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Abstract— Except for special classes of games, there is no
systematic framework for analyzing the dynamical properties
of multi-agent strategic interactions. Potential games are one
such special but restrictive class of games that allow for
tractable dynamic analysis. Intuitively, games that are “close”
to a potential game should share similar properties. In this
paper, we formalize and develop this idea by quantifying to
what extent the dynamic features of potential games extend
to “near-potential” games. We first show that in an arbitrary
finite game, the limiting behavior of better-response and best-
response dynamics can be characterized by the approximate
equilibrium set of a close potential game. Moreover, the size
of this set is proportional to a closeness measure between the
original game and the potential game. We then focus on logit
response dynamics, which induce a Markov process on the set
of strategy profiles of the game, and show that the stationary
distribution of logit response dynamics can be approximated
using the potential function of a close potential game, and
its stochastically stable strategy profiles can be identified as
the approximate maximizers of this function. Our approach
presents a systematic framework for studying convergence
behavior of adaptive learning dynamics in finite strategic form
games.

I. INTRODUCTION

The study of multi-agent strategic interactions both in
economics and engineering mainly relies on the concept of
Nash equilibria. A key justification for Nash equilibrium is
that adaptive learning dynamics that involve less than fully
rational behavior converges to Nash equilibria in the long
run. Nevertheless, such results have only been established
for some special (but restrictive) classes of games, potential
games is an example [1]–[3].

Our goal in this paper is to provide a systematic framework
for studying dynamics in finite strategic-form games by
exploiting their relation to “close” potential games. Our
approach relies on using the potential function of a close
potential game for the analysis of dynamics in the original
game. This enables us to establish convergence of commonly
studied update rules to the set of approximate equilibria,
where the size of the set is a function of the distance from
a close potential game.1 We note that our results hold for
arbitrary strategic form games, however the bounds on the
limiting sets are tighter and hence more informative for
games that are close to potential games (in terms of payoffs
of the players). We therefore focus our investigation to such
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1Throughout the paper, we use the terms learning dynamics and update

rules interchangeably.

games in this paper and refer to them as near-potential
games.

We study the limiting behavior of three specific update
rules. We first focus on better-response and best-response
dynamics. It is known that trajectories of these update rules
(i.e., the sequence of strategy profiles generated under these
update rules) converge to pure Nash equilibria in potential
games [3], [4]. However, in near-potential games pure Nash
equilibria need not even exist. For this reason we focus on the
notion of approximate equilibria or ε-equilibria, and show
that in near-potential games, trajectories of these update rules
converge to an approximate equilibrium set, where the size
of the set depends on the distance of the original game from
a potential game. We also show by means of an example
that in general the asymptotic behavior in two close games
can be very different (see Example 1). This highlights the
importance of closeness to potential games in shaping the
dynamical properties of update rules.

We then focus on logit response update rule. With this
update rule, agents, when updating their strategies, choose
their best-responses with high probability, but also explore
other strategies with nonzero probability. Logit response
induces a random walk on the set of strategy profiles. The
stationary distribution of the random walk is used to explain
the limiting behavior of this update rule [5], [6]. In potential
games, the stationary distribution can be expressed in closed
form. Additionally, the stochastically stable strategy profiles,
i.e., the strategy profiles which have nonzero stationary dis-
tribution as the exploration probability goes to zero, are those
that maximize the potential function [5], [6]. Exploiting their
relation to close potential games, we obtain similar results for
near-potential games: (i) we obtain a closed-form expression
that approximates the stationary distribution, and (ii) we
show that the stochastically stable strategy profiles are the
strategy profiles that approximately maximize the potential
of a close potential game. Our analysis relies on a novel
perturbation result for Markov chains (see Theorem 2) which
provides bounds on deviations from a stationary distribution
when transition probabilities of a Markov chain are multi-
plicatively perturbed, and therefore may be of independent
interest.

A summary of our findings on better/best-response dynam-
ics and logit response can be found in Table I.

