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Abstract— In this paper we study switched systems from
a behavioral point of view. We define a switched behavioral
system in terms of a bank of behaviors without referring to
the notion of state. Moreover we give sufficient conditions for
the stability of a switched behavior in terms of the behaviors
in the underlying bank.

I. INTRODUCTION

Classical switched systems are usually defined as consist-
ing of a bank of systems described by state-space represen-
tations, together with a supervisory system that produces a
switching signal that indicates which of the systems in the
bank should be active at each time instant. Moreover, when
switching occurs the continuity of the state trajectories may
or not be required, and, in the latter case, reset maps are
specified in order to produce new initial conditions for the
post-switching evolution [3].

Here, instead of using state space representations, we
propose a notion of switched behavioral system essentially
characterized by a bank of behaviors described by higher
order differential equations, together with some “gluing
conditions” that relate the system variables and their deriva-
tives immediately before and after switching. Moreover, the
behaviors are not assumed to share all the same state space,
and consequently our definition is more general than the
classical one.

One of the most critical issues is the analysis of the
stability of switched state space systems, as switching among
stable systems may give rise to instability. This does not
happen, however, if all the systems in the bank share a
common Lyapunov function.

Although other alternative sufficient conditions for the
stability of switched systems have been proposed in the
literature (see for instance [1]), in this paper, as a first step,
we shall concentrate on the Lyapunov approach.

It turns out that the existence of a suitable common
(behavioral) Lyapunov function also ensures the stability
of the switched behavioral system. In this contribution, we
consider the simple particular case of a switched behavioral
system based on a bank of two scalar behaviors and study
conditions for the existence of such Lyapunov function.
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II. SWITCHED BEHAVIORAL SYSTEMS

Before we define switched behavioral systems we intro-
duce some standard behavioral notions.

We denote with C∞(R,Rw) the set of smooth functions
from R to Rw. We call B ⊆ C∞(R,Rw) a linear time-
invariant differential behavior (or shorty a behavior) if B is
the set of solutions of a finite system of constant-coefficient
differential equations, i.e., if there exists a polynomial matrix
R ∈ Rq×w[ξ] such that B = {w ∈ C∞(R,Rw) | R( ddt )w =
0} = ker R( ddt ). If a behavior is represented by R( ddt )w =
0, then we call R a kernel representation of B. We denote
with Lw the set of all linear time-invariant differential be-
haviors with w variables. Autonomous behaviors will play a
special role in this paper. A behavior B ∈ Lw is said to be
autonomous if

[(w1, w2 ∈ B) and (w1(t) = w2(t) for t < 0)]⇒[w1 = w2].

The autonomy of a behavior can be characterized in as
follows.

Theorem 1: ([8]) For B ∈ Lw the following statements
are equivalent

1) B is autonomous.
2) The trajectories of B have no free components.
3) B admits a kernel representation R that is square and

such that det(R) 6= 0.

We view a switched behavior as a set of trajectories
produced by a switching structure. Such a structure basically
consists of a family (or bank) of behaviors, that we shall
consider here to be finite, together with a set of switching
signals that specify which behavior is to be considered
at each time instant, and a set of “gluing conditions”
that regulate the concatenation of the trajectories of two
behaviors at the switching instants. Contrary to what
happens for switched state space systems, the underlying
behaviors are not assumed to be described by a state
space representation, but rather by higher order differential
equations. Moreover, the gluing conditions are not expressed
in terms of the system state.

Definition 2: A switching structure Σ is a 4-tuple
Σ = (P,F, S,G) where P = {1, . . . , N} ⊂ N is the
set of indices, F = (B1, . . . ,BN ), with Bj ∈ Lw

for j ∈ P, is the bank of behaviors, S = {s : R →
P : s is piecewise contant and right-continuous}
is the set of admissible switching signals and
G = {((k, `), G+

k,`(ξ), G
−
k,`(ξ)) | (G+

k,`(ξ), G
−
k,`(ξ)) ∈
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(R[ξ]g×w)2 and (k, `) ∈ P× P, k 6= `} is the set of gluing
conditions. Moreover, for a given switching signal s ∈ S,
we define the set of switching instants with respect to s as
Ts := {t ∈ R | limτ↗t s(τ) 6= s(t)} = {t1, t2, . . . } where
ti < ti+1.

We next present our definition of switched behavior, where
we use the notation f(t−) = limτ↗t f(t) and f(t+) =
limτ↘t f(t).

