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Abstract—In this paper, structural controllability of a leader-
follower multi-agent system with multiple leaders is studied
from a graph theoretic point of view. The preservation of
structural controllability under simultaneous failure in both
the communication links and the agents is investigated. The
effects of the loss of agents or communication links on the
controllability of an information flow graph have been the subject
of two previous studies. This work expands the corresponding
results by considering the effects of losses in both links and
agents at the same time. To this end, the concepts of joint
(r, s)−controllability and joint t−controllability are introduced
as quantitative measures of reliability for a multi-agent system. A
method is subsequently presented for investigating the problem of
joint t−controllability in a directed information flow graph, using
polynomial-time algorithms. The proposed methods are applied
to a number of well-known directed graphs to clarify the results.

I. INTRODUCTION

The past decade has seen a growing interest in the control
of multi-agent networks. This type of system consists of a
group of dynamic agents which interact according to a given
information flow network. Distributed and cooperative control
of these networked dynamic systems has found applications in
emerging areas such as formation control of satellite clusters
and motion coordination of robots [1], [2]. An important
class of multi-agent systems which is commonly used in the
literature is the one with leader-follower architecture. Various
problems related to the control of leader-follower multi-agent
systems include connectivity, containment, consensus, and
flocking [3], [4].
Controllability of a single-leader multi-agent system is

studied in [5], where a necessary and sufficient condition
for controllability is derived using the Laplacian matrix of
the interconnection graph. Controllability under switching
topologies is investigated in [6], and it is shown that switch-
ing between fixed uncontrollable topologies can lead to a
controllable system. The notion of equitable partitions is
exploited in [7] and [8] to introduce a necessary condition
for controllability of a leader-follower multi-agent system and
provide a graph-theoretical interpretation of the controllability
subspace. The papers [9] and [10] approach the problem
using the notion of the controllability of a structured system,
and derive graphical conditions for the controllability of the
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corresponding information flow digraph. The preservation of
controllability in the face of failure in communication links
and agents is then investigated, where the concepts of link and
agent controllability degrees are introduced. While existing
results on the controllability of multi-agent systems provide
an important measure of reliability of network to faults, they
cannot handle the important problem of simultaneous failure
of communication links and agents.
The chief aim of this paper is to expand on the results of [9]

and [10] by considering the case when both communication
links and agents in the network are prone to faults. It is
known that in real-world multi-agent systems, some faults
can affect part of the network, containing a number of links
and agents. This type of failure in multi-agent systems, where
terrain properties or hardware faults disable a number of agents
and limit the ability of others to communicate, motivates the
study of controllability under simultaneous failure of links and
agents.
The remainder of this paper is organized as follows. Sec-

tion II gives some preliminaries on sets and graph theory,
and also reviews some results from [9] and [10]. The tools
and concepts introduced in this section are then used in
Section III to investigate the notion of joint controllability in
a directed information flow graph. In Section IV, the results
are illustrated and discussed using sample graphs, and finally
the paper is concluded in Section V.

II. PRELIMINARIES AND NOTATION
Throughout the paper, N denotes the set of all natural num-

bers, and Nk the set of integers {1, 2, . . . , k}. Furthermore,
W = N ∪ {0}, R denotes the set of all real numbers, and
any other set is represented by a curved capital letter. The
cardinality of a set X (which is the number of its elements)
is denoted by |X |. The difference of two sets X and Y is
denoted by X KY , and is defined as {x|x ∈ X ∧ x /∈ Y }.

A. Directed Information Flow Graph of a Multi-Agent System
and its Controllability
A directed graph or digraph is defined as an ordered pair

of two sets (V ,E ), where V = {ν1, . . . , νn} is the set of
vertices and E ⊆ V × V is the set of directed edges. In
the graphical representation, each edge ε := (τ, ν) ∈ E is
denoted by a directed arc from the vertex τ ∈ V to vertex
ν ∈ V . Vertices ν and τ are referred to as the head and tail of
the edge ε, respectively. Notice that the definition of E does
not allow for the existence of parallel arcs in the graphical
representation of digraph G = (V ,E ), i.e., two edges that
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share the same pair of head and tail are identical. Given a set
of vertices X ⊂ V , the set of all edges for which the tails
belong to X but the heads do not, is termed the outcut of
X , and is denoted by ∂+

