minimum expected costs incurred
from time step k to time step F given the input-output
data yk0 ,u

k−1
0 . The initial condition of the backward recur-

sive equation is V ∗F+1 = 0. Since an analytical solution
to this backward recursive equation seldom exists and a
numerical solution is usually computationally prohibitive, it
is necessary to resort to an approximate solution [14].

As one could anticipate, the introduction of the expectation
constraints in formulations FDC II and FDC III makes
the problem even harder to solve using the CL IPS. The
problem with expectation constraint was extensively studied
for controlled Markov decision processes with discrete vari-
ables [15]. In general, the increase in complexity originates
from restricting the set of all feasible functions γk(yk0 ,u

k−1
0 )

to a nontrivial subset Γk of which an explicit description is
difficult to obtain [16]. To avoid these issues a simplistic
design procedure based on the OL IPS will be considered in
what follows.

IV. SUBOPTIMAL SOLUTION

Since the OL IPS assumes that the actual outputs are not
utilized, the input signal generator C can be described as

uk = γk, (13)

where γk is a function of time step k but not the input-output
data yk0 ,u

k−1
0 . It means that the input sequence uF0 can be

designed off-line.

A. Application of the open loop strategy

In all three problem formulations, it is possible to proceed
in the following way. Besides providing the optimal solution
in the case of FDC I, the backward recursive equation (12)
motivates us to write both criteria (5) and (6) for an arbitrary
function γk(yk0 ,u

k−1
0 ) in the recursive form

V •k
(
yk0 ,u

k−1
0

)
= E

{
L•k + V •k+1

(
yk+1
0 ,uk0

)}
, (14)

where • is used as a wildcard. Using this recursive form and
the assumption (13) of the OL IPS, the detection criterion
can be expressed as

Jd
(
uF−10

)
=

F∑
k=0

∫
yk
0

E
{
Ld
k

(
µk, σk

(
yk0 ,u

k−1
0

))∣∣yk0 ,uk−10

}
k∏
i=0

p
(
yi|yi−10 ,ui−10

)
dyk0 , (15)

the control criterion reduces to

Jc
(
uF0
)

=

F∑
k=0

∫
yk
0

E
{
Lc
k (xk,uk)

∣∣ yk0 ,u
k
0

}
k∏
i=0

p
(
yi|yi−10 ,ui−10

)
dyk0 , (16)

and the combined criterion becomes

J
(
uF0
)

=

F∑
k=0

∫
yk
0

E
{
Lk
(
µk, σk(yk0 ,u

k−1
0 ),xk,uk

)∣∣yk0 ,uk0}
k∏
i=0

p
(
yi|yi−10 ,ui−10

)
dyk0 , (17)

where p(yi|yi−10 ,ui−10 ) is the conditional predictive pdf of
the output yi.

B. Detector, Detection and Control Objectives Specification

A general given detector and general cost functions ex-
pressing detection and control objectives have been consid-
ered so far. To simplify the presentation of what follows,
a particular problem is presented in this subsection and
consequently illustrated through the numerical example in
the next section.

It is assumed that the given detector is time invariant
and generates decisions dk in the maximum a posteriori
probability sense

dk = σ
(
yk0 ,u

k−1
0

)
= arg max

µk

P
(
µk|yk0 ,uk−10

)
, (18)

which is quite common in the multiple model change detec-
tion area [17].

The aim of detection is to minimize the probability of
making the wrong decision at the final time step k = F ,
which can be expressed by the cost function

Ld
k (µk, dk) =

{
1 k = F ∧ dk 6= µk,

0 otherwise.
(19)

It was shown in [18] that given the cost function (19)
and detector (18), the detection criterion (15) expresses the
probability of making a wrong decision at the final time
step k = F . Since the value of this criterion cannot be
computed analytically, it was proposed in [9] to use an
upper bound B(uF−10 ) instead. This upper bound is usually

3714



referred to as the Bhattacharyya bound and the relation is
the following

Jd
(
uF−10

)
≤B

(
uF−10

)
=
√
P (µ0 =1)P (µ0 =2)e−K , (20)

K=
1

2
ln

|Σ|√
|Σ1||Σ2|

+
1

8

(
ŷ1−ŷ2

)T
Σ−1

(
ŷ1−ŷ2

)
,

where Σ = (Σ1 + Σ2)/2, ŷi = E{yF0 |uF−10 , µ0 = i},
Σi = E{(yF0 − ŷi)(y

F
0 − ŷi)

T |uF−10 , µ0 = i}, i = 0, 1. It
can simply be shown that ŷi are affine functions of uF−10 ,
and Σi are independent of uF−10 .

