
Robust nonlinear control design for a minimally-actuated flapping-wing
MAV in the longitudinal plane

Andrea Serrani

Abstract— We present in this paper the design of a nonlinear
controller for robust control of an insect-like flapping-wing
MAV model in the longitudinal plane. Only two forms of
actuation are employed in the model considered herein: (i)
variable wing-beat frequency and (ii) variable stroke plane
angle, which result in an under-actuated model. Methodologies
from averaging theory and tracking by bounded feedback are
combined for the design of a controller of fixed structure that
provides robust stabilization of a time-averaged vehicle model to
a desired constant configuration. For the actual vehicle model,
this method provides robust stabilization of a small-amplitude
periodic orbit centered at the setpoint, as verified in simulation.

I. INTRODUCTION

Small-scale, biologically-inspired MAVs have the potential
to achieve a level of performance unattainable by fixed- or
rotary-wing UAVs, both in terms of agility and resilience to
environmental disturbance, as well as in the capability of per-
forming advanced maneuvers like perching. Achieving these
kinds of biologically-inspired behaviors on robotic MAVs
comprises a formidable series of tasks, which encompasses
designing and sizing the actual vehicle [1], [2], modeling the
complex aerodynamics of flapping-wing flight [3], equipping
the vehicle with a suitable set of actuators and sensors [4],
and finally designing flight control algorithms [5]. From
the point of view of control system design, one of the
most outstanding issues inherent in flapping wing flight
is the requirement of periodically-varying actuation, which
gives rise to time-varying models that are difficult to an-
alyze. Unconventional forms of actuation, such as moving
appendages to change instantaneously the vehicle moment
of inertia or weight-shifting mechanisms to alter the lo-
cation of the center of gravity, may become necessary to
achieve the degree of maneuverability expected from this
class of vehicles [6], [7]. However, due to stringent size
and weight constraints, a minimally-actuated vehicle is a
preferred choice, which comes at the expenses of under-
actuated dynamics resulting often in non-minimum phase
behaviors. In the recent work [8], a rigorous framework
was established in which averaging theory and stabilization
by bounded feedback is combined for the definition of a
robust control strategy with low computational cost to control
a 1-DOF MAV model in hover. A first attempt to extend
this methodology to a minimally-actuated 3-DOF vehicle
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model derived by restricting the 6-DOF model of [9] to
the longitudinal plane, was presented in [10]. The resulting
controller was observed in simulation to provide only local
convergence to a desired configuration, and suffered from
poor robustness and small stability margins. In particular,
the controller failed to provide adequate stabilization of the
weakly unstable internal dynamics. In this paper, we present
a complete redesign of a robust controller for the same 3-
DOF model of the generic insect-like MAV of [9]. The
controller is based on a novel transformation involving the
control inputs and involves the use of a saturated dynamic
extension to manage the non-minimum phase behavior of the
model. Simulation results show a drastic improvement over
previous results in tracking performance and robustness.

The paper is organized as follows: In Section II, the vehi-
cle model is introduced, and the averaged model developed.
The controller design and a sketch of the stability analysis
are presented in Section III. Simulation results are discussed
in Section IV, whereas conclusions are offered in Section V.

II. VEHICLE MODEL AND ANALYSIS

The equations of motion of the 6-DOF MAV dynamics
of [9], when restricted to the longitudinal plane (see Figure 1)
are given by:

ẍ =
k

m
µ̇2 [CL(α) sin(λ− θ)
−sign(µ̇)CD(α) cos(µ) cos(λ− θ)]

z̈ = g − k

m
µ̇2 [CL(α) cos(λ− θ)

+sign(µ̇)CD(α) cos(µ) sin(λ− θ)]

θ̈ =
k

Iyy
[CD(α) cos(µ)sign(µ̇) (xr cos(ε) + rz cos(λ)

+rx sin(λ))CL(α) (rx cos(λ)− xr cos(µ) sin(ε)