G
X ⊂ E . The cardinality of ∂+

G
X

is called the out-degree of X , and is denoted by d+
G

X =
|∂+

G
X |. For k ∈ Nn−2, a sequence of distinct edges in the

form (τ, ν1), (ν1, ν2), . . . , (νk−1, νk)(νk, ν) is called a τν path
if no two edges share a common head or tail. For R ⊂ V a
τν path is called R−rooted if τ ∈ R. The set R associated
with an R−rooted τν path is referred to as the root-set, and
a vertex ν ∈ V KR is called reachable from the root-set R

if there exists an R−rooted τν path, for some τ ∈ R. Two
distinct τν paths are called edge-disjoint if they do not share
any edges. Two edge-disjoint τν paths are called disjoint if τ
and ν are the only vertices that are common to both of them.
Consider a team of n single integrator agents given by:

ẋi(t) = ui(t), i ∈ Nn, (1)

where the first n − m agents are followers, and the last m
agents are leaders, with the following control inputs

ui(t) =

⎧⎪⎨
⎪⎩

ui
ext(t), i ∈ NnKNn−m∑

j∈Ni

αijxj(t), i ∈ Nn−m

(2a)

(2b)

where αij ∈ R and αii �= 0 in (2b). Note that the leaders are
influenced by external control inputs, whereas the followers
are governed by a control law which is the linear combination
of the states of neighboring agents as given by (2b). The
interaction structure between the agents in (1) can be described
by a directed information flow graph G = (V ,E ), where
each vertex represents an agent, and a directed edge from
vertex νj to vertex νi indicates that xj(t) is transmitted to
agent i and αij �= 0 in (2b). Moreover, the condition αii �= 0
in (2b) implies the existence of a self-loop on each follower
vertex of G ; however, the self-loops are omitted to simplify the
graphical representations. In a digraph representing a leader-
follower multi-agent system, the root-set R consists of the
leading agents; note that |V | = n and |R| = m. The state
of each agent xi(t) is set to be its absolute position w.r.t. an
inertial reference frame, and the agent dynamics is assumed
to be decoupled along each axis of the frame.

Remark 1. Consider a leader-follower multi-agent system
represented by the information flow digraph G = (V ,E ) with
the root-set R. The control laws in (2) imply that no edges
enter the root-set, i.e. ∀τ, ν ∈ V , ν ∈ R −→ (τ, ν) /∈ E .

Definition 1. The information flow digraph G corresponding
to the leader-follower multi-agent system (1), is called con-
trollable if the coefficients αij in (2b) can be chosen such that
by properly moving the leaders, the followers would assume
any desired configuration in an arbitrary time.

The following theorem from [10] provides a necessary and
sufficient condition for the controllability of an information
flow digraph as defined above.

Theorem 1. The information flow digraph G = (V ,E ) with
the root-set R ⊂ V is controllable if and only if every vertex
ν ∈ V KR is reachable from the root-set R.

The next subsection summarizes the main results of [9] and
[10], upon which Section III expands.

B. Link and Agent Controllability Degrees
Link and agent controllability degrees provide quantitative

insight into the reliability of a leader-follower multi-agent
system in the face of agent and link failure, as investigated
in [9] and [10] for a single leader and multiple leaders,
respectively. A conceptually related issue is the fault tolerance
of networks and connectivity of their interconnection digraphs,
as discussed in Section 1.5 of [11].
In Section 1.7 of [12], the results obtained by using the max-

flow min-cut theorem for a single source and a single sink,
are extended to the flow networks with multiple sources and
sinks by adding two new nodes [12]. The work [10] exploits
a similar technique to extend the results of [9] to a digraph G

with multiple leaders designated in a root-set R, by using the
expansion of G w.r.t. R, defined bellow.

Definition 2. Given an information flow digraph G = (V ,E )
with the root-set R ⊂ V , the expansion of G w.r.t. R is
denoted by G ′, and is defined as G ′ = (V ′,E ′), where for a
given vertex r /∈ V , V ′ = {r}∪V and E ′ = {(r, ν)|ν ∈ R}∪
E .

The link controllability degree of an information flow di-
graph is defined as follows [10].

