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Abstract— In some tracking environments, there is no clear
linkage of measurements to objects, requiring data association
algorithms to associate measurements to target tracks. Further
complicating the problem is that targets can operate in different
modes and hence have time-varying dynamics. It has recently
been shown that treating the potential measurement data for
an object as a single continuous signal, that contains impulses
when the measurement data jumps to a new object, allows the
data association problem to be cast as a trajectory optimization
problem. This optimization problem can also be expanded to
formulate estimates for dynamic parameters of the objects
being measured. The contribution of the current paper is
the development of a numerical optimization algorithm that
allows the recently developed impulse-based data association
and parameter estimation methods to be easily applied without
a significant amount of scenario-specific analytical calculations.

I. INTRODUCTION

Target tracking is the process of maintaining state es-
timates of one or several objects over a period of time.
These objects can be aircraft, ships, or ground-based objects.
One of the difficulties that sets target tracking apart from
other estimation tasks is the uncertainty in measurement
origin. When measurements can originate from a number of
closely-spaced objects, and there is no clear linkage between
measurements received and the objects they represent, a
data association algorithm is necessary to associate each
measurement to its object of origin [1], [2], [3], [4], [5].

The data association problem considered in this paper
arises when measurements are taken of an object of interest
that is near other objects with similar dynamics. A sensor is
used to obtain a single (possibly noisy) continuous measure-
ment, which may be of the object of interest, but may also
inadvertently be of the other nearby objects. In practice, the
measurements are taken in discrete time steps at relatively
long time intervals (compared to the available computer pro-
cessing speed available); these discrete measurements can be
interpolated to yield a continuous measurement stream. The
goal of the data association problem here is to determine over
what time intervals does the measurement stream correspond
with the object of interest. It is assumed that the measurement
stream initially correctly corresponds with the object of
interest. In addition to the requirement for data association,
the object of interest may operate in different modes, and it is
also necessary to estimate the object’s dynamical parameters
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that may change in the hybrid system from one time interval
to another. Because measurements arrive infrequently relative
to the computational power available, the data association
and parameter estimation problem is addressed in batch form
on windows of data. This is in contrast to other recursive
methods which are capable of providing faster real-time
target tracking [1], [2], [3], [4], [5].

Recent work [6], [7], [8], [9] has shown that this data
association and parameter estimation problem can be cast as
a continuous trajectory optimization problem where impulses
are used to represent when the origin of measurements
changes from one object to another. By determining when
impulses must occur in the state trajectory and what dy-
namical parameters allow the state trajectory to “fit” the
measurement data “well,” it is possible to determine which
intervals of the measurement stream correspond with the
object of interest and what parameters must govern the
object dynamics over different time intervals. Because the
derivatives of a “standard” cost function have been analyt-
ically determined with respect to an arbitrary number of
impulse times and magnitudes [7] and dynamical parameter
estimates [8], [9], it is possible to implement both first- and
second-order optimizations of the cost function.

Because analytically computing the derivatives with re-
spect to all of the impulse times and magnitudes and hybrid
system dynamical parameters can be tedious and intractable
as the number of dynamical parameters increase, in this pa-
per, we evaluate a strictly numerical optimization scheme that
can simultaneously optimize over both impulsive switching
times and system parameters. An advantage of a strictly
numerical optimization scheme is that it makes the imple-
mentation significantly more problem agnostic, allowing this
trajectory-optimization based approach for data association
and parameter estimation to be easily applied to many
scenarios without the need to analytically compute numerous
derivatives. While the more analytical approach provides
some computational savings in implementation, because the
applications of interest are those where measurements can
be processed in batch fashion, computational efficiency is
slightly less important.

Figure 1 shows an example of measurement data from a
one-dimensional system trajectory with a nearby object with
similar dynamics. Here the dashed line represents the mea-
surement data gathered. Before time t = 2, the measurement
signal originates from the object of interest. From t = 2
to t = 4, the measurement signal originates from another
nearby object. After t = 4, the measurement signal originates
from the object of interest again, where this object may now
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be operating in a different mode with different dynamics. The
solid line represents the estimated measurement trajectory
based on incorrect system parameters and impulse times.
The optimization problem that needs to be solved basically
amounts to finding the impulse times and hybrid system
parameter estimates so that the solid curve will “fit well” with
the measurement data. By solving for the parameters that
minimize the difference between these two curves, one can
recover the times when measurements jump between objects
and develop estimates for system parameters.