−rz sin(λ) + yr sin(µ))] (1)

where (x, z, θ) are respectively the longitudinal and vertical
position of the center of mass and the pitch angle of the
vehicle with respect to an inertial coordinate system. For
convenience, we denote by x = [x, ẋ, z, ż, θ, θ̇] the state
vector of (1). It is assumed that the angle-of-attack of the
wings, α, is constant along the span of both the upstroke
and downstroke. The vectors [xr, yr] and [rx, rz] are constant
vehicle parameters, whereas µ is the time-varying wing beat
and ε = −sign (µ̇) (π/2− α). Finally, g, m and Iyy denote
respectively acceleration of gravity, mass and moment of
inertia about the body-y axis. Here, as opposed to [9], we
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purpose of being able to control the orientation of the stroke plane relative to the body, and therefore being

able to orient the aerodynamic forces (primarily the lift force) in order to control the direction of flight, akin

to controlling the tilt of the main rotor of a helicopter. If the stroke planes of each wing can be controlled

independently, then rolling and yawing moments can be produced. The rotation matrix from the B-frame

to the P-frame is

RP/B =




cos(π/2 − λR) 0 − sin(π/2 − λR)

0 1 0

sin(π/2 − λR) 0 cos(π/2 − λR)


 =




sinλR 0 − cosλR

0 1 0

cosλR 0 sinλR


 (57)
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Figure 2. Stroke Plane Geometry

By definition, the position of the wing tip lies within the plane defined by p̂2 and p̂3. To move into an

intermediate frame that is affixed to the wing radial line from the attachment point to the wing tip, denoted

here as the E−frame, we must rotate about p̂1 by an angle µR. The angle µR in this case is the “flapping

angle”, and the angular motion of the wing about p̂1 is what is responsible for producing the aerodynamic

forces. In Figure 3, we see that a positive rotation is such that the right wing moves “down” relative to the

body (in the same sense as a positive roll of the body-fixed frame). The rotation from the P-frame to the

E−frame is then

RE/P = R1(µR) =



1 0 0

0 cosµR sinµR

0 − sinµR cosµR


 (58)

For completeness, the rotation matrix from the B−frame to the E−frame is included, as it is necessary

to transform the lift and drag forces, which are normal to and in the stroke plane respectively, into the

12

Fig. 1. Schematics of the multi-body MAV of [9] in the (x, z)-plane.

assume that the tail is not actuated and is not a degree
of freedom. Therefore, this longitudinal vehicle model is
equipped with a minimal set of two control inputs; the first
one acts through the wing beat

µ(t) = sin(ω0t+∆) (2)

where ω0 > 0 is a given constant carrier frequency and
∆ is a phase shift whose derivative can be manipulated by
the control system. The stroke plane angle, λ, acts as the
second control effector. It is required that |d∆/dt| < ω0 to
maintain periodicity of the wing beat, whereas λ is bound to
range over the interval [0, π/2]. The output to be controlled
is selected as the position of the center of mass, y = [x, z].
Letting δ := ∆̇/ω0, |δ| < 1, and keeping in mind (2) one
obtains the following representation of system (1)

ẋ = f(t,x,v)

y = h(x) (3)

where v = [δ, λ]. The control input is to be provided by a
smooth time-invariant state-feedback controller of the form

ξ̇ = F (ξ,x,yd)

v = H(ξ,x,yd) (4)

where ξ ∈ Rν , H(·) is a bounded function of its arguments
and yd = [xd, zd] is a desired setpoint for the output. Note
that the controller does depend explicitly on t.

A. Averaged model

Following the procedure outlined in [8] for a 1-DOF MAV
model, the dynamics (3)-(4) are time-rescaled and averaged
to obtain a suitable averaged model. Since by assumption
|δ| < 1, the time re-scaling t′ = t+

∫ t
0
δ(τ)dτ is well defined,

and it is easy to verify that d
dt = (1 + δ) d

dt′ , d
dt′ = 1

1+δ
d
dt .

Since typically ω0 >> 1 and m/k >> 1, by setting ω0 =
1/ε and regarding

√
m/k = O(ε) (which implies that ω2

0

scales with the ratio m/k), one obtains

k

m
µ̇2(t) =

k

m
ε2
(
1 + δ(x)

)2
cos2

(
t′

ε

)

As a result, system (3)-(4) is in the appropriate form for
averaging with respect to the time variable t′. Applying the

averaging operator avg (u) := ω0

2π

∫ 2π/ω0

0
u (t′) dt′ to the

right-hand side of (3)-(4) and reverting back to the natural
time scale, one obtains the averaged plant model