Definition 3. An information flow digraph G = (V ,E ) with
the root-set R ⊂ V is said to be p−link controllable if p is
the largest number such that the controllability of the digraph
is preserved after removing any group of at most p− 1 edges.
Moreover, a minimal set of p edges, whose removal makes
G uncontrollable is referred to as a critical link set and is
denoted by Cp ⊂ E . The number p is referred to as the link
controllability degree of the digraph G w.r.t. the root-set R,
and is denoted by lc(G ;R). Similarly, given a vertex ν ∈
V KR, the minimum number of edges of G whose removal
makes the vertex ν unreachable from the set R is denoted by
lc(G , ν;R).

The following theorem from [10] provides a necessary
and sufficient condition for the p−link controllability of an
information flow digraph.

Theorem 2. The information flow digraph G = (V ,E ) with
the root-set R ⊂ V is p−link controllable if and only if

min
R⊆X ⊂V

d+
G

X = p. (3)

The agent controllability degree of an information flow
digraph is defined as follows [10].

Definition 4. An information flow digraph G = (V ,E ) with
the root-set R ⊂ V is said to be q−agent controllable if q is
the largest number such that the controllability of the digraph
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is preserved after removing any group of at most q−1 non-root
vertices. Moreover, a minimal set of q non-root vertices whose
removal makes G uncontrollable is referred to as a critical
agent set, and is denoted by Cq ⊂ V KR. The number q is
referred to as the agent controllability degree of the digraph
G w.r.t. the root-set R and is denoted by ac(G ;R). Similarly,
given a vertex ν ∈ V KR, the minimum number of vertices of
G whose removal makes the vertex ν unreachable from the set
R is denoted by ac(G , ν;R).

In Section 1.11 of [12], a technique involving the duplica-
tion of the nodes in the digraph is used to extend the results of
the problem of finding a maximal flow from one set of nodes
to another, to the information flow digraphs subject to both
arc and node capacity bounds. The corresponding technique
employs the max-flow min-cut theorem with constraints on
maximum arc flow. The work [9] exploits a similar technique
termed node-duplication to relate the link and agent controlla-
bility degrees of a given information flow digraph. The node-
duplicated version of an information flow digraph G is defined
as follows.

Definition 5. Given an information flow digraph G = (V ,E )
with the root-set R ⊂ V , replace every non-root vertex
ν ∈ V KR with two vertices ν̃1 and ν̃2, which are connected
together by an intermediate edge ε̃ν = (ν̃1, ν̃2). The resulting
digraph G̃ = (Ṽ , Ẽ ) is called the node-duplication of G .

Remark 2. Given an information flow digraph G = (V ,E ),
its node duplication G̃ = (Ṽ , Ẽ ) does not possess any anti-
parallel edges, i.e. ∀τ̃ , ν̃ ∈ Ṽ , (τ̃ , ν̃) ∈ Ẽ −→ (ν̃, τ̃) /∈ Ẽ .

The following lemma from [9] describes the relationship
between the agent controllability degree of a digraph G and
the link controllability degree of its node-duplication G̃ .

Lemma 1. Given an information flow digraph G = (V ,E )
with the root-set R ⊂ V , let its node-duplication be denoted
by G̃ . The following relation holds:

∀ν ∈ V KR, ac(G , ν;R) = lc(G̃ , ν̃1;R). (4)

The following theorems from [9] provide lower bounds on
the number of edges in a p−link or q−agent controllable
digraph.

Theorem 3. If an information flow digraph G = (V ,E ) is
p−link controllable, then |E | � (|V | − 1)p. Moreover, there
exists a p−link controllable digraph, for which the equality
holds.

Theorem 4. If an information flow digraph G = (V ,E ) is
q−agent controllable, then |E | � |V |+q−2. Moreover, there
exists a q−agent controllable digraph, for which the equality
holds.

III. JOINT CONTROLLABILITY
The following definitions and the subsequent lemmas and

theorems provide useful tools for investigating the effects of
simultaneous link and agent failure on the controllability of
an information flow digraph.

Definition 6. An information flow digraph G = (V ,E ) with
the root-set R ⊂ V is said to be joint (r, s)−controllable if
it remains controllable, in case of simultaneous failure of any
set of links of size u � r and set of non-root vertices of size
v � s, where u + v < r + s (note the strict inequality in the
last expression).