Finally, the aim of control consists in minimizing the
energy of the input signal, which is given by the quadratic
cost function

Lc
k (xk,uk) = uTk uk, (21)

and by substituting this particular cost function into (16), it
follows that

Jc
(
uF0
)

=

F∑
k=0

uTk uk. (22)

C. Numerical solution discussion
In order to get concrete optimization problem formulations

out of the problems presented in Section II the assumptions
presented in Section IV can be used. The expression in (20)
is used to upper bound Jd and this expression is substituted
into the general formulations in Section II. The resulting
optimization problems are in general non-convex and they
are therefore not possible to solve using “standard tools” as
LP, QP or SDP solvers, which are commonly used in areas
like Model Predictive Control for linear systems, [19]. In this
section it is described how these non-convex optimization
problems can be solved numerically. The approach chosen
in this work is to use a global optimization routine bmibnb
in the freely available MATLAB toolbox YALMIP, [20].
This routine implements a spatial branch and bound routine
similar to the one introduced in [21] for bilinear non-convex
optimization problems. The main idea in the algorithm is
to compute convex envelopes that work as a convex outer
approximations of the nonlinear functions. During the branch
and bound process, better and better outer approximations are
computed and these are used to compute lower bounds on the
optimal objective function value. In the spirit of branch and
bound, also upper bounds on the optimal objective function
value are computed, and these are used to prune the branch
and bound search tree. In this work, the lower bounds are
computed using CPLEX, [22], and the upper bounds using
SNOPT, [23].

Since this solution strategy is based on non-convex global
optimization, the computational performance cannot in gen-
eral be expected to be tractable. Hence, the choice of this
algorithm is motivated by that we would like to see how
good the rest of the concept can possibly get and the
YALMIP solver provides us with a tool which is very suitable
for the experiments performed in this work. In a practical
implementation, some relaxed version of the problems are
more tractable to solve, especially if the procedure is to be
performed in real-time.

The three different approaches are now studied separately.
1) FDC I:

min
uF

0

αB
(
uF−10

)
+ (1− α)

F∑
k=0

uTk uk (23)

subject to (1), (2), and uF0 ∈ U .
The objective function which is a weighted sum of the

Bhattacharyya bound and the control cost is a non-convex
function for α ∈ (0, 1]. Note that, for α = 0, the objective
function is simply a convex quadratic function. In order to
solve this non-convex (when α ∈ (0, 1]) problem to global
optimality, or at least to a user defined suboptimality level,
the bmibnb solver in YALMIP is used.

2) FDC II:

min
uF

0

F∑
k=0

uTk uk (24)

subject to (1), (2) and

B(uF−10 ) ≤ Ld
max, uF0 ∈ U . (25)

Using the definition of B, the constraint in (25) can be
rewritten as

−
(
ŷ1−ŷ2

)T
Σ−1

(
ŷ1−ŷ2

)
≤

4 ln

(
|Σ|√
|Σ1||Σ2|

)
+ 8 ln

(
Ld
max

)
(26)

− 4 ln (P (µ0 = 1)P (µ0 = 2)) , κ,

where κ is a constant. Hence, the constraint in (25) can be
rewritten as a non-convex quadratic constraint. The optimiza-
tion problem to minimize (24) subject to (26) can be solved
using YALMIP’s bmibnb solver.

3) FDC III: Since ŷ1 and ŷ2 are the only optimization
variables in the expression in (20), B can from an optimiza-
tion point of view be simplified to an expression in the form

γ exp

(
−1

8

(
ŷ1 − ŷ2

)T
Σ−1

(
ŷ1 − ŷ2

))
, (27)

where γ is considered as a constant. Since optimization prob-
lems with scaled objective functions are equivalent, the con-
stant γ can be neglected during the optimization. Moreover,
the logarithm is a monotonically increasing function. There-
fore, it is equivalent to minimize −(ŷ1− ŷ2)TΣ−1(ŷ1− ŷ2)
instead of the exponential function of this expression. As a
conclusion, the problem can be formulated as minimization
of a concave quadratic function subject to a convex constraint
set, i.e.,

min
uF−1

0

−
(
ŷ1 − ŷ2

)T
Σ−1

(
ŷ1 − ŷ2

)
(28)

subject to (1), (2) and
∑F
k=0 uTk uk ≤ Lc

max, uF0 ∈ U . Also
this problem can be solved using bmibnb in YALMIP.