ẍ =
kLω

2
0

2m
(1 + δ)2 sin(λ− θ)

z̈ = g − kLω
2
0

2m
(1 + δ)2 cos(λ− θ)

θ̈ =
ρrkLω

2
0

2Iyy
(1 + δ)2 cos(λ+ λr) (5)

where kL := kCL(α), ρr :=
√
r2
x + r2

z and λr :=
tan−1(rz/rx). It is assumed that ρr > 0 and λr ∈ (0, π/2).
Obviously, the controller model is invariant under averaging.
Finally, letting

β1 :=
kLω

2
0

2m
, β2 :=

ρrkLω
2
0

2Iyy
, ω∗ :=

√
2mg

kL
, λ∗ :=

π

2
−λr

one obtains

ẍ = β1(1 + δ)2 sin(λ− θ)

z̈ = β1

[
ω2
∗
ω2

0

− (δ + 1)2 cos(λ− θ)
]

θ̈ = −β2(1 + δ)2 sin(λ− λ∗) (6)

It goes without saying that the parameters β1 > 0, β2 > 0
and ω∗ > 0 are affected by uncertainty, and are hereby
assumed to range over appropriate known compact intervals.
In particular, we set 0 < β

1
≤ β1 ≤ β̄1, 0 < β

2
≤ β2 ≤ β̄2.

Due to the limits imposed on λ and λr, the averaged sys-
tem (6) has an unstable equilibrium at (x, z, θ) = (xd, zd, λ∗)
provided that δ = ω∗/ω0 − 1 and λ = λ∗. This equilibrium
corresponds to a periodic orbit for the original system [11].
By the average theorem, exponential stabilization of the
given equilibrium for (6) corresponds to stabilization of the
ensuing periodic orbit for (3).

Note that ω∗ is the value of the angular frequency of the
wing beat that maintains the vehicle in hovering condition,
which must be reconstructed by the controller to provide
the equilibrium condition. Finally, it is readily seen that
system (6) is weakly non-minimum phase with respect to
y, since the corresponding zero dynamics

θ̈ = −β2
ω2
∗
ω2

0

sin (θ − λ∗)

have a center at (θ, θ̇) = (λ∗, 0).

III. CONTROLLER DESIGN

To begin, we extend the input λ with the chain of
integrators

λ̇1 = λ2

λ̇2 = u2 , λ = `λ sat

(
λ1

`λ

)
+ λ∗ (7)

with state λ = [λ1, λ2], where `λ := min{π/2−λ∗, λ∗}, and
define the new control input as u = [u1, u2] := [δ, u2]. As
in [12], a unit saturation function sat : R → R is a twice-
differentiable function satisfying the following properties:
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Property 3.1 (Properties of the saturation function):

| sat′(s)| := |d sat(s)/ds| ≤ 2 for all s

| sat′′(s)| := |d2 sat(s)/ds2| ≤ K for all s, K > 0

s sat(s) > 0 for all s 6= 0, sat(0) = 0

sat(s) = sign(s) for |s| ≥ 1

|s| < | sat(s)| < 1 for |s| < 1
Note that the above choice for the saturation level `λ

enforces the bound λ ∈ [0, π/2]. The overall multi-loop
controller architecture is comprised of three control loops,
the innermost being the third. In the first-level loop, the
wing-beat and the pitch dynamics act as servo-controllers
for the longitudinal and vertical dynamics generating the
output to be regulated, whereas the output of the dynamic
extension plays the role of a disturbance. On the other hand,
the second-level loop regulates the pitch dynamics servo-
controller via the output of the dynamic extension, which
is then controlled by the third-level loop compensator. The
dynamic extension becomes necessary to circumvent the
appearance of λ in the longitudinal/vertical dynamics and
to mitigate the non-minumum phase effect.