Definition 3: Let Σ = (P,F, S,G) be a switching struc-
ture. For a given switching signal s ∈ S, we define the
s-switched behavior Bs with respect to Σ as the set of
trajectories w that satisfy the following two conditions:

1) for all ti, ti+1 ∈ Ts, there exists Bk, k ∈ P such that

w |[ti,ti+1)∈ Bk |[ti,ti+1),

2) w satisfies the gluing conditions at the switching
instants G, i.e.,

(G+
s(ti−1),s(ti)

(
d

dt
))w(t+i ) = (G−s(ti−1),s(ti)

(
d

dt
))w(t−i )

for each ti ∈ Ts.
We define the switched behavior BΣ of Σ as

BΣ :=
⋃
s∈S

Bs.

The next example clarifies the role of the gluing conditions
(G+

k,`(ξ), G
−
k,`(ξ)) in Definition 3 as concatenation condi-

tions that a trajectory in the switched system must satisfy
when switching from Bk to B` occurs.

Example 4: Let Σ = (P,F, S,G) be a
switching structure where P = {1, 2}, F =(
B1 = ker ( d

2

dt2 + 1),B2 = ker ( ddt − 2)
)

and

G = {((2, 1),
[

1
ξ

]
,

[
1
ξ

]
), ((1, 2), (1, 1))}.

Suppose now that we start at time t = 0 in B2 with w(0) =
1 and we switch at time t = π

2 to B1. Then, the gluing
conditions at t = π

2 are,

lim
t↘π

2

(
[

1
d
dt

]
(k1 cos(t) + k2 sin(t))) =

= lim
t↗π

2

(
[

1
d
dt

]
e2t

=
[
eπ

2eπ

]
,

yielding k1 = −2eπ and k2 = eπ . If we switch again at t = π
back to B2, then the gluing condition is w(π+) = w(π−),
i.e. :

lim
t↗π

ke2t = ke2π = lim
t↘π
−2eπ cos(t) + eπ sin(t) = 2eπ,

which implies that k = 2e−π . Hence the trajectory w(t)
produced by the switching signal

s(t) =

 2 t ∈ [0, π2 )
1 t ∈ [π2 , π)
2 t ≥ π

is given by

w(t) =

 e2t t ∈ [0, π2 )
−2eπ cos(t) + eπ sin(t) t ∈ [π2 , π)

2e−πe2t t ≥ π
.

This example illustrates a situation that does not fit into the
classical state space framework for switched systems, where
the systems are all assumed to have the same state space di-
mension: here B1 is described by a second order differential
equation and has therefore minimal state dimension equal to
2, while B2 can itself be regarded as a state space system
of dimension 1.

Note however that Definition 3 also includes switched state
space systems as a special case.

Example 5: The switching structure Σ =
(P,F, S,G) where P = {1, 2}, F =(
B1 = ker ( ddtIn −A1),B2 = ker ( ddtIn −A2)

)
and

G = {((1, 2), In, In), ((2, 1), In, In)}, corresponds
to a classical switched state space system without
state reset, i.e. x(t+) = x(t−) at the switching
instants. Specifying, for instance, the gluing conditions
G = {((1, 2), In, S), ((2, 1), In, S−1)}, where S is an
invertible matrix of size n, yields the state resets
x(t+) = Sx(t−) (when switching from system 1 to
system 2) and x(t+) = S−1x(t−) (when switching from
system 2 to system 1).

III. STABILITY OF SWITCHED BEHAVIORAL SYSTEMS

A set of trajectories T ⊂ {w : R → Rw} is said to be
stable if limt→∞ w(t) = 0 for all w ∈ T. This implies
that none of the components of w ∈ T is free, otherwise
it could be chosen as not going to zero. Therefore stable
behaviors are autonomous and can hence be represented by
square, nonsingular, polynomial matrices R(ξ) ∈ R[ξ]w×w,
cf Theorem 1. From now on we shall consider this type of
representations.

It turns out that stability of an autonomous behavior B =
kerR( ddt ) can be characterized in terms of the determinant
of R(ξ).

Theorem 6: ([8]) Let B = kerR( ddt ), with R ∈ R[ξ]w×w

nonsingular, be an autonomous behavior. Then B is stable
if and only if detR(λ) 6= 0 for all λ /∈ C− := {z ∈
C | Re(z) < 0}.

Another way of characterizing stability is in terms of
the existence of a Lyapunov function. Lyapunov theory has
been mainly developed for systems described by first order
differential equations. However, it can be argued that in many
situations a model obtained from first principles is not in first
order form and it may not be an easy task to transform it in
such a special representation. In the behavioral context, the
definition of a Lyapunov function is based on the notion of
quadratic differential form introduced in [10].
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Quadratic differential forms (QDF) are mappings from
C∞(R,Rw) to C∞(R,R) defined in the following way.