V. SUBOPTIMAL SOLUTION - NUMERICAL EXAMPLES

Two numerical examples will be presented in this section.
The aim of the first example is to graphically illustrate
the constraint sets and the criteria for all three problem
formulations. The second example focuses on the designing
the OL optimal input sequences for a longer horizon.
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A. First numerical example

In the first numerical example, just one-step prediction
(i.e. F = 1) is considered, and the system matrices are the
following

A1 = A2 = C1 = C2 =

[
1 0
0 1

]
,

G1 = G2 = H1 = H2 =

[√
2 0

0
√

2

]
,

B1 =

[
1 0
0 0.5

]
, B2 =

[
0 0
0 0

]
. (29)

Constraint sets Uk are defined for each k ∈ T as Uk :=
{uk ∈ R2|‖uk‖∞ ≤ 5}. The initial condition x0 is given
by the mean value x̂0|−1 = [0, 0]T and the covariance
matrix P0|−1 = 0.1I2, where In is the identity matrix of
order n. The a priori probabilities are P (µ0 = 1) = P (µ0 =
2) = 0.5.

1) FDC I: The combined criterion J(uF0 ) expresses a
trade-off between the detection aim and the control aim, and
the solution may lie anywhere within the constraint set U
depending on the parameter α0. As an example, the optimal
solution for α0 = 0.995 is depicted in Fig. 2.

Fig. 2. Constraint set and criterion for FDC I. The black cross denotes the
optimal input u0 and yellow area represents the constraint set.

2) FDC II: The control criterion Jc(uF0 ) is a convex
function and its unconstrained minimum is attained at uk =
0 ∀k ∈ T . However, such an input signal provides poor
information for detection because it may not sufficiently
excite the system. The Bhattacharyya bound determines a
non-convex set that excludes the input signals close to origin
and prevents insufficient excitation. The optimal solution lies
on the boundary of set given by the Bhattacharyya bound,
as it is demonstrated in Fig. 3 for the maximum allowable
probability of misclassification Ld

max = 0.3.
3) FDC III: Since the logarithm of the Bhattacharyya

bound is a concave function, the solution to the unconstrained
minimization would result into an input signal with the
infinite amplitude. Nevertheless, there are two constraint
sets uF0 ∈ U and

∑F
k=0 uTk uk ≤ Lc

max. The maximum

Fig. 3. Constraint set and criterion for FDC II. The black cross denotes
the optimal input u0 and yellow area represents the constraint set.

allowed value for control criterion Lc
max = 20 defines a

disk {u0 ∈ R2|uT0 u0 ≤ 20} with the center at the origin.
Since this disk lies entirely in the set U , the optimal solution
lies on the boundary of the disk (i.e. uT0 u0 = 20), see Fig. 4.

Fig. 4. Constraint set and criterion for FDC III. The black cross denotes
the optimal input u0 and yellow area represents the constraint set.

B. Second numerical example

The second numerical example focuses on comparison of
the optimal input sequences using four different experiments.
The experiments are defined as follows
• Experiment 1: FDC I, α = 0
• Experiment 2: FDC III, Lc

max = 40
• Experiment 3: FDC II, Ld

max = 0.01
• Experiment 4: FDC I, α = 1.
The system matrices are the following

A1 = 0.9, A2 = 0.6, B1 = 0.1, B2 = 1,

C1 = C2 = 1, G1 = G2 = H1 = H2 =
√

2. (30)
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Constraint sets Uk are defined for each k ∈ T as Uk :=
{uk ∈ R|‖uk‖ ≤ 5}. The initial condition x0 is given by the
mean value x̂0|−1 = 0 and the covariance P0|−1 = 0.1. The
a priori probabilities are P (µ0 = 1) = P (µ0 = 2) = 0.5
and prediction horizon is F = 40.

The optimal input signals of the selected experiments are
depicted in Fig. 5. The first experiment shows the optimal
input signal, when the detection cost is not considered. This
setup results into the zero input signal. The second experi-
ment illustrates the control cost constrained problem, while
the the third experiment represents the detection constrained
problem. In both cases, the optimal input signal resembles a
harmonic signal with a variable amplitude. Despite a differ-
ence in problem formulations, the form of the optimal OL
input sequence is similar to the form of input for some cases
presented in [24]. The fourth experiment shows the active
detector, when the control cost is not considered. The input
signal oscillates between minimum and maximum admissible
input value and provides the most useful information to the
detector. This problem formulation was discussed in details
in [9].

Fig. 5. Optimal input sequences.

VI. CONCLUSION

Three alternative formulations of active fault detection and
control were presented in the paper. The first formulation
aims at minimization of a cost function given as a trade-off
between control and detection. The second formulation aims
at minimization of a control objective, while respecting a
detection constraint and the third formulation aims at mini-
mization of a detection objective, while respecting a control
constraint. The optimal closed loop solution to all three
problems is numerically intractable. Therefore a suboptimal
solution based on the open loop information processing strat-
egy, quadratic control cost criterion, and the Bhattacharyya
bound as the detection criterion was presented. The presented
framework of three problem formulations provides a useful
tool for designing active detection and control systems. The
designer can choose the formulation that suits the best the
current application in the sense of the design requirements.
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