Fig. 1. Example impulsive hybrid system: actual (dashed) and initially
estimated (solid) measurement trajectories may be used for switching time
and parameter estimation

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of how the data association problem
is cast as a continuous optimization problem, and Section III
provides a brief review of previous analytic methods for
solving the optimization problem. In Section IV, the case
is made for utilizing well known numerical optimization
techniques to solve the data association problem. Section V
then presents simulated examples along with a comparison
to the mostly analytic methods. Finally, Section VI contains
concluding remarks.

II. PROBLEM DEFINITION

In order to cast the data association and system param-
eter estimation problem as an optimization problem, a cost
function needs to be developed. To do this, first consider
the sampled data to be continuous and denote it as xd(t) for
t ∈ [0, tf ]. If the sampled data is discrete, a continuous xd(t)
can be computed via interpolation. Now define a trajectory
x by

ẋ = fi(x, αi, t), τi ≤ t < τi+1, (1)
τ1 = t0,

τN+1 = tf ,

x(0) = x0.

In addition to x having different dynamics in each interval
[τk, τk+1], impulses are allowed to occur at these so called
impulsive switching times. These impulses are described by
imposing the conditions x(τ+k ) = x(τ−k ) + δk; note that
here the impulse amplitudes δk are assumed to be known.

Each function fi also depends on ni parameters αi over the
interval [τi, τi+1].

Notice that x depends on both a set of dynamical param-
eters and a set of impulsive switching times. Notationally,
x will simply be denoted x(t), as carrying around explicit
dependence on this large number of parameters would be
cumbersome. By assuming that the measurement data repre-
sents the true nature of a dynamical system, we can define
the cost function

J(·) =
∫ tf

0

`(x(s), s)ds (2)

where
`(x(s), s) = (xd(s)− x(s))2. (3)

By minimizing (2) with respect to the
∑N

1 ni system pa-
rameters and N impulsive switching times upon which x
is dependent, good estimates of the true system parameters
and impulsive switching times can be obtained. Hence, the
total number of parameters that are being optimized over is
N +

∑N
1 ni. This formulation simultaneously addresses the

problems of determining when measurements jump between
objects and what the true parameters of a dynamical object
are.

III. PREVIOUS WORK

Recasting the data association problem as a trajectory op-
timization problem has been explored previously in [6], [7].
The same type of optimization problem has been addressed
by [8], [9]. Specifically, [6] addresses the data association
problem where all of the objects have the same dynamics
and the optimization only occurs over impulse times; [7] then
extends the problem to optimize over unknown impulse am-
plitudes. The other works [8], [9] use the same approach to
address the slightly different problem of computing switch-
ing times of a (non-impulsive) hybrid system. In addition,
some work has been done with computing switching times
and unknown parameters of a hybrid system [10].

All of these previous works have used Newton’s Method as
the optimization scheme. A key aspect of all these previous
works is that all of the derivatives necessary to form the Hes-
sian and gradient are computed efficiently by utilizing a large
amount of initial analytic simplification. Using this analytic
method has its advantages, including quadratic convergence
and reduced computational complexity. However, introducing
a potentially large number of unknown parameters to the sys-
tem makes analytic computation of the necessary elements
to use Newton’s method unwieldy and adds an element of
problem dependence to implementations.

There are two main reasons that we explore the use of
a numerical method for this problem. One is rooted in the
desire to estimate system parameters. Another reason is to
develop a method that can be implemented in a problem
agnostic way. Implementation of the more analytic methods
previously developed [6], [7], [8], [9] can be very complex
and have dependence on the specific problem.
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IV. NUMERICAL APPROACH

A. Motivation

To motivate the use of a numerical scheme, the problem
of analytically computing the necessary derivatives of J is
first explored. Given that we want to optimize (2), to do
so analytically requires the computation of the Hessian of
J . Parts of this Hessian, namely ∂J

∂τi
and ∂2J

∂τi∂τj
, can be

computed in a very computationally efficient way by using
some initial analytic work [6], [8], [9].