Let

Rw×w
s [ζ, η] := {Φ(ζ, η) ∈ Rw×w[ζ, η] : Φ(ζ, η) = Φ(η, ζ)>}

denote the set of symmetric real two-variable (or 2D) w× w
polynomial matrices. We say that Φ ∈ Rw×w

s [ζ, η] has order
L if it can be written as Φ(ζ, η) =

∑L
k,`=0 Φk,`ζkη` where

Φk,L = ΦL,k is a nonzero matrix for some k. The QDF QΦ

associated with Φ ∈ Rw×w
s [ζ, η] is defined as

QΦ : C∞(R,Rw) −→ C∞(R,R)

w 7→ QΦ(w) =
∑
k,`

(
dk

dtk
w)>Φk,`

d`

dt`
w .

We define the order of a quadratic differential form QΦ as
the order of the associated 2D symmetric polynomial matrix
Φ.

Note that Φ(ζ, η) can be written as

Φ(ζ, η) =
[
Iw ζIw · · · ζLIw

]
Φ̃


Iw
ηIw

...
ηLIw

 (1)

= Sw
L(ζ)>Φ̃ Sw

L(η) ,

where L is the corresponding order, Φ̃ ∈ RLw×Lw
is called the coefficient matrix of Φ, and Sw

L(ξ) :=[
Iw ξIw · · · IwξL

]T
.

We say that a QDF QΦ is nonnegative along B, denoted

QΦ

B
≥ 0, if

(QΦ(w))(t) ≥ 0 for all w ∈ B and t ∈ R .

When nonnegativity of a QDF QΦ holds for every trajectory
in C∞(R,Rw) we write QΦ ≥ 0 and say that Φ (or QΦ)
is nonnegative definite. Note that, Φ is nonnegative definite
if and only if Φ̃ ≥ 0. We say that QΦ is positive along

B, denoted by QΦ

B
> 0, if QΦ

B
≥ 0 and QΦ(w) ≡ 0 with

w ∈ B implies that w ≡ 0. Moreover, we call a QDF positive
definite if it is positive along C∞(R,Rw). Again, Φ is positive

definite if and only if Φ̃ > 0. We define QΦ

B
< 0, Φ < 0,

etc. accordingly.
A Lyapunov function for a behavior B is defined as a

QDF QΦ such that the values of QΦ(w) are nonnegative
and decrease with time for the trajectories w ∈ B. More
concretely:

QΦ

B
≥ 0 and

d

dt
QΦ

B
< 0 , (2)

where d
dtQΦ denotes the QDF that maps w ∈ C∞(R,Rw) to

d
dt (QΦw). It is shown in [10] that

d

dt
QΦ(ζ,η) = Q(ζ+η)Φ(ζ,η) (3)

We say that QΦ is a common Lyapunov function for F =
(B1,B2, . . . ,BN ) if it is a Lyapunov function for every
Bj , j = 1, . . . , N .

The following result establishes the equivalence between
the existence of a Lyapunov function for B (as defined in
(2)) and the stability of B.

Theorem 7: ([10, Theorem 4.3]) Let B ∈ Lw be a behav-
ior. Then B is stable if and only if there exists a Lyapunov
function for B.

We shall say that a switching structure Σ = (P,F, S,G)
is stable if the set of trajectories BΣ is stable.

Similar to what happens in the case of switched state
space systems, although necessary, the stability of each of
the behaviors in the bank F does not guarantee the stability
of BΣ (and hence of Σ).

Our aim is to obtain sufficient conditions for the stability
of a switched structure in terms of Lyapunov functions.
We shall focus on scalar behaviors, i.e., we shall consider
that the number of variables is w = 1. These behaviors
are particularly important in the study of stability since, as
the result of Theorem 6 shows, the stability of a behavior
B = kerR( ddt ) with w variables is equivalent to the stability
of the scalar behavior Bscalar = ker p( ddt ), where p(ξ) =
detR(ξ).

Since we now consider behaviors with one variable, the
quadratic differential relevant for our purposes are associated
with symmetric 2D polynomials V (ζ, η) ∈ Rs[ζ, η]. Such
polynomials can be written as

V (ζ, η) = S1
L(ζ)> Ṽ S1

L(η) ,

for some L ∈ N, with Ṽ the corresponding (symmetric)
coefficient matrix. The QDF associated to V (ζ, η) is then

QV (w) = (S1
L(
d

dt
)w)>Ṽ (S1

L(
d

dt
)w)

=
[
w d

dtw · · · d
L

dtL
w
]
Ṽ


w
d
dtw

...
dL

dtL
w

 .