A. First-level loop controller

Applying the change of coordinates η := λ− θ (which is
well-defined, due to the dynamic extension) and the “polar-
to-cartesian” transformation (u1, η) 7→ (vx, vz) defined as

vx := (1 + u1)2 sin(η) , vz := 1− (1 + u1)2 cos(η) (8)

the longitudinal and vertical dynamics have the particularly
simple expression

ẍ = β1vx

z̈ = β1 (vz + rω) (9)

where rω := ω∗/ω0 − 1 is a constant uncertain term to be
compensated. In (9), vx and vz play the role of (bounded)
virtual inputs, as neither of them can be directly assigned due
to their implicit dependence on θ through η. Note that the
transformation (8) is defined globally on (u1, η) ∈ (−1, 1)×
(−π/2, π/2) and is invertible if vz satisfies |vz| < 1, since
it entails η = arctan (vx/(1− vz)). Next, bounded controls

∣∣vcmdx

∣∣ ≤ v̄x ,
∣∣vcmdz

∣∣ ≤ v̄z (10)

are determined to robustly stabilize the setpoint yd when
[vx, vz] = [vcmdx , vcmdz ]. The bounds v̄x > 0 and v̄z > 0
must be selected such that1 |vx| ≤ v̄x and |vz| ≤ v̄z =⇒
|u1| ≤ ū1 and |η| ≤ η̄ for some ū1 ∈ (0, 1) and η̄ ∈ (0, π/2).
Using the identity (1+u1)2 = v2

x+(1−vz)2, one can prove
that the selection

v̄x =
1√
2

(1 + ū1)2 , v̄z =
1√
2

(1 + ū1)2 − 1

parameterized by the bound ū1 is a valid choice, as long as
one takes ū1 ∈ (21/4, 1) ≈ (0.19, 1). Note that the second

1It should be noted that these bound are only enforced for [vcmdx , vcmdz ].
For the actual variables [vx(t), vz(t)], it suffices that the bounds hold
ultimately, that is, for all t ≥ T , for some T > 0.

bound in (10) inevitably restricts to a fraction of v̄z the
maximum parametric uncertainty rω that can be tolerated.

The design of the virtual controls vcmdx , vcmdz follows
standard methodologies based on nested-saturation design. In
particular, we adopt the one proposed in [12] for uncertain
chains of integrators. For the x-dynamics, letting x1 :=

x− xd, x2 := ẋ+ `x1 sat
(
κx1
`x1
x1

)
and selecting

vcmdx := −`x2 sat

(
κx2
`x2
x2

)
(11)

where `xi > 0, κxi > 0, i = 1, 2, are parameters, one obtains

ẋ1 = −`x1 sat

(
κx1
`x1
x1

)
+ x2

ẋ2 = β1

[
dx − `x2 sat

(
κx2
`x2
x2

)]
+ κx1 sat′

(
κx1
`x1
x1

)
ẋ1 (12)

where, obviously, dx := vx − vcmdx .
Proposition 3.2: Let the gains κx1 and `x1 be parameterized

as follows

κx1 = εx1κ
x
2 , `x1 = (1− ax1)

`x2
κx2

+ ax1
β

1
`x2

4 εx1κ
x
2

where εx1 ∈
(

0, β
1
/4
)

and ax1 ∈ (0, 1). Then, for any κx2 > 0

and any `x2 ∈ (0, v̄x] the system (12) is ISS from the set
Xx = R2 with restriction ∆x = `x2/2 on the disturbance dx.
Furthermore, the state satisfies the asymptotic bounds

‖x1‖a ≤
2

κx1κ
x
2

‖dx‖a , ‖x2‖a ≤
2

κx2
‖dx‖a (13)

Proof: The proof follows directly from the arguments
in [12] (see also [13]) and are thus omitted for brevity.

For the z-dynamics, we first augment the second equation
in (9) with the integral error ż1 = z− zd and then apply the
change of coordinates

z2 := z − zd + `z1 sat

(
κz1
`z1
z1

)
, z3 := ż + `z2 sat

(
κz2
`z2
z2

)

and select the virtual control

vcmdz := −`z3 sat

(
κz3
`z3
z3

)

where `zi > 0, κzi > 0, i = 1, . . . , 3, are design parameters.
The resulting expression of the augmented system reads as

ż1 = −`z1 sat

(
κz1
`z1
z1

)
+ z2

ż2 = −`z2 sat

(
κz2
`z2
z2

)
+ z3 + κz1 sat′

(
κz1
`z1
z1

)
ż1 (14)

ż3 = β1

[
dz − `z3 sat

(
κz3
`z3
z3

)
+ rω

]
+ κz2 sat′

(
κz2
`z2
z2

)
ż2

where dz := vz − vcmdz . The analogous to Proposition 3.2
for system (14) is stated as follows:

Proposition 3.3: Let the gains κzi , `zi , i = 1, 2, be param-
eterized as follows

