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Abstract— The primary concern of the present paper is
the regulation of an uncertain heat process with collocated
boundary sensing and actuation. The underlying heat process is
governed by an uncertain parabolic partial differential equation
(PDE) with mixed boundary conditions. The process exhibits
an unknown spatially varying diffusivity parameter, and is
affected by a smooth uncertain boundary disturbance which
is, possibly, unbounded in magnitude. The proposed robust
synthesis is formed by the linear feedback design and by
the “Twisting” second-order sliding-mode control algorithm,
suitably combined and re-worked in the infinite-dimensional
setting. A non-standard Lyapunov functional is invoked to
prove the global asymptotic stability of the resulting closed-loop
system in a suitable Sobolev space. The proof is accompanied
by a set of simple tuning rules for the controller parameters.
The effectiveness of the developed control scheme is supported
by simulation results.
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I. INTRODUCTION

The primary concern of the present paper is the regulation

of an uncertain heat process with collocated boundary sens-

ing and actuation. The boundary control problem for heat

processes was studied, e.g., in [3], [6], [8] under more strict

assumptions on the admitted uncertainties and perturbations

compared to those made in the present work. In this paper we

address the boundary control problem for an uncertain heat

process, governed by a parabolic partial differential equation

(PDE) with a scalar spatial variable ξ ∈ [0, 1] and with

Robin’s boundary conditions. An appropriate extension of

the “Twisting” second-order sliding mode (2-SM) control

technique (see [9], [13] for details on the application of

this algorithm in the finite-dimensional setting) allows us to

address the following main features:

• The diffusivity parameter is admitted to be uncertain

• Only collocated boundary sensing and actuation are

assumed to be available.

• The proposed controller is simple to implement, and

rejects a class of non-vanishing matched perturbations
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of arbitrary shape, possibly unbounded in magnitude,

requiring just the knowledge of a constant upper bound

to the magnitude of the disturbance time derivative.

• The plant input is continuous, whereas its first-order

time derivative is discontinuous.

• The global asymptotic stability of the error system is

achieved in the Sobolev space W 2,2(0, 1).

In the closely related recent publication [4] a similar

problem has been studied by combining an integral-type first-

order sliding mode controller and a backstepping transforma-

tion (see [8]). A similar dynamics as that considered in the

present paper, with Dirichlet (instead of Robin’s) BCs, has

been dealt with in the above work. However, the controller

tuning inequalities resulting from the presented Lyapunov

analysis depend on the spatiotemporal derivatives of the

solution, which are, normally, not available for feedback in

practice, thereby making the result presented in [4] of local

nature.

In the present work the positive diffusivity parameter is

admitted to have an uncertain spatially-varying profile, and a

space varying reference is considered. In the resulting closed-

loop system, the discontinuous 2-SM controller is connected

to the plant input through a dynamical filter (an integrator)

thereby augmenting the system state with its time derivative.

While passing through the filter, the discontinuous signal

is smoothed out, and the so-called chattering phenomenon,

extremely undesired in practice, is thus attenuated. Due to

such a dynamic input extension, the global asymptotic stabi-

lization of the underlying uncertain heat process is achieved

in a stronger norm of a Sobolev space, involving spatial

state derivatives up to the second order. The stability proof

is based on a non-smooth Lyapunov functional construction

and it leads to a set of simple tuning rules for the controller

parameters.

The rest of the paper is outlined as follows. In Section 2,

the control problem is formulated. In Section 3, a stabilizing

boundary controller is developed and the associated stability

proof is presented. Simulation results are given in Section 4.

Finally, Section 5 collects some concluding remarks.
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A. Notation

The notation used throughout is fairly standard. L2(0, 1)
stands for the Hilbert space of square integrable functions

z(ζ), ζ ∈ (0, 1), whose L2-norm is given by

‖z(·)‖2 =

√

∫ 1

0

z2(ζ)dζ. (1)

W 0,2(0, 1)denotes the Hilbert space L2(0, 1). W 1,2(0, 1)
denotes the Sobolev space of absolutely continuous scalar

functions z(ζ) on (0, 1) with square integrable derivative

zζ(ζ) and the norm

‖z(·)‖1,2 =
√

‖z(·)‖2 + ‖zζ(·)‖2 (2)

W 2,2(0, 1) denotes the Sobolev space of absolutely contin-

uous scalar functions z(ζ) on (0, 1) with square integrable

derivatives z(i)(ζ) up to the order i = 2 and the weighted

norm

‖z(·)‖2,2,ϕ =
√

‖z(·)‖2 + ‖zζ(·)‖2 + ‖[ϕ(·)zζ(·)]ζ‖2 (3)

which depends on the weighting function ϕ(·) ∈W 1,2(0, 1).