However, attempting to extend this largely analytic scheme
to do simultaneous parameter estimation leads to some
complexity issues. To illustrate these issues, a sample com-
putation of ∂J

∂αi
will be explored. First note that the trajectory

can be written as

xk(t) = xk−1(τ
−
k ) + δk (4)

+

∫ t

τ+
k

fk(xk(s), αk, s)ds τk ≤ t < τk+1.

From this it can be seen that x(t) only depends on αi if
t > τi.

Now take the derivative of the cost function

J(·) =
∫ τ−

2

t0

`(x(s), s)ds+ · · ·+
∫ tf

τ+
N

`(x(s), s)ds (5)

with respect to αi as

Dαi
J(·) =

∫ tf

τi

D1`(x(s), s)Dαi
x(s)ds. (6)

This means that to compute ∂J
∂αi

requires the computation of
∂x
∂αi

.

To do this, utilize the integral representation of x(t) and
perturb the parameter set αi in some direction β, and notice
the explicit dependence of x(t) on αi is now present in the
notation,

xk(t, αi + εβ) = xi−1(τ
−
i ) (7)

+

∫ τ−
i+1

τ+
i

fi(xi(s, αi + εβ)), αi + εβ, s)ds

+

∫ t

τ+
i+1

f(x(s, αi + εβ)), s)ds.

Defining ψi = Dαix and αi + εβ = α̃i, we can take a
derivative of (7) with respect to ε and get

Dεxk(t, α̃i) ◦ β = D1fi(xi(s, α̃i), α̃i, s)ψ ◦ β (8)

+ D2fi(xi(s, α̃i)), α̃i, s) ◦ β

+
∑

{k>i|t>τk}

D1fk(xk(s, α̃i), s)ψ ◦ β.

This leads to the ordinary differential equation (ODE)

ψ̇ = D1fi(xi(s, αi + εβ), αi + εβ, s)ψ (9)

+
∑

{k>i|t>τk}

D1fk(xk(s, αi + εβ), s)ψ

+ D2fi(xi(s, αi + εβ)), αi + εβ, s) ◦ β.

While in principal this ODE could be solved for αi nu-
merically, a large amount of analytic work is needed to be
able to do so. In addition, unlike the case for switching
times presented in [6], it is not possible to couple all of the
αi computations into a single numerical integration. Thus,
the benefits of reduced computational complexity through
preliminary analytic computation are lost. Furthermore, the
number of system parameters that are being estimated could
be quite large and grow much faster than the number of
switching times. Because of these added complexities, a
strictly numerical optimization of (2) is explored.

B. Numerical Optimization Scheme

There are a large number of numerical methods for
optimization, and it should be noted that other schemes
may also perform well on the type of problems presented
here. Specifically, a quasi-Newton method is used so that
all that is required at each step is a numerical computation
of the gradient. Further justification for the use of a quasi-
Newton method stems from the use of Newton’s method
in previous works [6], [7], [8], [9]. These works show that
descent methods appear to work well for the problem type
being addressed. Specifically, we use the so called BFGS
quasi-Newton method (independently attributed to Broyden,
Fletcher, Goldfarb, and Shanno) [11], [12], [13], [14]. This
method uses the computation of the gradient at each step to
generate an approximation to the Hessian matrix and then
uses a Newton’s method style step. Furthermore, while the
convergence is not quadratic, faster than linear convergence
is generally achieved.

A brief overview of the BFGS for minimizing f(x) as
stated in [15] is given here. Start with an initial guess x0 and
an initial positive definite guess B0 for the Hessian matrix
(here the identity is used). Then, repeat the following until
some stopping criteria is reached.

gk = ∇f(xk)
dk = −B−1k gk

αk = argmin
αk

xk + αkdk

xk+1 = xk + αkdk

yk = ∇f(xk+1)− gk
sk = αkdk

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
.

The one ambiguity in the BFGS algorithm is the use of a
line search to compute argmin

αk

xk + αkdk. A large number

of possible line search techniques exist and could be used.
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The BFGS implementation used here implements a simple
backtracking line search, in which you start with some initial
guess for how far to move and reduce the guess geometrically
until conditions known as the Wolfe Conditions are met for
the search distance αk [16]. These conditions are

f(xk + αkdk)− f(xk) ≤ c1αkd
T
k gk (10)

and

dTk∇f(xk + αk) ≥ c2d
T
k gk, (11)

where c1 ≤ c2 are constants that are chosen in the range
(0, 1).