κz1 = εz1κ
z
2, `z1 = (1− az1)

`z2
κz2

+ az1
`z2

4 εz1κ
z
2

κz2 = εz2κ
z
3, `z2 = (1− az2)

2`z3
κz3

+ az2
β

1
`z3

6 εz2κ
z
3
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where εz1 ∈
(
0, 1

4

)
, εz2 ∈

(
0,

β
1

12

)
, az1 ∈ (0, 1), az2 ∈

(0, 1). Then, for any κz3 > 0 and any `z3 ∈ (0, v̄z] the
system (12) is ISS from the set Xz = R3 with restrictions
∆z = `z3/3, ∆ω = `z3/3 on the disturbance inputs dz and
rω , respectively. Furthermore, for any constant rω satisfying
|rω| < ∆ω , system (14) has a globally asymptotically and
locally exponentially stable equilibrium at

z∗1 =
rω

κz1κ
z
2κ
z
3

, z∗2 =
rω
κz2κ

z
3

, z∗3 =
rω
κz3

whenever dz = 0. For arbitrary signals dz satisfying ‖dz‖a <
∆z , the state in the error coordinates z̃1 := z1 − z∗1 , z̃2 :=
z2 − z∗2 , z̃3 := z3 − z∗3 satisfies the asymptotic bounds

‖z̃1‖a ≤
4

κz1κ
z
2κ
z
3

‖dz‖a, ‖z̃2‖a ≤
4

κz2κ
z
3

‖dz‖a

‖z̃3‖a ≤
2

κz3
‖dz‖a (15)

Proof: The proof follows from arguments similar to
those used in [12] and [8], and are thus omitted here.

B. Second-level inner-loop controller

The second level of our multi-loop design is comprised
of a servo-controller to achieve asymptotic regulation of
the “disturbance” dx and dz , appearing respectively in (12)
and (14). By way of the transformation (8), since u1

can be manipulated directly, this involves letting η to
track asymptotically its commanded trajectory ηcmd :=

arctan
(

vcmdx

1−vcmdz

)
. By definition of η, it follows that this

objective must be achieved by controlling the pitch dynamics.
Define the change of coordinates (η, θ̇) 7→ (η1, η2) as

η1 := ηcmd − η = ηcmd + θ − λ

η2 := θ̇ − λ̇+ `η1 sat

(
κη1
`η1
η1

)

where `η1 > 0 and κη1 are design parameters. For the resulting
dynamics

η̇1 = −`η1 sat

(
κη1
`η1
η1

)
+ η2 + η̇cmd

η̇2 = −β2(1 + u1)2 sin

(
`λ sat

(
λ1

`λ

))
− 1

`λ
sat′′

(
λ1

`λ

)
λ2

− sat′
(
λ1

`λ

)
u2 + κη1 sat′

(
κη1
`η1
η1

)
η̇1

the state λ1 plays the role of a virtual control input, whose
“commanded value” is λcmd1 := `η2 sat

(
κη2
`η2
η2

)
, `η2 , κ

η
2 > 0.

This yields the system

η̇1 = −`η1 sat

(
κη1
`η1
η1

)
+ η2 + η̇cmd

η̇2 = −β2(1 + u1)2 sin


`λ sat



`η2 sat

(
κη2
`η2
η2

)
+ λ̃1

`λ






+ dλ + κη1 sat′
(
κη1
`η1
η1

)
η̇1 (16)

where λ̃1 := λ1 − λcmd1 and dλ := 1
`λ

sat′′
(
λ1

`λ

)
λ2 −

sat′
(
λ1

`λ

)
u2. For the sake of simplicity we take `η2 = `λ.

To analyze the asymptotic properties of the above system,
we use the following “basic saturation lemma”:

Lemma 3.4: The scalar system

ẋ = −a `1 sat

((
`2
`1

sat

(
k2

`2
x

)
+
d1

`1

))
+ d2

where a > 0, `i > 0, i = 1, 2, and k2 > 0 is
ISS from the set X = R with restrictions ∆1 = `2/2,
∆2 = min{a`1, a`2/2} on the inputs d1, d2, respectively.
Furthermore, the state satisfies the asymptotic bound ‖x‖a ≤
2
k2

max
{
‖d1‖a, 1

a‖d2‖a
}

.
Proof: The proof follows from the results in [14].