II. PROBLEM FORMULATION

Consider the space- and time-varying scalar field Q(ξ, t)
with the monodimensional spatial variable ξ ∈ [0, 1] and time

variable t ≥ 0. Let it be governed by a perturbed version of

the parabolic PDE which is commonly referred to as the

“Heat Equation”:

Qt(ξ, t) = [θ(ξ)Qξ(ξ, t)]ξ, (4)

where the subscripts t and ξ denote temporal and spatial

derivatives, respectively, and θ(·) ∈ C1(0, 1) is a positive-

definite spatially-varying parameter called thermal conduc-

tivity (or, more generally, diffusivity). The initial condition

(IC) is given by

Q(ξ, 0) = Q0(ξ) ∈W 2,2(0, 1). (5)

Throughout, we assume controlled and perturbed Robin’s

(i.e., mixed) boundary conditions (BCs) of the form

Qξ(0, t) = α0Q(0, t) + β0 (6)

Qξ(1, t) = −α1Q(1, t) + β1 + u(t) + ψ(t), (7)

where αi ≥ 0 and βi (i = 0, 1), are arbitrary constants (no

restrictions on the sign of the βi’s are met), u(t) ∈ R is a

modifiable source term (boundary control input) and ψ(t) ∈
R represents an uncertain sufficiently smooth disturbance.

We consider the time-independent and spatially varying

reference Qr(ξ) which satisfies the boundary value problem

[θ(ξ)Qr
ξ(ξ)]ξ = 0 (8)

Qr
ξ(0) = α0Q

r(0) + β0 (9)

Qr(1) = Qr
1 (10)

for an arbitrary, user-selectable, constant Qr
1.

The class of admissible disturbances is specified by the

following restriction on their time derivative.

Assumption 1: The disturbance ψ(t) is twice continuously

differentiable and there exists an a priori known constant M

such that

|ψt(t)| ≤M (11)

for almost all t ≥ 0.

The spatially varying diffusivity is supposed to satisfy the

next restriction

Assumption 2: There exist a priori known constants Θm,

ΘM such that

0 < Θm ≤ θ(ξ) ≤ ΘM , ∀ξ ∈ [0, 1]. (12)

With the assumptions above the evolution of the consid-

ered heat process is studied in the Sobolev space W 2,2(0, 1)
and the control objective is to steer the W 2,2-norm of the

deviation

x(ξ, t) = Q(ξ, t) −Qr(ξ) (13)

of the scalar field Q(ξ, t) from the a priori given reference to

zero, despite the presence of an uncertain, arbitrarily shaped,

smooth boundary disturbance ψ(t) fulfilling the Assumption

1. Boundary sensing at ξ = 1 of the deviation x(ξ, t) and of

its time derivative xt(ξ, t) is assumed to be the only available

information on the state of the system. The deviation variable

x(ξ, t) is governed by the heat equation

xt(ξ, t) = [θ(ξ)xξ(ξ, t)]ξ (14)

subject to the next Robin-type BCs

xξ(0, t) − α0x(0, t) = 0 (15)

xξ(1, t) + α1x(1, t) = u(t) + ψ(t) + γ1, (16)

with the constant

γ1 = β1 −Qr
ξ(1) − α1Q

r
1, (17)

which can be derived by considering (13), and its spatial

derivative xξ(ξ, t) = Qξ(ξ, t) − Qr
ξ(ξ), along with the

conditions (7) and (10). The corresponding ICs are

x(ξ, 0) = x0(ξ), x0(ξ) = Q0(ξ) −Qr(ξ) (18)

It is worth noticing that the disturbance-free system (14)-

(18) in open-loop is only stable, rather than asymptotically

stable. Thus, the modifiable control variable u(t) should be

designed in order to make the zero solution x(ξ, t) = 0
of the closed-loop system (14)-(18) globally asymptotically

stable in the W 2,2-space despite the presence of an unknown

disturbance ψ(t) affecting the state of the system through its

boundary. Since non-homogeneous boundary conditions are

in force, the meaning of the boundary-value problem (14)-

(18) is subsequently viewed in the mild sense.
The mild solutions coincide with those of the following

PDE in distributions

xt(ξ, t) = [θ(ξ)xξ(ξ, t)]ξ + θ(1)[u(t) + ψ(t) + γ1]δ(ξ − 1) (19)

subject to the homogeneous Robin BCs

xξ(0, t) − α0x(0, t) = xξ(1, t) + α1x(1, t) = 0 (20)
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and to the ICs (18). Indeed, (weak) solutions of the

boundary-value problem (??)-(20) are defined by means of

the corresponding Green function, yielding the same integral

equation.

