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Abstract— Since a repetitive control system can track a
periodic reference input and reject a periodic disturbance
perfectly, it has been widely applied in control engineering
practice. However, the disturbance-rejection performance is not
satisfactory for a non-periodic disturbance or for a periodic
disturbance with a period different from that of the repetitive
controller. To solve this problem, this paper presents a new
configuration of a repetitive control system that incorporates
an equivalent-input-disturbance estimator. A sufficient stability
criterion is derived based on the separation and small gain
theorems. A design algorithm is developed for the system based
on the stability criterion. Simulation results of a disk drive servo
system are used to verify the effectiveness of the method.

I. INTRODUCTION

In control engineering practice, many systems, for exam-
ple, a disk drive system, an electronic power system, and a
motor system, are required to track periodic reference inputs
and/or reject periodic disturbances. To meet this need, Inoue
et al. proposed a control strategy called repetitive control
(RC) [1] based on an internal model principle [2]. It enables
perfect tracking or rejection of periodic signals. Over the
past a couple of decades, a great number of studies have
been made on the theory and applications [3]–[8].

One problem with a repetitive control system (RCS) is
that, if a disturbance has frequency components other than
those at the fundamental and harmonic frequencies of the
repetitive controller, then the RCS cannot reject this dis-
turbance. Some strategies have been proposed to solve this
problem. For example, a disturbance observer (DOB) has
been introduced in an RCS [9]. But the design of a low-pass
filter, Q(s), in the DOB is complicated because it has to
guarantee both the causality of the DOB and the stability of
the system. Kim et al. proposed a two-parameter robust RCS
to reject both periodic and non-periodic disturbances using
the discrete-time µ-synthesis and an H∞ control method [10].
However, the order of a designed controller is very high
and is hard to implement in practice. A high order repetitive
controller was also presented to improve the performance of
disturbance rejection at intermediate frequencies [5], [11].
But it might be difficult to obtain a satisfactory disturbance-
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attenuation level due to the trade-off between the robustness
and the disturbance-rejection performance for the system.

Recently, an active disturbance-rejection method called
an equivalent-input-disturbance (EID) approach has been
presented [12], [13]. Since the controller in the system has
two degrees of freedom; it not only can reject various kinds
of disturbances effectively, but also is easy to implement.

This study applies the EID approach to an RCS to improve
the tracking and disturbance-rejection performance. In this
paper, we first present the structure of an EID-based RCS.
Then, based on the separation and small gain theorems,
we derive a stability criterion by dividing the system into
two subsystems: repetitive control and EID estimation. This
allows the independent design of the repetitive controller and
the EID estimator. Finally, we demonstrate the validity of the
method through simulations.

Throughout this paper, I denotes a unit matrix of suitable
dimensions; NT means the transpose of matrix N; Rn is the n-
dimensional Euclidean space; Rp×m

− is a set of the proper sta-
ble rational p×m matrices; and ‖G‖∞ := sup

0≤ω<∞
σmax [G( jω)]

denotes the infinity norm of G(s) (G(s)∈Rp×m
− ) and σmax[G]

is the maximum singular value of the matrix G(s).

II. EID APPROACH

Before introducing the EID approach into an RCS, we give
the definition of an EID and preliminaries in this section.
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Fig. 1. Plant with disturbance.
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Fig. 2. Plant with EID.
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Fig. 3. Structure of EID-based RCS.

First, we recall the concept of an EID [12]. Fig. 1 shows
a linear time-invariant plant affected by a disturbance, d(t),{

ẋo(t) = Axo(t)+Bu(t)+Bdd(t)
yo(t) = Cxo(t).

(1)

And Fig. 2 shows the plant with a disturbance, de(t),{
ẋ(t) = Ax(t)+B[u(t)+de(t)]
y(t) = Cx(t). (2)

In (1) and (2), A ∈ Rn×n; B ∈ Rn×nu ; Bd ∈ Rn×nd ; C ∈
Rny×n; xo(t),x(t) ∈ Rn; yo(t),y(t) ∈ Rny ; d(t) ∈ Rnd ; and
u(t),de(t) ∈ Rnu .

(A,B,C) satisfies the following assumptions.
Assumption 1: (A, B, C) is controllable and observable.
Assumption 2: (A, B, C) has no zeros on the imaginary

axis.
The above assumptions are standard for the design of a

servo system [14].
Definition 1 ([12]): In Figs. 1 and 2, let the control input

u(t) = 0 and x(0) = xo(0) = 0. If the output of Plant (1) for
disturbance d(t) and the output of Plant (2) for disturbance
de(t) satisfy y(t)≡ yo(t),∀t ≥ 0, then de(t) is an EID of d(t).