The asymptotic behavior of system (16) is described in
the following proposition, whose proof can be obtained by
combining the results of [12] and Lemma 3.4:

Proposition 3.5: Let κηi , `ηi , i = 1, 2, be parameterized as

κη1 = εη1κ
η
2

`η2 = `λ, `η1 = 2(1− aη1)
`λ
κη2

+ aη1
β

2
(1− ū1)2`λ

8 εη1κ
η
2

where εη1 ∈
(
0,

β
2
(1−ū1)2

16

)
, aη1 ∈ (0, 1). Then, for any κη2 >

0, system (16) is ISS from the set Xη = R2, with restriction
∆η̇cmd = `η1/2 on η̇cmd, restriction ∆λ̃1

= `λ/2 on λ̃1,
and restriction ∆λ = β

2
(1 − ū1)2`λ/2 on dλ, respectively.

Furthermore, the state satisfies the asymptotic bounds

‖η1‖a ≤
2

κη1
max

{
2

κη2
‖λ̃1‖a, ‖η̇cmd‖a,

8κη1
κη2β2

(1− ū1)2
‖dλ‖a

}

‖η2‖a ≤
2

κη2
max

{
‖λ̃1‖a,

4κη1
β

2
(1− ū1)2

‖η̇cmd‖a

4κη1
β

2
(1− ū1)2

‖dλ‖a
}

(17)

C. Third-level loop

The third-level loop involves the states of the dynamic
extension. Letting, in a classic backstepping fashion, λ̃2 :=
λ2 + κλ1 λ̃1, κλ1 > 0, and selecting the high-gain feedback
u2 = −(κλ1 + κλ2 )λ̃2 + (κλ1 )

2
λ̃1, κλ2 > 0, one obtains

˙̃
λ1 = −κλ1 λ̃1 + λ̃2 − λ̇cmd1

˙̃
λ2 = −κλ2 λ̃2 − κλ1 λ̇cmd1 (18)

It should be obvious that for any κλ2 > 0 this system is ISS
from Xλ = R2, with no restriction on the input λ̇cmd1 . It is
also easy to verify that the following bounds hold:

‖λ̃1‖a≤2 max

{
1

κλ2
,

1

κλ1κ
λ
2

}
‖λ̇cmd1 ‖a, ‖λ̃2‖a≤

κλ1
κλ2
‖λ̇cmd1 ‖a.
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D. Analysis of the interconnection

Since each individual subsystem in the overall intercon-
nection has been shown to be ISS with or without restric-
tions, the task is to show that for each loop there exists a
choice of the available degrees of freedom (that is, those
gains that can be freely assigned) such that:

1) The restrictions for the corresponding disturbance in-
puts are attained in finite time;

2) A small-gain involving the asymptotic norms of the
coupling signals can be enforced.

If this is the case, then global asymptotic stability follows
from Teel’s “nonlinear small-gain theorems” for systems
with saturated interconnections [15]. We will limit ourself
here to provide just a sketch of the process involved. The
outer interconnection has the structure of a (saturated) feed-
back loop between a system in strict feedback form and
one in feedforward form. This type of structure has been
thoroughly investigated in [13, Chapter 4], and the analysis
need not be repeated here. To begin, we obtain a suitable
bound for η̇cmd. Since η̇cmd =

1−vcmdz

(1+u1)4 v̇
cmd
x +

vcmdx

(1+u1)4 v̇
cmd
x ,

one obtains

|η̇cmd| ≤
1 + v̄z

(1− u1)4
|v̇cmdx |+ v̄x

(1− u1)4
|v̇cmdx |

=: Bx|v̇cmdx |+Bz|v̇cmdx |
Keeping in mind (11) and the properties of the sat-
uration function, it can be shown that |v̇cmdx | ≤
κx2
[
β̄1`

x
2 + κx1`

x
1 + εx1`

x
2

]
+ κx2 β̄1|dx| Since |dx| ≤ 2(1 +

ū1)2, the above inequality yields |v̇cmdx | ≤ κx2Nx, where
Nx := β̄1`

x
2 + κx1`

x
1 + εx1`

x
2 + 2β̄1(1 + ū1)2. Similarly, it can

be shown that a bound of the form |v̇cmdz | ≤ κz3Nz holds for
Nz := β̄1`

z
3 + β̄1rω+2β̄1(1+ ū1)2 +εz1ε

z
2`
z
3 +κz2`

z
2 +κz1`

z
2 +

κz1κ
z
2`
z
1. Consequently, since

|η̇cmd| ≤ κx2BxNx + κz3BzNz (19)