The next lemma follows immediately from Definitions 3, 4
and 6.

Lemma 2. The following statements hold:
a) If G is joint (r, s)−controllable, then for all u � r and

v � s, G is joint (u, v)−controllable.
b) If G is joint (r, s)−controllable, then r � lc(G ;R) and

s � ac(G ;R).
c) If G is joint (r, s)−controllable and lc(G ;R) = r, then

s = 0.
d) If G is joint (r, s)−controllable and ac(G ;R) = s, then

r = 0.

Definition 7. An information flow digraph G = (V ,E ) with
the root-set R ⊂ V is said to be joint t−controllable if t is the
largest number such that G is joint (u, v)−controllable for all
u+v � t. Moreover, a minimal set of r vertices and s = t−r
edges whose removal makes G uncontrollable is referred to as
a critical agent-link set, and is denoted by Crs ⊂ V ∪ E KR.
The number t is called the joint controllability degree of the
digraph G w.r.t. root-set R, and is denoted by jc(G ;R).

From Definitions 6 and 7, it follows that a sufficient
condition for the preservation of controllability in the face of
simultaneous failure in links and agents is that the total number
of link and agent faults is not more than the joint controllability
degree of the underlying information flow digraph. The next
remark follows immediately from Definitions 3, 4, 6 and 7.

Remark 3. For an information flow digraph G = (V ,E ) with
the root-set R, the following inequality holds:

jc(G ;R) � min {lc(G ;R), ac(G ;R)} . (5)
The next lemma is a direct consequence of Remark 3, and

Theorems 3, 4.

Lemma 3. If an information flow digraph G = (V ,E ) is joint
t−controllable, then |E | � (|V | − 1)t and |E | � |V |+ t− 2.

In the next definition and the theorems which follow, the
class of jointly uncritical digraphs are introduced and some of
their characteristics are pointed out.

Definition 8. Given an information flow digraph G = (V ,E )
with the root-set R, let R ⊆ X ⊂ V be any solution to the
minimization problem in (3). Let also F ⊂ V KR be the set
of all vertices in the digraph GX = (V ,E K∂+

G
X ), which are

not reachable from the root-set R, and define H = X ∪{
ν ∈ F |(τ, ν) ∈ ∂+

G
X ∧ τ ∈ R

}
⊂ V ; if ∂+

G
H = ∅, then

G is jointly uncritical. Moreover, if ∂+

G
H = ∅, then every

vertex ν ∈ H KX is termed an uncritical agent.

The following three remarks are direct results of Defini-
tion 8.
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Remark 4. An information flow digraph G is jointly uncritical
if and only if G has an uncritical agent.

Remark 5. Given a jointly uncritical information flow digraph
G = (V ,E ) with the root-set R, if ν ∈ V is an uncritical
agent, then ∃ τ ∈ R, such that (τ, ν) ∈ E .

Remark 6. In a jointly uncritical information flow digraph
G , the removal of any sets of uncritical agents does not affect
the controllability of G .

Theorem 5. If an information flow digraph G = (V ,E ) with
the root-set R ⊂ V is not jointly uncritical, then ac(G ;R) �
lc(G ;R).

Proof: It suffices to introduce a set L ⊂ V KR with the
property |L | � lc(G ;R), whose removal makes G uncontrol-
lable. To this end, consider a solution R ⊆ X ⊂ V to the
minimization problem in (3), which means that |∂+

G
X | = p.

The following routine utilizes ∂+

G
X to generate one such set

L with the desired characteristics. �

Routine A:
L = ∅

for all (τ, ν) ∈ ∂+

G
X do

if τ /∈ R then
L = L ∪ {τ}

else
L = L ∪ {ν}

end if
end for
The next corollary follows upon combining the results of

Remark 3 and Theorem 5.

Corollary 1. If an information flow digraph G = (V ,E ) with
the root-set R ⊂ V is joint t−controllable and not jointly
uncritical, then t � ac(G ;R).

Theorem 6. If an information flow digraph G = (V ,E ) with
the root-set R ⊂ V is joint (r, s)−controllable and not jointly
uncritical, then r + s � lc(G ;R).