Define

Φ = {pi(t)sin(ωit +ϕi)} , i = 0,1, · · · ,n, n < ∞

where ωi (≥ 0) and ϕi are constants, and pi(t) denotes any
polynomial in time t (i = 0,1, · · · ,n); we have the following
lemma regarding the existence of an EID.

Lemma 1 ([12]): Under Assumptions 1 and 2, if yo(t) ∈
Φ, then there exists an EID, de(t) (∈Φ), on the control input
channel of Plant (1).

The EID approach is to produce an EID, de(t), of the real
disturbance, d(t), and then impose it on the control input
channel of the plant to cancel the effect of d(t) on y(t).
So, the key point of the EID approach is to design an EID
estimator that estimates the EID precisely.

III. DESIGN OF EID-BASED RCS

In this section, we first show the structure of the EID-
based RCS. Next, we explain how to estimate an EID. Then,
we carry out stability analysis and the design of the system.
In this paper, we only consider the single-input single-output
(SISO) system, that is, nu = 1 and ny = 1.

Fig. 3 shows the structure of the EID-based RCS. The
system contains the plant, P(s), a modified repetitive con-
troller (MRC), CRC(s), a feedback compensator, K(s), a state
observer, and an EID estimator. In the figure,

B+ :=
BT

BTB
. (3)

In the MRC, q(s) is a low-pass filter that relaxes the
stability condition, and T is the delay time of the MRC.
The MRC is used to track a periodic reference or reject a
periodic disturbance with the fundamental frequency being
1/T .

L is the state observer gain. F(s) is a low-pass filter. The
disturbance-rejection performance of the RCS is improved
by incorporating the EID estimate into the original repetitive
control law.

A. Estimation of the EID

In Fig. 3, the state observer is

˙̂x(t) = Ax̂(t)+Bu f (t)+L[y(t)−Cx̂(t)] (4)

where x̂(t) ∈ Rn is the state of the observer.
Defining the error of state estimation to be

∆x(t) = x̂(t)− x(t) (5)

and substituting (5) into (2) yield

˙̂x(t) = Ax̂(t)+Bu(t)+{Bde(t)+ [∆ẋ(t)−A∆x(t)]} . (6)
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If we introduce a variable ∆d(t) that satisfies

B∆d(t) = ∆ẋ(t)−A∆x(t) (7)

substitute (7) into (6), and define an estimation of the EID,
de(t), as

d̂(t) = de(t)+∆d(t) (8)

then, we can write the plant as

˙̂x(t) = Ax̂(t)+B
[
u(t)+ d̂(t)

]
. (9)

According to (4) and (9), we have

B
[
d̂(t)+u(t)−u f (t)

]
= LC [x(t)− x̂(t)] . (10)

Solving (10) for d̂(t) yields

d̂(t) = B+LC [x(t)− x̂(t)]+u f (t)−u(t). (11)

The low-pass filter, F(s), is used to select the bandwidth
of the estimation of de(t). As a result, the filtered estimation
of de(t), which is denoted by d̃(t), is

D̃(s) = F(s)D̂(s) (12)

where D̃(s) and D̂(s) are the Laplace transforms of d̃(t) and
d̂(t), respectively.

The control input is modified to be

u(t) = u f (t)− d̃(t) (13)

so as to use d̃(t) to suppress the effect of d(t). Clearly, the
disturbance-rejection performance depends on the estimation
precision of the EID estimator.

B. Stability Criterion

Letting

G1(s) = 1−B+LC [sI− (A−LC)]−1 B (14)
P(s) = C(sI−A)−1B (15)
G(s) = K(s)P(s) (16)

using the separation theorem and the small gain theorem, we
derived the following stability criterion for the EID-based
RCS.

Theorem 1: The EID-based RCS (Fig. 3) is stable if the
following conditions are satisfied

(a) Both G1(s) and F(s) are stable;
(b) ‖G1F‖∞ < 1;

(c) [1+G(s)]−1 G(s) ∈ R−, and no unstable pole-zero
cancelation occurs between K(s) and P(s); and

(d)
∥∥∥q [1+G]−1

∥∥∥
∞

< 1.

Proof: Since a reference input and a disturbance do not
affect the stability of the control system, for simplicity, we
let

r(t) = 0, d(t) = 0.