The framework proposed in this paper provides a sys-
tematic approach for studying limiting behavior of adaptive
learning dynamics in strategic form games: Given a finite
game, we find a close potential game by solving a convex
optimization problem [7], [8]. We then characterize the dy-
namical properties of the original game using the properties
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Update Process Dynamics Result
Best-Response
Dynamics

(Theorem 1) Trajectories converge to Xδh, i.e.,
the δh-equilibrium set of G.

Better-Response
Dynamics

(Theorem 1) Trajectories converge to Xδh, i.e.,
the δh-equilibrium set of G.

Logit Response
Dynamics (with
parameter τ )

(Corollary 2) Stationary distributions are such
that |µ(p)− µ̂(p)| ≤ δ(h−1)

τ
, for all p.

Logit Response
Dynamics

(Corollary 3) Stochastically stable strategy pro-
files of G are (i) contained in S = {p|φ(p) ≥
maxq φ(q) − 4(h − 1)δ}, (ii) δ(4h − 3)-
equilibria of G.

TABLE I: Properties of better/best-response and logit re-
sponse dynamics in near-potential games. We assume that
the dynamical properties of a game G are studied, and there
exists a nearby potential game Ĝ, with potential function φ
such that the distance (in terms of the maximum pairwise
difference, defined in Section II) between the two games
is δ. We use the notation Xε to denote the ε-equilibrium
set of the original game, M and h to denote the number
of players and strategy profiles, µ and µ̂ to denote the
stationary distributions of logit response dynamics in G and
Ĝ, respectively.

of this potential game. The characterization is tighter if the
“distance” between the games is smaller.

Related Literature: Potential games play an important
role in game-theoretic analysis because of existence of pure
strategy Nash equilibrium, and the stability (under various
learning dynamics such as better-, best-response dynamics,
and fictitious play) of pure Nash equilibria in these games
[1], [3], [4], [9]–[12]. Because of these properties, potential
games found applications in various control and resource
allocation problems [3], [13]–[15].

There is no systematic framework for analyzing the limit-
ing behavior of many of the adaptive update rules in general
games [1], [2], [16]. However, for potential games there is
a long line of literature establishing convergence of natural
adaptive dynamics such as better/best-response dynamics [3],
[4], fictitious play [9], [10], [17] and logit response dynamics
[5], [6], [12].

It was shown in recent work that a close potential game to
a given game can be obtained by solving a convex optimiza-
tion problem [7], [8]. It was also proved that equilibria of a
given game can be characterized by first approximating this
game with a potential game, and then using the equilibrium
properties of close potential games [7], [8]. This paper builds
on this line of work to study dynamics in games by exploiting
their relation to a close potential game.

Paper Organization: The rest of the paper is organized
as follows: We present the game theoretic preliminaries
for our work in Section II. We present an analysis of
better- and best-response dynamics in near-potential games
in Section III. In Section IV, we extend our analysis to
logit response, and focus on the stationary distribution and
stochastically stable states of logit response. We close in
Section V with concluding remarks and future work. Due
to space constraints all proofs are omitted and can be found

in [18].

II. PRELIMINARIES

In this section, we present the game-theoretic background
that is relevant to our work. Additionally, we introduce the
closeness measure for games that is used in the rest of the
paper.

A. Finite Strategic-Form Games

A (noncooperative) finite game in strategic-form consists
of:
• A finite set of players, denoted by M = {1, . . . ,M}.
• Strategy spaces: A finite set of strategies (or actions)
Em, for every m ∈M.

• Utility functions: um :
∏
k∈MEk → R, for every m ∈

M.
A (strategic-form) game instance is accordingly given by the
tuple 〈M, {Em}m∈M, {um}m∈M〉. The joint strategy space
of a game is denoted by E =

∏
m∈MEm. We refer to a

collection of strategies of all players as a strategy profile
and denote it by p = (p1, . . . , pM ) ∈ E. The strategies of
all players but the mth one is denoted by p−m.