Finally, several end conditions are used for the BFGS
implementation used here. Specifically, the algorithm is
terminated if J(·) is below some value, or if the line search
yields a very small movement. Additionally, if ∇f(xk) is
sufficiently small, and J(·) is not too large, the algorithm is
terminated.

C. Computational Complexity

Utilizing this BFGS method for minimization of J(·)
requires a large number of computations of ∇J(·). Because
a large number of methods can be used to numerically
compute derivatives, the idea of computational complexity
is abstracted from the number of function evaluations to the
number of gradient computations. Ignoring the line search,
the number of gradient computations is equal to the number
of iterations, meaning that if the line search is computed effi-
ciently the number of necessary gradient evaluations will be
small. Because the Wolfe conditions are used, the line search
algorithm requires a gradient computation for each new guess
of αk. By choosing the factor of geometric reduction in the
backtracking line search to be large, there should be very
few gradient computations per line search. The disadvantage
of fast geometric reduction in the backtracking line search
is that the overall number of iterations may increase. This
is a trade off that is not easily quantifiable, and as such
parameters for the line search are best chosen experimentally.

To get at least some sense of the computational complexity
of the implementation used here, note that a simple forward
difference was used to compute derivatives, so as to keep
the number of functional evaluations small. The number
of geometric reductions per line search was capped at 20.
This was based on the initial distance guess being 1 with a
reduction factor of 0.5, so more than 20 steps would yield
a very small change for the iteration. This means that the
number of gradient computations is at most 20 per iteration.
However, as seen in the example below, this maximum is
never reached. One last note is that a single functional
evaluation requires a numerical solution of x(t).

V. NUMERICAL EXAMPLES

A. Noise-free Case

An example problem was run using the aforementioned
implementation of the BFGS numerical optimization. Here

the dynamics on each section are

f1 = cos(α1x), (12)
f2 = α2x, (13)
f3 = α3x+ cos(x). (14)

At the impulsive switching times τ1 and τ2, there are im-
pulses of magnitudes 4 and −4, respectively. The measured
data comes from the parameter values τ1 = 2, τ2 = 4,
α1 = 0.5, α2 = 0.1, and α3 = 0.3. The BFGS algorithm was
run with an initial guess of τ1 = 2.1, τ2 = 4.2, α1 = 0.4,
α2 = 0.2, and α3 = 0.25. Figure 2 shows the dynamics
with the impulses from both the true parameter values, and
the initial guess for the parameter values.

Fig. 2. Example impulsive hybrid system: actual (dashed) and initially
estimated (solid) measurement trajectories may be used for switching time
and parameter estimation

Using this initial guess, the BFGS implementation was
used and converged in 19 iterations with error on the order
of 10−7. While this is very quick convergence, the more
interesting result is that only 37 gradient computations were
used. This means that the line search was fairly efficient at
each step. Figure 3 shows the error at each iteration. Consider
p as a vector containing the true parameter values, in this case
p = (τ1 τ2 α1 α2 α3)

T , and p̃ is a vector containing
estimated values of the same parameters. Using this notation
the error considered here is e = ||p− p̃||∞.

Fig. 3. || · ||∞ error at each iteration for noise-free case

Overall, the method appears to work very well in this
example in which the measured data was assumed to contain
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no noise. While it is interesting that at some point the error
slightly increases before going down again, what is more
telling is the fairly rapid convergence of the method once
the algorithm gets close to the true parameter values. One
possible reason for the error to increase is because the search
direction is computed numerically and may be inaccurate.
Further, note that here the infinity norm of the error is shown
and it is possible that even with an exact gradient the infinity
norm of the error could increase after an iteration.

B. Noisy case

A natural question given the method’s performance on a
noise free example is how will the method perform in the
presence of noise. Figure 4 shows the noisy signal that is
now considered to be the measurement data. The noise is
generated randomly and the noise level is around 5% relative
to the true signal.