Then, the plant becomes

ẋ(t) = Ax(t)+Bu(t) (17)

where u(t) is given by (13).
Based on (4), (5), (13), and (17), we have

∆ẋ(t) = (A−LC)∆x(t)+Bd̃(t). (18)

And from (5) and (13), it is clear that (11) can be written as

d̂(t) =−B+LC∆x(t)+ d̃(t). (19)

We redraw Fig. 3 as Fig. 4. It can be seen that the EID-based
RCS has been decomposed into two subsystems in series:
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Subsystem 1 (above) and Subsystem 2 (below). Since there
does not exist a loop between them, the stability of the whole
system is equivalent to that both Subsystems 1 and 2 are
stable. So, as long as stability is the only consideration, these
two subsystems can be analyzed and designed separately.
Since Subsystems 1 and 2 contain parameters only related
to the EID estimator and to the MRC, respectively, we can
design them independently. This also shows that the EID
estimator can be plugged into the RCS directly if the stability
of Subsystem 1 is guaranteed.

For Subsystem 1, according to (18) and (19), the transfer
function from d̃(t) to d̂(t) is (14). Redrawing Subsystem 1 in
Fig. 4 yielded Fig. 5. It is clear from the small gain theorem
[15] that Subsystem 1 is stable if Conditions (a) and (b) hold.

Subsystem 2 is a conventional RCS. According to [3], it
is stable if Conditions (c) and (d) are satisfied.

This gives Conditions (a)-(d).
Remark 1: In Theorem 1, G1(s) is stable means that A−

LC is stable. So, Condition (a) ensures the convergence of the
state observer (4), and Condition (b) guarantees the stability
of the system after inserting the EID estimator.

C. System Design

Now, we show the design procedure for the EID-based
RCS.

First, we design F(s) and L, which are related to the EID
estimation in Fig. 3.

For the design of the low-pass filter, F(s), according to
the relationship between the characteristic of F(s) and the
performance of the EID estimator, which was studied in [12],
a first-order low-pass filter

F(s) =
K f

s+ω f
(20)

was selected, where K f (> 0) is a constant and ω f is the cut-
off angular frequency of the filter. It should satisfy Condition
(a) in Theorem 1. And ω f should be selected larger than the
highest angular frequency of the disturbance to be rejected.

We employed the pole placement method, which is com-
monly used to design the gain of a state observer or state
feedback, to find an L. Since the poles to be assigned
determine the performance of the state observer and thus
that of the EID estimator, they should be selected carefully.
In the selection of L, Condition (b) in Theorem 1, poles of
the plant, and characteristics of the disturbance should be
taken into account.

Now, we consider the design of the low-pass filter, q(s),
in the MRC and the feedback compensator, K(s). q(s) was
chosen based on the required tracking performance for the
reference. K(s) is used to ensure that the basic feedback sys-
tem, which contains only K(s) and P(s), satisfy Conditions
(c) and (d) in Theorem 1, and has sufficient gain and phase
margins. These guarantee that the EID-based RCS can easily
satisfy the desired requirements, such as control bandwidth,
loop gain, etc. q(s) and K(s) can easily be designed using
an existing method, for example, [3], [16], [17].

IV. NUMERICAL EXAMPLE

The effectiveness of the EID-based RCS is demonstrated
through the simulations of the tracking-following servo sys-
tem of an optical disk drive.

A. Description of Plant

r(t) and y(t) are the desired and real positions of the
the laser beam spot, e(t) is the tracking error, and d(t) is
a disturbance.

The model of the plant, P(s), is [4]

P(s) =
76.35

s2 +62s+153675.5
m/V. (21)

Its state space representation is
{

ẋ(t) = Ax(t)+B[u(t)+d(t)]
y(t) = Cx(t) (22)

where

A =
[

0 1
−153675.5 −62

]
, B =

[
0

76.35

]
, C =

[
1 0

]
.

The plant is subjected to two kinds of disturbances: a
repeatable runout disturbance (RRD) and a non-repeatable
runout disturbance (NRRD). While the RRD is synchronous
with the disk rotational speed, the NRRD is asynchronous
with the disk rotational speed. So, in this study, the distur-
bance, d(t), which is a combination of

d1(t) = 100000[0.7sin(80πt)+0.2sin(160πt)]

d2(t) =
{

0, 0≤ t < 0.3
40000[tanh(t−2)− tanh(t−0.3)], 0.3≤ t

and

d3(t) = 4000[2sin(177πt)+2sin(277πt)+ sin(377πt)]

was added to the system. Clearly, d1(t) is an RRD with the
period being 0.025 s. d2(t) and d3(t) are NRRDs. More
specifically, d2(t) is a non-periodic disturbance, and d3(t)
is a periodic disturbance with a period different from that of
d1(t).

A simple check shows that Plant (22) satisfies Assump-
tions 1 and 2. So, based on Lemma 1, we know that the EID
approach is applicable.
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Fig. 6. Steady-state tracking error for d(t) = d1(t): (a) conventional RCS;
(b) EID-based RCS.