We use (pure) Nash equilibrium and ε-Nash equilibrium
solution concepts for games. Formally, a strategy profile p ,
(p1, . . . , pM ) is an ε-equilibrium (ε ≥ 0) if

um(qm,p−m)− um(pm,p−m) ≤ ε (1)

for every qm ∈ Em and m ∈ M. The set of all ε-Nash
equilibria of a game are denoted by Xε. If p satisfies (1)
with ε = 0, then it is a (pure) Nash equilibrium. Thus,
a Nash equilibrium is a strategy profile from which no
player can unilaterally deviate and improve its payoff. On
the other hand, ε-equilibria are strategy profiles that satisfy
the unilateral deviation constraints approximately. For this
reason, in the rest of the paper we use the terms approximate
Nash equilibrium and ε-equilibrium interchangeably.

B. Potential Games

We next describe a particular class of games that is central
in this paper, the class of potential games [3]:

Definition 2.1 (Potential Game): A potential game is a
noncooperative game for which there exists a function φ :
E → R satisfying

um(pm,p−m)−um(qm,p−m) = φ(pm,p−m)−φ(qm,p−m),

for every m ∈ M, pm, qm ∈ Em, p−m ∈ E−m. The
function φ is referred to as a potential function of the game.

Some properties that are specific to potential games are
evident from the definition. For instance, it can be seen that
unilateral deviations from a strategy profile that maximizes
the potential function (weakly) decrease the utility of the
deviating player. Hence, this strategy profile corresponds to
a Nash equilibrium, and it follows that every potential game
has a pure Nash equilibrium.

We next formally define the measure of “closeness” of
games, used in the subsequent sections.
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Definition 2.2 (Maximum Pairwise Difference): Let G
and Ĝ be two games with set of players M, set of strategy
profiles E, and collections of utility functions {um}m∈M
and {ûm}m∈M respectively. The maximum pairwise
difference (MPD) between these games is defined as

d(G, Ĝ) 4=
max

p∈E,m∈M,qm∈Em

∣∣(um(qm,p−m)− um(pm,p−m)
)

−
(
ûm(qm,p−m)− ûm(pm,p−m)

)∣∣ .
We refer to pairs of games with small MPD as nearby games,
and games that have a small MPD to a potential game as
near-potential games.

Note that the pairwise difference um(qm,p−m) −
um(pm,p−m) quantifies how much player m can improve
its utility by unilaterally deviating from strategy profile
(pm,p−m) to strategy profile (qm,p−m). The MPD
measures the closeness of games in terms of the
difference of these unilateral deviations, rather than
the difference of their utility functions, i.e., quantities
of the form |(um(qm,p−m)− um(pm,p−m)) −
(ûm(qm,p−m)− ûm(pm,p−m))| are used to identify
close games, rather than quantities of the form
|um(pm,p−m)− ûm(pm,p−m)|. This is because difference
in unilateral deviations provides a better characterization
of the strategic similarities (equilibrium and dynamic
properties) between two games than the difference of the
utility functions.2 This can be seen from the following
example: Consider two games with utility functions {um}
and {um + 1}, i.e., in the second game players receive an
additional payoff of 1 at all strategy profiles. It can be seen
from the definition of Nash equilibrium that despite the
difference of their utility functions, these two games share
the same equilibrium set. Intuitively, since the additional
payoff is obtained at all strategy profiles, it does not affect
any of the strategic considerations in the game. On the
other hand, it can be seen that the MPD of these games
is equal to zero, thus MPD identifies strategic equivalence
between them. Details of strategic equivalence in games and
its relation to unilateral deviations can be found in [7].

It can be seen from Definition 2.1 if and only if it satisfies
some linear equalities. This suggests that the set of potential
games is convex. Hence, the closest (in terms of MPD, or any
given norm) potential game to a given game can be found
by solving a convex optimization problem (see [7] and [8],
for closed form solution obtained using an L2-norm). In the
rest of the paper, we do not discuss how a nearby potential
game to a given game is obtained, but we just assume that
a nearby potential game with potential φ is known and the
MPD between this game and the original game is δ. We
obtain results on convergence of dynamics in the original
game, using the properties of φ, and δ.