the restriction ‖η̇cmd‖a < ∆η̇cmd = `η1/2 can trivially be en-
forced for any given `η1/2 by selecting κx2 and κz3 sufficiently
small (recall from Proposition 3.2 and Proposition 3.3 that
these gains can be chosen arbitrarily). Moreover, from (13)
and (15) it follows that

‖v̇cmdx ‖a ≤ κx2
(
3β̄1 + 4εx1

)
‖dx‖a (20)

‖v̇cmdz ‖a ≤ κz3
(
2β̄1 + 2εz2 + 2εz1ε

z
2

)
‖dz‖a (21)

Since it is easy to see that |dx| ≤ (1 + ū1)2|η1| and
|dz| ≤ (1 + ū1)2|η1| as well, combining (19) and (20), one
obtains an asymptotic bound of the form ‖η̇cmd‖a ≤ (1 +
ū1)2 (κx2Mx + κz3Mz) ‖η1‖a. Ignoring in this analysis the
interconnection with the lower subsystem, the first inequality
in (17) yields ‖η1‖a ≤ (2/κη1)‖η̇cmd‖a. Consequently, we
obtain the following:

1) Since ‖dx‖a ≤ 2
κη1

(1 + ū)2 (κx2BxNx + κz3BzNz) and
similarly for ‖dz‖a, the restrictions ‖dx‖a < ∆x and
‖dz‖a < ∆z are enforced by choosing κx2 and κz3
sufficiently small.

2) The condition 2
κη1

(1 + ū)2 (κx2Mx + κz3Mz) < 1 is
attained by choosing κx2 and κz3 sufficiently small.

Parameter Value Parameter Value

ū1 0.5 η̄ 1.32

v̄x 1.59 v̄z 0.59

κx1 0.153 `x1 17.5

κx2 0.1 `x2 1.59

κz1 0.136 `z1 1.73

κz2 0.681 `z2 0.96

κz3 1.5 `z3 0.59

κη1 1.08 `η1 0.3

κη2 10 `η2 = `λ 0.79

κλ1 20 κλ2 20

TABLE I
CONTROLLER GAINS AND BOUNDS.

IV. SIMULATION RESULTS

In this section we present simulation results concerning the
performance of the closed-loop system. Simulation have been
carried on the actual vehicle model (1). The model parame-
ters are given in [10]. A significant mismatch exists between
the value of the wing-beat frequency at hover, ω∗, and the
carrier frequency of the wing beat, ω0, which underestimates
the correct value by about 16%. For all other parameters, a
15% uncertainty about the nominal value is assumed. The
set of controller parameters used in the simulation is given
in Table IV. The vehicle is commanded to perform a simul-
taneous step change in both the x and z coordinates from
an initial configuration (x0, ẋ0) = (0, 0), (z0, ż0) = (0, 0),
(θ0, θ̇0) = (π/8, 0) to the desired set point xd = 10 [m],
zd = −5 [m], with θ?. Since λr = π/4, in this case the trim
value for θ is θ = π/4 as well. Since the reference frame
is assumed positive downward, this maneuver corresponds
to the vehicle raising its initial altitude while translating
forward. Simulation results for the longitudinal and vertical
motion are shown in Fig. 2 and Fig. 3, respectively. The
vehicle position converges asymptotically to the set point in
about 25 [s]. Notice the limit attained by the vertical velocity
within t ∈ [1.2, 7.5] [s] due to the saturated control law.
Figure 4 shows that during the maneuver the internal pitch
dynamics remain well-behaved, and asymptotic convergence
to the equilibrium value is observed. The behavior of the
physical control inputs, δ(t) and λ(t), is shown in Fig.5.
The unknown steady-state correction required to maintain
the vehicle in hover is seen in the long term behavior of
δ(t). In addition, λ(t) quickly attains the trim value λ∗.