Clearly, QV is positive definite if and only if Ṽ is a
positive definite matrix. However, as shown in the following
example, in general the positivity of QV with respect to a
behavior B does not imply the positivity of Ṽ .

Example 8: Let B = ker p( ddt ) be a behavior with p(ξ) =
ξ − 1 and

V (ζ, η) = −ζη + 2η + 2ζ − 1

=
[
1 ζ

] [ −1 2
2 −1

] [
1
η

]
.

Then
QV (w) = −(

d

dt
w)2 + 4(

d

dt
w)w − w2,

which is not positive, since, for instant QV (w) = −w2 for
constant trajectories w. However, for the trajectories in B,
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we have that d
dtw = w and hence

QV (w) = 2w2 .

Noting that the only trajectory in B that takes on the value
zero is the zero trajectory, this means that QV is positive
definite in B.

The divergence between the positivity of QV and its
positivity with respect to B in the previous example can
be explained by the fact that if w ∈ B then the vector[

w(t∗)
dw
dt (t∗)

]
with t∗ ∈ R, cannot assume arbitrary values in R2, more

concretely, it cannot assume the values
[
α
β

]
6=
[
0
0

]
for which

[α β] Ṽ
[
α
β

]
≤ 0.

The situation illustrated in this example does not occur for

a behavior B = ker p( ddt ) if the order of the QDF QV
is strictly less than the degree of the polynomial p(ξ). In
the sequel we restrict our attention to this case and show
that, as for classical state space systems, the stability of a
switching structure can be ensured if all the behaviors of the
corresponding bank share a suitable Lyapunov function.

Using the same kind of arguments as in the proof of the
theorem of Lyapunov (see for instance [4]) it is possible to
show the following result.

Theorem 9: Let Σ = (P,F, S,G) be a switching structure
such that P = {1, . . . , N}, N ∈ N, F = {Bj , j ∈ P},
Bj = ker pj( ddt ) with deg pj(ξ) = n, j = 1, . . . , N and

G = {((k, `),

 1
...

ξn−1

 ,
 1

...
ξn−1

), k 6= ` ∈ P}. (4)

Then the switching structure Σ is stable if F has a common
Lyapunov function QV of order n− 1.

Note that the gluing conditions (4) correspond to requiring
that the trajectories of the switched behavior are as smooth as
possible, by demanding that they have continuous derivatives
up to order n− 1 at the switching instants.

In view of Theorem 9, the natural question to ask is under
what conditions a bank of behaviors possesses a common
Lyapunov function. A similar question has been widely
investigated in the context of switched state-space systems,
and several sufficient conditions have been derived in terms
of the properties of the system matrices, see for instance
[1], [3], [5], [7], [9]. Here we consider the case of a bank
consisting of two behaviors. Results for larger banks are
under investigation.

Theorem 10: Let F = (B1,B2) with Bk = ker pk( ddt ),
where pk(ξ) ∈ R[ξ], k = 1, 2, are Hurwitz polynomials of

degree n. Assume that p1
p2

is strictly positive real 1. Define

Φ(ζ, η) := p1(ζ)p2(η) + p1(η)p2(ζ).

Then, there exists a polynomial r(ξ) ∈ R[ξ] such that
1) r(ξ)r(−ξ) := p1(ξ)p2(−ξ) + p1(−ξ)p2(ξ),
2)

V (ζ, η) :=
Φ(ζ, η)− r(ζ)r(η)

ζ + η

belongs to Rs[ζ, η],

3) QV is a common Lyapunov function of order n − 1
for F.

Proof: The assumption that p1
p2

is strictly positive real
implies that there exists ε > 0 such that Φ(jω,−jω) =
2Re(p1(jω)p2(−jω) ≥ ε for all ω ∈ R. Therefore, by
standard results on polynomial spectral factorization, we
conclude that there exists a polynomial r(ξ) ∈ R[ξ] such
that 1) holds. Hence,

Φ(ξ,−ξ)− r(ξ)r(−ξ) = 0

which implies that the polynomial Φ(ζ, η) − r(ζ)r(η) is
divisible by (ζ + η) and therefore V (ζ, η) is a symmetric
polynomial, which proves 2). Note also that 2) implies that
QV is a storage function for QΦ, since it implies that the
dissipation equality d

dtQV ≤ QΦ holds (see p. 1720 of [10]
for more details).