2MPD can be thought of as the infinity norm of the differences of
unilateral deviations in games. Alternative distance measures can be defined
using two-norm or one-norm in place of the infinity norm. The closeness
notion in Definition 2.2 provides tighter characterization of the limiting
behavior (such as the sets trajectories converge to or stationary distribution)
of update rules, and hence is preferred in this paper.

III. BETTER-RESPONSE AND BEST-RESPONSE
DYNAMICS

In this section, we consider better-response and best-
response dynamics, and study convergence properties of
these update rules in near-potential games. Best-response
dynamics is an update rule where at each time step a
player chooses its best-response to the opponents’ current
strategy profile. In better-response dynamics, on the other
hand, players choose strategies that improve their payoffs,
but these strategies need not be their best-responses. Formal
descriptions of these update rules are given below.

Definition 3.1 (Better- and Best-Response Dynamics):
At each time instant t ∈ {1, 2, . . . }, a single player is chosen
at random for updating its strategy, using a probability
distribution with full support over the set of players. Let m
be the player chosen at some time t, and let r ∈ E denote
the strategy profile that is used at time t− 1.

1) Better-response dynamics is the update process where
player m does not modify its strategy if um(r) =
maxqm um(qm, r−m), and otherwise it updates its strat-
egy to a strategy in {qm|um(qm, r−m) > um(r)},
chosen uniformly at random.

2) Best-response dynamics is the update process where
player m does not modify its strategy if um(r) =
maxqm um(qm, r−m), and otherwise it updates its strat-
egy to a strategy in arg maxqm um(qm, r−m), chosen
uniformly at random.

We refer to strategies in arg maxqm um(qm, r−m) as best-
responses of player m to r−m. We denote the strategy profile
used at time t by pt, and we define the trajectory of the
dynamics as the sequence of strategy profiles {pt}∞t=0. In
our analysis, we assume that the trajectory is initialized at a
strategy profile p0 ∈ E at time 0 and it evolves according
to one of the update rules described above.

The following theorem establishes that in finite games,
better- and best-response dynamics converge to a set of ε-
equilibria, where the size of this set is characterized by the
MPD to a close potential game.

Theorem 1: Consider a game G and let Ĝ be a nearby
potential game, such that d(G, Ĝ) = δ. Assume that best-
response or better-response dynamics are used in G, and
denote the number of strategy profiles in these games by
|E| = h.

For both update processes, the trajectories are contained in
the δh-equilibrium set of G after finite time with probability
1, i.e., let T be a random variable such that pt ∈ Xδh, for
all t > T , then P (T <∞) = 1.
The above theorem also implies that better- and best-response
dynamics converge to a Nash equilibrium in potential games,
since if G is a potential game, the nearby potential game Ĝ
can be chosen such that d(G, Ĝ) = 0.

Our approach for extending dynamical properties of po-
tential games to nearby games relies on the special struc-
tural properties of potential games. Surprisingly, in general,
dynamical properties of arbitrary close games can be quite
different, as illustrated in Example 1.
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Example 1: Consider two games with two players and
payoffs given in Figure 1. The entries of these tables indexed
by row X and column Y show payoffs of the players when
the first player uses strategy X and the second player uses
strategy Y. Let 0 < θ � 1, and assume that players update
their strategies according to better-response dynamics. In
the game on the left, this update rule converges to strategy
profile (C,C). In the game on the right, updates do not
converge (it can be shown that strategy profile (A,A) is
visited infinitely often), and moreover the trajectory of the
updates is not contained in any ε-equilibrium set of the game
for ε < 1. Thus, in arbitrary games, even a small change
in the payoffs (2θ in the example), results in significantly
different dynamic behavior, unlike near-potential games as
established in Theorem 1.

A B C
A 0, 1 1, 0 θ

2 , 0
B 1, 0 0, 1 0, 1
C 1, 0 0, θ2 θ, θ

A B C
A 0, 1 1, 0 θ

2 , 0
B 1, 0 0, 1 0, 1
C 1, 0 0, θ2 -θ, -θ

Fig. 1: Better-response dynamics converge to the Nash
equilibrium (C,C) for the game on the left. The game on the
right can be obtained by perturbing the payoffs in the first
game by 2θ. For this game, trajectories do not converge, and
are not contained in any ε-equilibrium set for ε < 1.