To this end, we note that according to [1, Theorem 3.3.3],

the unforced system (14)-(18) with u(t) ≡ 0 possesses a

unique classical solution in the state space W 2,2(0, 1) (cf.

[1, Definition 3.2.9].

III. MAIN RESULT

To achieve the control goal, the system state is augmented

through a dynamic input extension by inserting an integrator

at the plant input. The control derivative ut(t) is then

regarded as a fictitious control variable to be generated by a

suitable feedback mechanism. The next dynamical controller

ut(t) = −λ1sign x(1, t) − λ2sign xt(1, t) −W1x(1, t)

− W2xt(1, t), u(0) = 0, (21)

is currently under study, where the initial condition u(0) is

set to zero for certainty. In the above controller description,

λ1, λ2, W1 and W2 are constant tuning parameters subject

to the inequalities

λ2 > M, λ1 > λ2 +M, W1 >
1

2

ΘM

Θm

, W2 > 0. (22)

Remark 1: Since the dynamic control input is governed

by the ordinary differential equation (21) with discontin-

uous (multi-valued) right-hand side, the precise meaning

of the solutions of the distributed parameter system (14)-

(18), driven by the discontinuous dynamic controller (21),

is then specified in the sense of Filippov [5]. Extension of

the Filippov concept towards the infinite-dimensional setting

may be found in [10], [13]. As in the finite-dimensional case,

a motion along the discontinuity manifold is referred to as a

sliding mode.

Since the present paper focuses on the stabilizing synthesis

we do not analyze the well-posedness of the closed-loop

system because of space limitations and due to the parabolic

character of the system that ensures it. Thus, in the remain-

der, we simply assume the following.

Assumption 3: The closed-loop system (??)-(21) pos-

sesses a unique mild solution x(·, t) ∈ W 2,2(0, 1) whose

time derivative xt(·, t) ∈ W 2,2(0, 1) constitutes a (weak)

solution of the distribution boundary-value problem

xtt(ξ, t) = [θ(ξ)xtξ(ξ, t)]ξ + θ(1){ut[y](t) + ψt(t)}δ(ξ − 1)
(23)

xtξ(0, t) − α0xt(0, t) = 0,

xtξ(1, t) + α1xt(1, t) = 0. (24)

with respect to xt(ξ, t), which is formally obtained by

differentiating (??)-(20) in the time variable.

The following relation

‖xt‖2 = ‖[θ(ξ)xξ(ξ, t)]ξ‖2 (25)

is particularly concluded from (14). Along with the technical

lemmas of the next subsection, relation (25) will be instru-

mental in our further derivation.

We are now in a position to state our main result.

Theorem 1 Consider the perturbed heat process (4)-

(7) subject to the dynamic control strategy (21), (22). Let

Assumptions 1 and 2 be satisfied. Then the solutions (x, xt)
of the resulting error boundary-value problem (23)-(24) are

globally asymptotically stable in the space W 2,2(0, 1) ×
L2(0, 1) .

A. Instrumental Lemmas

We now present several technical lemmas that will be

instrumental in the subsequent proof of Theorem 1.

Lemma 1: Let z(ξ) ∈ W 1,2(0, 1). Then, the following

inequality holds:

‖z(·)‖2
2 ≤ 2(z2(i) + ‖zξ(·)‖2

2), i = 0, 1. (26)

Proof of Lemma 1: Given z(ξ) ∈ W 1,2(0, 1), it is

absolutely continuous and therefore,

z(ξ) = z(0) +

∫ ξ

0

zξ(η)dη, for any ξ ∈ [0, 1]. (27)

which, considering the well known inequality ‖w‖1 < ‖w‖2

which is valid for all w ∈ L2(0, 1), can be estimated as

|z(ξ)| ≤ |z(0)| +
∫ ξ

0

|zξ(η)|dη ≤ |z(0)| +
∫ 1

0

|zξ(η)|dη

= |z(0)| + ‖zξ(·)‖1 ≤ |z(0)| + ‖zξ(·)‖2 (28)