It follows from [2] that the polynomial r(ξ) may be chosen
in such a way that it is an anti-Hurwitz polynomial, i.e., such
that all its roots have positive real part. Now note that

Φ(ζ, η) =
1
2

[(p1(ζ) + p2(ζ))(p1(η) + p2(η))

−(p1(ζ)− p2(ζ))(p1(η)− p2(η))] .

Apply Th. 2 of [6] to conclude that p1 +p2 is Hurwitz. Now
use the implication (3) =⇒ (5) of Theorem 6.4 of [10] with
P := p1 + p2 and N := p1 − p2 in order to conclude that
every storage function of QΦ, and consequently also QV , is
nonnegative definite.

Thus, in particular

QV
Bk

≥ 0 k = 1, 2.

Moreover, taking (3) into account,

d

dt
QV (w) = QΦ(ζ,η)−r(ζ)r(η)(w)

= 2(p1(
d

dt
w))(p2(

d

dt
)w)− (r(

d

dt
)w)2

Bk= −
(
r(
d

dt
)w
)2

,

1We recall that a rational function g = p1
p2

is strictly positive real if
and only if the following three conditions hold: (i) g has no poles s with
Re(s) ≥ 0, (ii) Re(g(jω)) > 0, for all ω ≥ 0, and (iii) g(∞) > 0, or
limω→∞ ω2Re(g(jω)) > 0.
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showing that
d

dt
QV (w)

Bk

≤ 0, k = 1, 2.

Further, if there exists w 6≡ 0 in Bk such that

r(
d

dt
)w ≡ 0

then r(ξ) and pk(ξ) have a common root, which contradicts
the fact that pk(ξ) is Hurwitz and r(ξ) is anti-Hurwitz.

Therefore d
dtQV (w)

Bk

< 0, showing that QV is a Lyapunov
function both for B1 and B2. Moreover, it is not difficult to
check that the polynomial V (ζ, η) does contain monomials
with powers in ζ or η equal to n − 1, but not higher, and
hence QV has order n− 1. This proves 3). �

Remark 11: As mentioned before, Lyapunov functions
are not necessarily nonnegative definite QDFs: they are
only required to be nonnegative along the trajectories of
the relevant behavior. However, for QDFs of order strictly
smaller than the order of the differential equation describing
the behavior B, nonnegativity along B is equivalent to
nonnegativity. This explains in some sense why the QDF
QV in the previous theorem is nonnegative definite.

Theorem 10 provides a criterion for the existence of a
common Lyapunov function for scalar behaviors. Since this
Lyapunov function satisfies the conditions of Theorem 9 the
following corollary follows readily.

Corollary 12: Let Σ = (P,F, S,G) where P = {1, 2},
G as in (4) and F =

(
B1 = ker p1( ddt ),B2 = ker p2( ddt )

)
where p1(ξ), p2(ξ) are Hurwitz polynomials of degree n. If
p1
p2

is strictly positive real then Σ (BΣ) is stable.

We illustrate these results in the following example.

Example 13: Let

B1 = ker (
d2

dt2
+ 2

d

dt
+ 1)

and
B2 = ker (

d2

dt2
+

3
2
d

dt
+ 2)

be two behaviors. It is not difficult to verify that both p1(ξ) =
ξ2+2ξ+1 and p2(ξ) = ξ2+ 3

2ξ+2 are Hurwitz and that p1p2 is
strictly positive real. Hence by Theorem 9 we can construct
an r(ξ) ∈ R[ξ] and a V (ζ, η) ∈ Rs[ζ, η] in such a way that
QV is a Lyapunov function for B1 and B2. Indeed,

p1(ξ)p2(−ξ) + p1(−ξ)p2(ξ) = 2ξ4 + 2,

r(ξ) =
√

2ξ2 − 2 · 2 1
4 ξ + 2

yielding the common Lyapunov function QV where

V (ζ, η)=
1

2

(
11 + 8 · 21/4 + (6− 4

√
2)(η + ζ) + (7 + 4 · 23/4)ηζ

)
.

Applying Theorem 9 we can conclude that the switching
structure Σ = (P,F, S,G) is stable, where P = {1, 2}, G as
in (4) and F = (B1,B2).

IV. CONCLUDING REMARKS

We have introduced the notion of switched system in the
framework of the behavioral approach, and have proved that,
similar to what happens in the case of switched state space
systems, the existence of a common behavioral Lyapunov
function guarantees the stability under switching. Moreover
we have given a sufficient condition for the existence of
such a Lyapunov function for the case of two behaviors.
The generalization to more than two behaviors is under
investigation.

Although the presented results are preliminary, it is our
conviction that they constitute an important step towards the
foundation of a behavioral approach to switched systems.
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