IV. LOGIT RESPONSE DYNAMICS

In this section we focus on logit response dynamics and
characterize the stochastically stable states and stationary
distribution of this update rule in near-potential games.
In Section IV-A, we provide a formal definition of logit
response dynamics, and review some of its properties. In
Section IV-B, we show that the stationary distribution of
logit response dynamics in a near-potential game can be
approximately characterized in terms of the potential func-
tion of a close potential game. Moreover, we focus on the
stochastically stable states of this update rule and show
that the stochastically stable states are contained in the
approximate equilibrium sets in near-potential games.

A. Properties of Logit Response

We start by providing a formal definition of logit response
dynamics:

Definition 4.1: At each time instant t ∈ {1, 2, . . . }, a
single player is chosen at random for updating its strategy,
using a probability distribution with full support over the set
of players. Let m be the player chosen at some time t, and
let r ∈ E denote the strategy profile that is used at time
t− 1.

Logit response dynamics with parameter τ is the update
process, where player m chooses a strategy qm ∈ Em with
probability

Pmτ (qm|r) =
e

1
τ u

m(qm,r−m)∑
pm∈Em e

1
τ u

m(pm,r−m)
.

In this definition, τ > 0 is a fixed parameter that deter-
mines how often players choose their best-responses. The
probability of not choosing a best-response decreases as τ
decreases, and as τ → 0, players choose their best-responses
with probability 1. This feature suggests that logit response
dynamics can be viewed as a generalization of best-response
dynamics, where with small but nonzero probability players
use a strategy that is not a best-response.

For τ > 0, this update process can be represented as a
finite, aperiodic, irreducible Markov chain [5], [6]. The states
of the Markov chain correspond to the strategy profiles in the
game. Denoting the probability that player m is chosen for
a strategy update by αm, transition probability from strategy
profile p to q can be given by (assuming p 6= q, and denoting
the transition from p to q by p→ q):

Pτ (p→ q) =


αmP

m
τ (qm|p), if q−m = p−m

for some m ∈M
0, otherwise.

(2)

The chain is aperiodic and irreducible because a player
updating its strategy can choose any strategy (including the
current one) with positive probability.

We denote the stationary distribution of this Markov chain
by µτ . A strategy profile q such that limτ→0 µτ (q) > 0 is re-
ferred to as a stochastically stable strategy profile. Intuitively,
these strategy profiles are the ones that are used with nonzero
probability, as players adopt their best-responses more and
more frequently in their strategy updates.

In potential games, the stationary distribution of the logit
response dynamics can be written as an explicit function of
the potential. If G is a potential game with potential function
φ, the stationary distribution of the logit response dynamics
is given by the distribution [5], [6]:3

µτ (q) =
e

1
τ φ(q)∑

p∈E e
1
τ φ(p)

. (3)

It can be seen from (3) that limτ→0 µτ (q) > 0 if and
only if q ∈ arg maxp∈E φ(p). Thus, in potential games the
stochastically stable strategy profiles are those that maximize
the potential function.

B. Stationary Distribution and Stochastically Stable Strategy
Profiles of Logit Response

In this section we show that the stationary distribution
of logit response dynamics in near-potential games can
be approximated by exploiting the potential function of a
nearby potential game. We then use this result to identify
stochastically stable strategy profiles in near-potential games.

We start by showing that in games with small MPD, logit
response dynamics have similar transition probabilities.

Lemma 1: Consider a game G and let Ĝ be a nearby
potential game, such that d(G, Ĝ) = δ. Denote the transition
probability matrices of logit response dynamics in G and Ĝ

3Note that this expression is independent of {αm}, i.e., the probability
distribution that is used to choose which player updates its strategy has no
effect on the stationary distribution of logit response.
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by Pτ and P̂τ respectively. For all strategy profiles p and q
that differ in the strategy of at most one player, we have

e−
2δ
τ ≤ P̂τ (p→ q)/Pτ (p→ q) ≤ e 2δ

τ .
Definition 4.1 suggests that perturbation of utility func-

tions changes the transition probabilities multiplicatively in
logit response. The above lemma supports this intuition: if
utility gains due to unilateral deviations are modified by δ,
the ratio of the transition probabilities can change at most
by e

2δ
τ . Thus, if two games are close, then the transition

probabilities of logit response in these games should be
closely related.