B. Design of Controllers

The control objective is to ensure that the tracking error
is within the range of [−0.01, 0.01] µm.

An EID-based RCS (Fig. 3) was designed to improve the
disturbance-rejection performance and to achieve the control
objective.

The bandwidth of the basic servo control system should
be as high as about 3 kHz and the loop gain should be
larger than 70 dB in the low-frequency band. A satisfactory
compensator K(s) is [4]

K(s) =
3.87×5.4×106(s+1364)(s+9425)

(s+942)(s+87965)
. (23)

Since the disk is required to rotate at a constant angular
speed of 2400 rpm, the period of the RRD is 0.025 s. The
parameters of the MRC in Fig. 3 were selected to be

T = 0.025 s, q(s) =
5000π

s+5000π
. (24)

Clearly, the period of the RRD, d1(t), is exactly the same
as that of the MRC. But the period of d3(t) is different from
that of the RC. The poles of Plant (21) are p =−30± j390.8.
We chose F(s) to be

F(s) =
0.8366×5000π

s+5000π
and chose the poles of the state observer to be

p =−830± j800.

It yielded
L =

[
7047.46 5358.06

]T
.

Simple calculation shows that G1(s) and F(s) are stable,
‖G1F‖∞ = 0.9997 < 1, [1+G(s)]−1G(s) is stable, there does
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Fig. 7. Steady-state tracking error for d(t) = d1(t) + d2(t) + d3(t): (a)
conventional RCS; (b) EID-based RCS.

not have pole-zero cancelation between K(s) and P(s), and
‖q[1+G]−1‖∞ = 0.71263 < 1. So, the conditions in Theorem
1 hold. And the EID-based RCS is stable.

C. Simulations

The tracking performance of the conventional RCS (with-
out EID estimation) and the EID-based RCS for a disturbance
contained only the RRD, d1(t), were first tested. The steady-
state tracking errors were both in the range of ±0.01 µm
(Fig. 6). It is clear that we could achieve the control objective
using the conventional RCS. And we further reduced the
tracking error from the range of ±0.0015 µm to ± 0.0003
µm by inserting the EID estimator.

Then, the tracking performance of the conventional RCS
and EID-based RCS for a disturbance containing both the
RRD and NRRD, d(t) = d1(t) + d2(t) + d3(t), were tested
(Figs. 7 and 8).

Comparing Figs. 6 (a) with 7 (a), we can see that the NR-
RDs, d2(t) and d3(t), deteriorated the tracking performance
largely. As a result, the steady-state tracking error of the
conventional RCS increased from the range of ±0.0015 µm
to ±0.02 µm. This made the conventional RCS did not
achieve the control objective anymore. On the other hand, as
shown in Fig. 7 (b), the disturbance-rejection performance
was improved by introducing the EID estimator into the
conventional RCS, and the steady-state tracking error was
reduced from the range of ± 0.02 µm to ± 0.0056 µm. So,
the EID-based RCS made it possible to achieve the control
objective.

The transient tracking error is shown in Fig. 8. In the
figure, d1 and d3(t) were imposed on the system from t = 0,
and d2(t) was imposed from t = 0.3 s. It is clear from (a)
and (b) in Fig. 8 that, introducing the EID estimator into the
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Fig. 8. Transient tracking error for d(t) = d1(t) + d2(t) + d3(t): (a)
conventional RCS; (b) EID-based RCS.

conventional RCS decreased the maximum transient tracking
error for d1 and d3(t) from 0.086 to 0.018, and the maximum
transient tracking error for d2(t) from 0.062 to 0.022. So, the
transient response was also improved by inserting the EID
estimator.

These simulation results show that inserting the EID esti-
mator in the conventional RCS improved both the transient
and steady-state disturbance-rejection performance, and thus
the tracking performance.

V. CONCLUSION

This study developed a new repetitive-control system
based on the EID approach. The introduction of the EID
estimator improved the disturbance-rejection performance,
in particular for a non-periodic disturbance and a periodic
disturbance with a period different from that of the RC.
Since those disturbances are precisely estimated by the
EID estimator, combining the disturbance estimate with the
feedback control law rejected the disturbance effectively and
improved the tracking performance.

One distinguished advantage of this method is that the
analysis and design of the repetitive controller and the
EID estimator can be performed separately. This simplifies
the design of the system. This fact also indicates that a

stable EID estimator can be directly plugged into an RCS.
Simulation results of the tracking-following servo system of
an optical disk drive demonstrated the effectiveness of the
method.
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