Fig. 4. Noisy example impulsive hybrid system measurement trajectory
for switching time and parameter estimation

Given the presence of noise, it is necessary to treat the
problem more carefully. Specifically, it is important to notice
that noise will affect the estimation of system parameters
and switching times differently. Provided that the impulse
magnitudes dwarf the noise, a reasonable assumption, it
is not expected that the noise will severely impact the
computation of the switching times. This is supported by
results in [6]. However, system parameters could be more
severely impacted by noise. Consider the first region of
dynamics in Figure 4, where small changes in the system
parameter value governing this region will be masked by the
noise. While there may be situations where system dynamics
are very sensitive to system parameter changes, in general
the assumption here is that the presence of noise will directly
impact the accuracy possible in the estimation of system
parameters.

Using the same true parameters and initial guess as in the
noise free case, the BFGS algorithm was run using the noisy
data as the measured data. Because of the aforementioned
effects of noise on the system, the error is broken into two
parts, error in switching times and error in system parameter
estimates. Figure 5 shows the infinity norm of the error for
the system parameters and impulse times independently.

Fig. 5. || · ||∞ error at each iteration for noisy case

The method ran for 24 iterations and required 61 gradient
evaluations. While this is more than in the noiseless case, it
is not an unreasonable increase considering that 5% noise
was added. Further notice that impulse times were more
accurately computed than the system parameters, as was
expected. Even though the error in impulse times was on
the order of 10−2, that is still sufficient given that in this
case there were only 25 samples per second, so the achieved
accuracy is greater than the distance between samples.

Table I contains a summary of the numerical results from
the previous examples. The initial guesses for the switching
times contain 5% error, and the inital guesses for the system
parameters all have error larger than 16%. Notice that in the
noiseless case, all of the parameters are estimated to within
2.4 × 10−6%. In the case with noise, the switching times
are estimated to within 0.1% and the system parameters are
estimated to within 4%.

C. Large numbers of parameters

We now summarize an example in which there is a larger
number of dynamic parameters. Here the dynamics used are

f1 = α1x+ α2 cos(x), (15)
f2 = α3x+ sin(α4x)− α5e

−x + α6 cos(x), (16)
f3 = α7x− α8 sin(x). (17)

Initial values of the parameters, a1, . . . , a8, were chosen,
and then we randomly perturbed by 1%-5% to get an initial
guess for use with the optimization scheme. In this example,
the method took longer to converge to an error of less than
0.1%, needing 229 iterations, and 416 function evaluations.
While this is much longer than before, the dynamics here are
much more complicated. Despite the increase in iterations,
this experiment does show that numerical optimization may
be a viable process for parameter estimation and switching
time optimization. In the process of running this experiment,
it was observed that the model’s sensitivity on parameters im-
pacts the ability of the method to estimate those parameters.

VI. CONCLUSIONS

The problem of simultaneous data association and param-
eter estimation has been addressed through the use of a
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TABLE I
NUMERICAL RESULTS

Parameter τ1 τ2 α1 α2 α3

True value 2 4 0.5 0.1 0.3

Initial guess 2.1 4.2 0.4 0.2 0.25

% Error in initial guess 5 5 20 100 16.67

% Error in estimate without noise 1.1× 10−7 6.5× 10−9 1.9× 10−6 5× 10−7 2.4× 10−6

% Error in estimate with noise 0.04 0.09 3.6 4 3.4

strictly numerical optimization scheme. As evidenced by the
presented examples, utilization of a numerical optimization
technique for data association is possible. Furthermore, in the
case where there are a large number of unknown dynamic
parameters to be estimated, the method is preferable to a
more analytic approach.

It should be noted that the analysis of this paper is not
limited to the numerical scheme used here. In fact, it is
entirely possible that other numerical schemes could achieve
better results. We simply present the case for the use of a
numerical scheme in a data association problem, and assess
the performance of one specific scheme on some examples.

The provided examples show that the method performs
very well in an ideal situation. Furthermore, when 5% noise
is added, the method still provides reasonable results. This
is important given the inherent existence of noise in any
measurement data.

The previously developed analytic based methods [6], [7]
for data association perform very well in the case where it is
only desired to compute jumps between objects. As shown
in this paper, however, the method does not analytically
scale well once system parameter estimation is required. This
is a main advantage of using a numerical scheme. While
the purely numerical scheme may be more computationally
expensive, it scales reasonably well to an increase in the
number of parameters. Furthermore, implementation of the
purely numerical method is mostly problem agnostic.
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