This suggests using results from perturbation theory of
Markov chains to characterize the stationary distribution of
logit response in a near-potential game [21], [22]. However,
standard perturbation results characterize changes in the
stationary distribution of a Markov chain when the transition
probabilities are additively perturbed. These results, when
applied to multiplicative perturbations, yield bounds which
are uninformative. We therefore first present a result which
characterizes deviations from the stationary distribution of
a Markov chain when its transition probabilities are multi-
plicatively perturbed, and therefore may be of independent
interest.4

Theorem 2: Let P and P̂ denote the probability transition
matrices of two finite irreducible Markov chains with the
same state space. Denote the stationary distributions of these
Markov chains by µ and µ̂ respectively, and let the cardinality
of the state space be h. Assume that α ≥ 1 is a given constant
and for any two states p and q, the following hold

α−1P (p→ q) ≤ P̂ (p→ q) ≤ αP (p→ q).

Then, for any state p, we have

(i)
α−(h−1)µ(p)

α−(h−1)µ(p) + αh−1(1− µ(p))
≤ µ̂(p)

≤ αh−1µ(p)
αh−1µ(p) + α−(h−1)(1− µ(p))

and, (ii) |µ(p)− µ̂(p)| ≤ αh−1−1
αh−1+1

.
We next use the above theorem to relate the stationary

distributions of logit response dynamics in close games.
Corollary 1: Let G and Ĝ be finite games with number of

strategy profiles |E| = h, such that d(G, Ĝ) = δ. Denote the
stationary distributions of logit response dynamics in these
games by µτ , and µ̂τ respectively. Then, for any strategy
profile p we have

(i)
e−

2δ(h−1)
τ µ(p)

e−
2δ(h−1)

τ µ(p) + e
2δ(h−1)

τ (1− µ(p))
≤ µ̂(p)

≤ e
2δ(h−1)

τ µ(p)

e
2δ(h−1)

τ µ(p) + e−
2δ(h−1)

τ (1− µ(p))
,

4A multiplicative perturbation bound similar to ours, can be found in [19].
However, this bound is loose and it does not provide a good characterization
of the stationary distribution in our setting. We provide a tighter bound, and
obtain stronger predictions on the stationary distribution of logit response.

and (ii) |µ(p)− µ̂(p)| ≤ e
2δ(h−1)

τ −1

e
2δ(h−1)

τ +1
.

The above corollary can be adapted to near-potential games,
by exploiting the relation of stationary distribution of logit
response and potential function in potential games (see (3)).

Corollary 2: Consider a game G and let Ĝ be a nearby
potential game, such that d(G, Ĝ) = δ. Denote the potential
function of Ĝ by φ, and number of strategy profiles in these
games by |E| = h. Then, the stationary distribution µτ of
logit response dynamics in G is such that

(i)
e

1
τ (φ(p)−2δ(h−1))

e
1
τ (φ(p)−2δ(h−1)) +

∑
q6=p∈E e

1
τ (φ(q)+2δ(h−1))

≤ µτ (p)

≤ e
1
τ (φ(p)+2δ(h−1))

e
1
τ (φ(p)+2δ(h−1)) +

∑
q6=p∈E e

1
τ (φ(q)−2δ(h−1))

,

and, (ii)

∣∣∣∣∣µ(p)− e
1
τ φ(p)∑

q∈E e
1
τ φ(q)

∣∣∣∣∣ ≤ e
2δ(h−1)

τ − 1

e
2δ(h−1)

τ + 1
.