V. CONCLUSIONS

In this paper, we have presented the design of a robust
nonlinear controller to globally stabilize the averaged longi-
tudinal model of an under-actuated flapping-wing MAV to
a constant desired configuration. In terms of the original,
non-averaged, dynamics, this control objective corresponds
to the stabilization of a periodic orbit at hovering. The
methodology discussed in this paper constitute a radical
improvement with respect to earlier designs [10], which did
not adequately address the non-minimum phase characteristic
of the dynamics, and successfully extends to the 3-DOF case
the methodology outlined in [8] for a 1-DOF vehicle model.
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Fig. 2. Simulation results: Longitudinal motion (x(t), ẋ(t)).
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ACKNOWLEDGMENTS

The author expresses his gratitude to Drs. Siva Banda,
Dave Doman and Mike Bolender at AFRL/RBCA for their
kind hospitality and assistance.

REFERENCES

[1] R. Madangopal and ZA Khan. Energetics-based design of small
flapping-wing micro air vehicles. IEEE/ASME Transactions on Mecha-
tronics, 11(4):433–438, 2006.

[2] J. Ratti and G. Vachtsevanos. A biologically-inspired micro aerial
vehicle. Journal of Intelligent & Robotic Systems, 60(1):153–178,
April 2010.

[3] S.P. Sane. The aerodynamics of insect flight. Journal of Experimental
Biology, 206(23):4191–4208, 2003.

[4] X. Deng, L. Schenato, W.C. Wu, and S.S. Sastry. Flapping flight for
biomimetic robotic insects: Part I-system modeling. IEEE Transac-
tions on Robotics, 22(4):776, 2006.

[5] X. Deng, L. Schenato, and S.S. Sastry. Flapping flight for biomimetic
robotic insects: Part II-flight control design. IEEE Transactions on
Robotics, 22(4):789, 2006.

[6] D.B. Doman, M.W. Oppenheimer, and D.O. Sigthorsson. Wingbeat
shape modulation for flapping-wing micro-air-vehicle control during
hover. Journal of Guidance, Control, and Dynamics, 33(3):724–739,
2010.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

Pitch Dynamics

θ
[r

a
d
],

θ̇
[r

a
d
/
s]

Time [s]

 

 

θ [rad]

θ̇ [rad/s]

Fig. 4. Simulation results: Pitch dynamics (θ(t), θ̇(t))

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

Control inputs

(δ
,
λ
)

Time [s]

 

 

δ

λ [rad]

Fig. 5. Simulation results: Physical control inputs (δ(t), λ(t))

[7] M.W. Oppenheimer, D.B. Doman, and D.O. Sigthorsson. Dynamics
and control of a biomimetic vehicle using biased wingbeat forcing
functions. Journal of Guidance, Control, and Dynamics, 34(1):204–
217, January 2011.

[8] A. Serrani. Robust hovering control of a single-DOF flapping wing
MAV. In Proceedings of the American Control Conference, Baltimore,
MD, 2010.

[9] M.A. Bolender. Rigid multi-body equations-of-motion for flapping
wing MAVs using Kane’s equations. In Proceedings of the AIAA
Guidance, Navigation and Control Conference, Chicago, IL, 2009.

[10] A. Serrani, B. E. Keller, M. A. Bolender, and D. B. Doman. Robust
control of a 3-DOF flapping wing micro air vehicle. In Proceedings
of the AIAA Guidance, Navigation and Control Conference, Toronto,
ON, 2010.

[11] M. Bolender. Open-loop stability of flapping flight in hover. In Pro-
ceedings of the AIAA Guidance, Navigation and Control Conference,
Toronto, ON, 2010.

[12] L. Marconi and A. Isidori. Robust global stabilization of a class of
uncertain feedforward nonlinear systems. Systems & Control Letters,
41:281–290, 2000.

[13] A. Isidori, L. Marconi, and A. Serrani. Robust Autonomous Guidance:
An Internal Model-Based Approach. Advances in Industrial Control.
Springer Verlag, London, UK, 2003.

[14] W. Liu, Y. Chitour, and E.D. Sontag. On finite-gain stabilizability of
linear systems subject to input saturation. SIAM Journal on Control
and Optimization, 34(4):1190, 1996.

[15] A.R. Teel. A nonlinear small gain theorem for the analysis of control
systems with saturations. IEEE Transactions on Automatic Control,
41(9):1256–1270, 1996.

7469