Now squaring both sides of (28), applying Young’s in-

equality 2ab < a2 + b2, and integrating both sides over the

spatial domain ξ ∈ [0, 1], yield (26) with i = 0. The proof

of (26) with i = 1 becomes identical under the change of

coordinate ζ = 1 − ξ. Lemma 1 is proved. �

Lemma 2: The functional

Ṽ (x, xt) = λ1θ(1)|x(1, t)| + 1

2
θ(1)W1x

2(1, t)

+
1

2
‖xt(·, t)‖2

2, (29)

being computed on the mild solutions (x, xt) of the

boundary-value problem (23)-(24), upper estimates the

weighted W 2,2(0, 1) × L2(0, 1)-norm of these solutions in

the sense that

α(‖x(·, t)‖2
2,2,θ + ‖xt(·, t)‖2

2) ≤ Ṽ (x, xt) (30)

for any time instant t ≥ 0 and for some positive constant α

Proof of Lemma 2: Successively applying relation (26)

with i = 1 to a mild solution z = x(ξ, t) and then to the

term z = θ(ξ)xξ(ξ, t) yields

‖x(·, t)‖2
2 ≤ 2(x2(1, t) + ‖xξ(·, t)‖2

2), (31)

‖θ(·)xξ(·, t)‖2
2 ≤ 2(θ2(1)x2

ξ(1, t) + ‖[θ(·)xξ(·, t)]ξ‖2
2). (32)

By exploiting the next relation

Θ2
m‖xξ(·, t)‖2

2 ≤ ‖θ(·)xξ(·, t)‖2
2 ≤ Θ2

M‖xξ(·, t)‖2
2, (33)
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which is a trivial consequence of (12), it can be further

manipulated (32) so as to obtain

‖xξ(·, t)‖2
2 ≤ 2

Θ2
m

(Θ2
Mx2

ξ(1, t) + ‖[θ(·)xξ(·, t)]ξ‖2
2) =

= ρ1x
2
ξ(1, t) + ρ2‖[θ(·)xξ(·, t)]ξ‖2

2 (34)

with the positive constants ρ1 and ρ2 beng implicitly defined.

By taking into account the BC (20), the above relations (31)

and (34) can be rewritten in the form

‖x(·, t)‖2
2 ≤ 2x2(1, t) + 2ρ1α

2
1x

2(1, t)

+2ρ2‖[θ(·)xξ(·, t)]ξ‖2
2 (35)

‖xξ(·, t)‖2
2 ≤ ρ1α

2
1x

2(1, t) + ρ2‖[θ(·)xξ(·, t)]ξ‖2
2. (36)

Employing relation (25), it follows from (35)-(36) that

‖x(·, t)‖2
2,2,θ = ‖x(·, t)‖2

2 + ‖xξ(·, t)‖2
2 + ‖[θ(·)xξ(·, t)]ξ‖2

2

≤ (2 + 3ρ1α
2
1)x

2(1, t) + (3ρ2 + 1)‖[θ(·)xξ(·, t)]ξ‖2
2

= (2 + 3ρ1α
2
1)x

2(1, t) + (3ρ2 + 1)‖xt(·, t)‖2
2,

and taking into account (29), the validity of (30) is thus

concluded for all t ≥ 0 and for some positive α. Lemma 2

is proved. �

Lemma 3: Let a set

DṼ
R = {(z(ξ), h(ξ)) ∈W 2,2(0, 1) × L2(0, 1) :

Ṽ (z, h) ≤ R} (37)

be determined by means of functional (29) and be specified

with some positive R. Then the following conditions
∫ 1

0

z(1)h(ξ) dξ ≥ −1

2

[

R

λ1Θm

|z(1)| + ‖h‖2
2

]

, (38)

‖h‖2
2 ≤ 2R, ‖h‖2 ≤

√
2R, ‖h‖2

2 ≤
√

2R‖h‖2, (39)

hold for an arbitrary (z(ξ), h(ξ)) ∈ DṼ
R .