With simple manipulations, it can be shown that (ex −
1)/(ex+1) ≤ x/2 for x ≥ 0. Thus, (ii) in the above corollary

implies that
∣∣∣∣µ(p)− e

1
τ
φ(p)P

q∈E e
1
τ
φ(q)

∣∣∣∣ ≤ δ(h−1)
τ . Therefore, the

stationary distribution of logit response in a near-potential
game can be approximated by the stationary distribution of
this update rule in a potential game close to this game. When
τ is fixed and δ → 0, i.e., when the original game is arbitrar-
ily close to a potential game, the stationary distribution of
logit response is arbitrarily close to the stationary distribution
of the potential game. On the other hand, for a fixed δ, as
τ → 0, the upper bound in (ii) becomes uninformative. This
is the case since τ → 0 implies that players adopt their
best-responses with probability 1, and thus the stationary
distribution of the update rule becomes very sensitive to the
difference of the game from a potential game.

We conclude this section by characterizing the stochas-
tically stable states of logit response dynamics in near-
potential games.

Corollary 3: Consider a game G and let Ĝ be a nearby
potential game, such that d(G, Ĝ) = δ. Denote the potential
function of Ĝ by φ, and the number of strategy profiles
in these games by |E| = h. The stochastically stable
strategy profiles of G are (i) contained in S = {p|φ(p) ≥
maxq φ(q) − 4(h − 1)δ}, (ii) ε-equilibria of G, where ε =
(4h− 3)δ.

This result provides a novel approach for characterizing
stochastically stable states of logit response in near-potential
games, without explicitly computing the stationary distribu-
tion.5 Moreover, for an arbitrary game, one can check if
there is a close potential game to this game, and use the
above result to certify whether a given strategy profile is
stochastically stable.

5A tighter version of this result, which shows that the stochastically stable
states are contained in {p|φ(p) ≥ maxq φ(q) − (|E| − 1)δ}, can be
obtained, using the characterization of the stochastically stable states via
resistance tree methods (see [6], [20] for an overview of these methods).
We decided to omit this result from the paper due to space constraints.
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V. CONCLUSIONS

We study the limiting behavior of learning dynamics
in strategic form games by exploiting their relation to a
nearby potential game. We focus our attention to better/best-
response and logit response dynamics. We show that for near-
potential games better/best-response dynamics converge to ε-
equilibrium sets. We study the stochastically stable strategy
profiles of logit response dynamics and show that they are
contained in the set of strategy profiles that approximately
maximize the potential function of a close potential game.
Our results suggest that games that are close to a potential
game inherit the dynamical properties (such as convergence
to approximate equilibrium sets) of potential games. Addi-
tionally, since a close potential game to a given game can
be found by solving a convex optimization problem [7], [8],
this enables us to study dynamical properties of strategic
form games by first identifying a nearby potential game to
this game, and then studying the dynamical properties of the
nearby potential game.

The framework presented in this paper opens up a number
of interesting research directions. Among them, we mention
the following:

a) Dynamics in “near” zero-sum and supermodular
games: Dynamical properties of classes of games such as
zero-sum games and supermodular games are also well
established [10], [23]. If a game is close to a zero-sum
game or a supermodular game, does it still inherit some of
the dynamical properties of the original game? A negative
answer to this question implies that the results on dynamical
properties of these classes of games are fragile, and their
implications are not strong. Hence, it would be interesting
to understand whether analogous results to the ones in this
paper can be established for these classes of games.

b) Different update rules: Potential games admit
tractable analysis also for other learning dynamics such as
fictitious play. Another interesting research direction is to
extend our results on continuity of limiting behavior in near-
potential games to other commonly considered updated rules.

c) Guaranteeing desirable limiting behavior: Another
promising direction is to use our understanding of simple
update rules, such as better/best-response and logit response
dynamics to design mechanisms that guarantee desirable
limiting behavior, such as low efficiency loss and “fair”
outcome. It is well known that equilibria in games can be
very different in terms of such properties [24]. Hence, an
interesting problem is to develop update rules that converge
to desirable equilibria, or to find mechanisms that modify
the underlying game in a way that the limiting behavior
of dynamics is desirable. Simple pricing mechanisms can
ensure convergence to such equilibria in some near-potential
games [14]. Extending these results to general games is left
for future work.
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