Proof of Lemma 3: The following implications hold in

light of the inequalities (12):

Ṽ (z, h) ≤ R ⇒ θ(1)λ1|z(1)| ≤ R

⇒ |z(1)| ≤ R

λ1θ(1)
≤ R

λ1Θm

. (40)

Furthermore, by the triangle inequality it yields
∫ 1

0

z(1)h(ξ) dξ ≥ −1

2

[

z2(1) + ‖h‖2
2

]

=

− 1

2

[

|z(1)||z(1)| + ‖h‖2
2

]

. (41)

Being coupled together, (40) and (41) immediately result

in (38). In turn, the relations (39) follow from the trivial

chain of implications (that consider the positive definiteness

of θ(1)):

Ṽ (z, h) ≤ R ⇒ 1

2
‖h‖2

2 ≤ R ⇒ ‖h‖2 ≤
√

2R ⇒

⇒ ‖h‖2
2 ≤

√
2R‖h‖2. (42)

Lemma 3 is thus proved. �

B. Proof of Theorem 1

By Lemma 2, functional (29) is positive definite along the

mild solutions (x, xt) of the boundary-value problem (23)-

(24). The time derivative of (29) along such solutions is

˙̃
V (t) = λ1θ(1)xt(1, t)sign(x(1, t))

+ W1θ(1)x(1, t)xt(1, t) +

∫ 1

0

xtxttdξ

= λ1θ(1)xt(1, t)sign(x(1, t)) +W1θ(1)x(1, t)xt(1, t)

+

∫ 1

0

xt[θ(ξ)xtξ(ξ, t)]ξdξ + θ(1)xt(1, t)[ut(t) + ψt(t)].

(43)

The integral term in the right hand side of (43), being

integrated by parts by taking into account the homogeneous

BC’s (24), yields

∫ 1

0

xt[θ(ξ)xtξ(ξ, t)]ξdξ = −θ(1)α1x
2
t (1, t)

−θ(0)α0x
2
t (0, t) −

∫ 1

0

θ(ξ)x2
tξdξ. (44)

By substituting (21) into the last term of (43), and making

simple manipulations, one obtains

˙̃
V (t) = −λ2θ(1)|xt(1, t)| − θ(1)(W2 + α1)x

2
t (1, t)

−
∫ 1

0

θ(ξ)x2
tξdξ − θ(0)α0x

2
t (0, t)

+ θ(1)xt(1, t)ψt(t). (45)

Due to the upper bound (11), one obtains

|θ(1)xt(1, t)ψt(t)| ≤ θ(1)M |xt(1, t)|, (46)

By (46), and considering as well the inequality (12), relation

(45) is further manipulated to

˙̃
V (t) ≤ −Θm(λ2 −M)|xt(1, t)| − Θm(W2 + α1)x

2
t (1, t)

− Θmα0x
2
t (0, t) − Θm‖xtξ‖2

2. (47)

Due to (22) and (47), the Lyapunov functional Ṽ (t), being

computed along the mild solutions of the closed-loop system,

is a non-increasing function of time, and as a result the

domain DṼ
R , given by (37) with an arbitrary R ≥ Ṽ (0), is

invariant for the system trajectories. Thus, the subsequent

analysis will take into account that the mild solutions (x, xt)

stay in the domain DṼ
R forever.

Now consider the “augmented” functional

ṼR(t) = Ṽ (t) +
1

2
κRθ(1)(W2 + α1)x

2(1, t)

+ κR

∫ 1

0

x(1, t)xt(ξ, t) dξ (48)

where κR is a sufficiently small positive constant to subse-

quently be specified.

By Lemma 3 specified with z = x and h = xt, and

considering the inequality (12), in the domain DṼ
R function
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ṼR can be estimated as

ṼR(x, xt) ≥ λ1Θm|x(1, t)|
+

1

2
Θm[W1 + κR(W2 + α1)]x

2(1, t)

+
1

2
‖xt‖2

2 −
κR

2

[

R

λ1Θm

|x(1, t)| + ‖xt‖2
2

]

=

(

λ1Θm − κRR

2λ1Θm

)

|x(1, t)| + 1

2
(1 − κR)‖xt‖2

2

+
1

2
Θm(W1 + κR(W2 + α1))x

2(1, t) (49)

Let us specify κR > 0 such that

κR < min

{

2λ2
1Θ

2
m

R
, 1

}

. (50)

Then, it follows from (49), (50) that the augmented func-

tional (48) is lower estimated by functional (29) as

ṼR (x, xt) ≥ µṼ (x, xt) (51)

µ = min

{

1 − κRR

2λ2
1Θ

2
m

,
W1 + κR(W2 + α1)

W1
, (1 − κR)

}

(52)

It means that along with (29), the functional ṼR is positive

definite on the mild solutions (x, xt) of the boundary-value

problem (23)-(24) within the invariant set DṼ
R .

Let us now evaluate the time derivative of ṼR(t):

˙̃
VR = ˙̃

V + κRθ(1)(W2 + α1)x(1, t)xt(1, t)

+κR

∫ 1

0

xt(1, t)xt(ξ, t)dξ + κR

∫ 1

0

x(1, t)xtt(ξ, t)ξ. (53)

By utilizing the first inequality of (39) specified with h = xt

and applying the well known inequality ‖z‖1 ≤ ‖z‖2 (which

is valid for any z ∈ L2(0, 1)) the magnitude of the first

integral term in the right hand side of (53) is estimated by

∣

∣

∣

∣

κR

∫ 1

0

xt(1, t)xt(ξ, t)dξ

∣

∣

∣

∣

≤ κR|xt(1, t)|
∫ 1

0

|xt(ξ, t)|dξ

≤ κR|xt(1, t)|‖xt‖2 ≤
√

2RκR|xt(1, t)|. (54)

By straightforward integration one finds that the last

integral term in (53) can be manipulated as follows

κRx(1, t)

∫ 1

0

xtt(ξ, t)dξ = κRx(1, t)

×
∫ 1

0

([θ(ξ)xtξ(ξ, t)]ξ + θ(1)[ut(t) + ψt(t)]δ(x− 1)) dξ

= κRx(1, t)[θ(1)xtξ(1, t) − θ(0)xtξ(0, t)]

+κRx(1, t)θ(1)(ut(t) + ψt(t)) (55)

Considering the BCs (24), the terms in the right hand side

of (55) can be further elaborated as

κRx(1, t)[θ(1)xtξ(1, t) − θ(0)xtξ(0, t)] =

−κRθ(1)α1x(1, t)xt(1, t) − κRθ(0)α0x(1, t)xt(0, t) (56)

κRθ(1)x(1, t)(ut(t) + ψt(t)) = −κRθ(1)λ1|x(1, t)|
−κRθ(1)λ2x(1, t)sign xt(1, t) − κRθ(1)W1x

2(1, t)

−κRθ(1)W2x(1, t)xt(1, t) + κRθ(1)x(1, t)ψt(t). (57)

The next relation follows by applying the Young’s inequality

|κRθ(0)α0x(1, t)xt(0, t)| ≤

κRθ(0)

(

1

2
x2(1, t) +

1

2
α2

0x
2
t (0, t)

)

,

and the following estimates

|κRθ(1)λ2x(1, t)sign xt(1, t)| ≤ κRθ(1)λ2|x(1, t)|, (58)

|κRθ(1)x(1, t)ψt(t)| ≤ κRθ(1)M |x(1, t)|, (59)

hold for the corresponding terms in (57) by virtue of As-

sumption 1. Employing (45)-(47), (54)-(59), and the inequal-

ity (12), the time derivative (53) is finally manipulated to

˙̃
VR(t) ≤ −Θm

(

λ2 −M − κR

√
2R

Θm

)

|xt(1, t)|

− Θm(W2 + α1)x
2
t (1, t)

− 1

2
Θmα0 (2 − κRα0)x

2
t (0, t)

− Θm‖xtξ‖2
2 − κRΘm[(λ1 − λ2) −M ]|x(1, t)|

− κR

(

W1Θm − 1

2
ΘM

)

x2(1, t). (60)

It is clear that all the terms appearing in the right-hand side of

(60) are nonpositive provided that the tuning condition (22),

imposed on the controller parameters, hold and, in place of

(50), the next more restrictive condition on the coefficient

κR is additionally satisfied:

κR < min

{

2λ2
1Θ

2
m

R
, 1,

Θm(λ2 −M)√
2R

,
2

α0

}

. (61)

By Lemma 1, specialized with z = x, the mild solutions

x(ξ, t) ∈ W 2,2(0, 1) satisfy the estimate (26). Moreover, its

spatial and temporal derivatives xξ(ξ, t) ∈ W 1,2(0, 1) and

xt(ξ, t) ∈W 1,2(0, 1) satisfy the next estimates

‖zξ(·, t)‖2
2 ≤ 2(z2

ξ (i, t) + ‖zξξ(·, t)‖2
2) (62)

‖zt(·, t)‖2
2 ≤ 2(z2

t (i, t) + ‖ztξ(·, t)‖2
2) (63)

for i = 0, 1 and for almost all t ≥ 0, which result from (26)

by substituting xξ(ξ, t) and xt(ξ, t) for z(ξ, t), respectively.

By (63) with i = 1 it yields the relation x2
t (1, t)+ ‖xtξ‖2

2 ≥
1
2‖xt‖2

2. In light of the above, the next estimate can be made

−Θm(W2+α1)x
2
t (1, t)−Θm‖xtξ‖2

2 ≤ −Θmγ1‖xt‖2
2 (64)

where γ1 = 1
2 min{W2 + α1, 1}. Relation (60) can further
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be manipulated to

˙̃
VR(t) ≤ −Θm

(

λ2 −M − κR

√
2R

Θm

)

|xt(1, t)|

− Θmγ1‖xt‖2
2 −

1

2
Θmα0 (2 − κRα0)x

2
t (0, t)

− κRΘm[(λ1 − λ2) −M ]|x(1, t)|

− κR

(

W1Θm − 1

2
ΘM

)

x2(1, t)

≤ −γ2(|x(1, t)| + x2(1, t) + ‖xt‖2
2) (65)

γ2 = Θm min{κR[(λ1−λ2)−M ], κR

(

W1 −
1

2

ΘM

Θm

)

, γ1}.
(66)

On the other hand, (49) is readily estimated as

ṼR(t) ≥ γ3(|x(1, t)| + x2(1, t) + ‖xt‖2
2) (67)

with positive, implicitly defined, constant parameter γ3.

Relations (65) and (67), coupled together, result in

˙̃
VR(t) ≤ −γ2

γ3
ṼR(t) (68)

that establishes the exponential convergence of ṼR(t), ini-

tialized within (37), to zero as t→ ∞.

To complete the proof it remains to note that due to the

upper estimate (51) of the functional Ṽ (t) by the functional

ṼR(t), it follows that Ṽ (t), being computed on the mild

solutions (x, xt) of the boundary-value problem (23)-(24),

converges asymptotically to zero, too, and by virtue of

Lemma 2, the local asymptotic stability of (23)-(24) with

the augmented state (x, xt) in the W 2,2(0, 1) × L2(0, 1)-
space is established with the initial set (37). Since the initial

set (37) can be specified with an arbitrarily large R > 0 the

global asymptotic stability in the W 2,2(0, 1)×L2(0, 1)-space

is then concluded. Theorem 1 is thus proved. �

IV. SIMULATIONS

Consider the perturbed heat equation (4) with constant

diffusivity θ = 1. The parameters of the uncontrolled Robin’s

BC (6) are set as α0 = 1 and β0 = −5.

The boundary value problem (8)-(10) specialized for a

constant diffusivity has a solution Qr(ξ) = Qr
0+ξ(Qr

1−Qr
0)

which linearly depends on the spatial variable, where the

reference boundary value Qr(1) = Qr
1 is arbitrarily selected

as Qr
1 = 15 and the resulting value for Qr

0 is derived from

the other parameters according to Qr
0 =

Qr

1
−β0

1+α0

= 10, which

is obtained by imposing the BC (6) on the solution Qr(ξ).
Parameter β1 is arbitrarily set to the value β1 = 1. The

disturbance ψ(t) is selected as ψ(t) = 4cos(0.5πt). The

magnitude of the disturbance time derivative ψt can be easily

upper-estimated as M = 6.5, as required by (11). The initial

conditions have been set to Q0(ξ) = 3 + 2sin(4πξ).
Controller (21) has been implemented with the parameters

λ1 = 15, λ2 = 7, W1 = W2 = 1 which are selected in

accordance with (22). Figure 1 shows the solution Q(ξ, t).
It can be seen that the solution converges to the chosen

linear reference Qr(ξ) along the entire solution domain, as

expected.

Fig. 1. The solution Q(ξ, t).

V. CONCLUDING REMARKS

Using a dynamic version of a second-order sliding mode

control algorithm, the problem of boundary global asymp-

totic stabilization of an uncertain heat process is solved in

the presence of a persistent smooth disturbance by means of a

continuous control. Finite-time convergence of the proposed

algorithm, which would be the case if confined to a finite

dimensional treatment, cannot be proved using the proposed

Lyapunov functional, and it remains among other problems

to be tackled in the future within the present framework.
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