Proof: Consider a solution R ⊆ X ⊂ V to the mini-
mization problem in (3). According to Theorem 2, the link
controllability degree of G is equal to the out-degree of
X , i.e. |∂+

G
X | = lc(G ;R), and it follows from Lemma

2 that r � lc(G ;R). If r = lc(G ;R), then Lemma 2(c)
requires that s = 0 and hence the statement of the above
theorem holds. If on the other hand r < lc(G ;R), then
choose a set of edges Zr ⊂ E , such that Zr ⊂ ∂+

G
X and

|Zr| = r. Use Routine A after replacing ∂+

G
X with ∂+

G
X KZr

to generate a set L ⊂ V . L ∪ Zr is a set of |L | vertices
and |Zr| = r edges, for which GL ,Zr

= (V KL ,E KZr) is
uncontrollable. However, G is joint (r, s)−controllable, which
implies that s � |L |. On the other hand, it follows from
Routine A that |L | � |∂+

G
X KZr|. Hence s � |∂+

G
X KZr| or

s � lc(G ;R)− r, which completes the proof. �

Corollary 2. If an information flow digraph G = (V ,E ) is
joint (r, s)−controllable and not jointly uncritical, then |E | �

(|V | − 1)(r + s).

Proof: The proof is straightforward and follows directly
from Theorems 3, 6. �

Corollary 2 provides a necessary condition on the num-
ber of edges in a jointly uncritical digraph for joint
(r, s)−controllability, and can be useful in the design of
reliable multi-agent control systems. The next definition
provides a mechanism to transform the problem of joint
t−controllability in a given digraph into q−agent control-
lability of another digraph. This will, in turn, enable the
multi-agent control system designer to take advantage of the
polynomial-time algorithms developed in [9] and [10] for the
latter problem.

Definition 9. Given a digraph G = (V ,E ), replace every
edge ε ∈ E with two edges ε̂1 and ε̂2 in the same direction as
ε, and connect them through an intermediate vertex ν̂ε, termed
a black vertex. The resulting digraph Ĝ = (V̂ , Ê ) is called the
edge-duplication of G . Every vertex of Ĝ that is not a black
vertex is referred to as a white vertex.

Remark 7. The following equalities hold for the number of
vertices and edges in a given digraph G = (V ,E ) and its
edge-duplication Ĝ = (V̂ , Ê ):

|V̂ | = |V |+ |E |, (6a)
|Ê | = 2|E |. (6b)

Remark 8. Given a digraph G = (V ,E ) and its edge-
duplication Ĝ = (V̂ , Ê ), every white vertex ν̂ν ∈ V̂ cor-
responds to one vertex ν ∈ V and every black vertex ν̂ε ∈ V̂

corresponds to one edge ε ∈ E . There exists a one-to-one
correspondence between the sets V ∪ E and V̂ .

Theorem 7. Consider a digraph G = (V ,E ) with the root-set
R ⊂ V and its edge-duplication Ĝ = (V̂ , Ê ). The digraph G

is joint t−controllable if and only if Ĝ is t−agent controllable.

Proof: The proof follows from the fact that Definition 9
specifies a bijection between the sets V ∪ E and V̂ . Using
this bijection, any critical agent set of Ĝ can be transformed
into a critical agent-link set of G and vice versa. �

Remark 9. For a joint t−controllable digraph G = (V ,E ),
it was shown in Lemma 3 that |E | � |V | + t − 2. Now,
using (6) along with the results of Theorems 4 and 7, one
can conclude that there exists a joint t−controllable digraph,
for which |E | = |V |+ t− 2.

A digraph G , as well as its node-duplication G̃ and edge-
duplication Ĝ , constructed according to Definitions 5 and 9,
are depicted in Figs. 1(a)−(c). The digraph in 1(a), with the
upper-most vertex as the root, is 2−link and 2−agent con-
trollable. The digraph is also joint (1, 1)−controllable. It does
not have any uncritical agents, and is joint 2−controllable. Ac-
cording to Theorem 7, the latter is tantamount to 2−agent con-
trollability of the digraph in Fig. 1(c). If the node-duplication
process of Definition 5 is applied to every white vertex in an
edge-duplicated digraph Ĝ , a new digraph is generated, which
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can be used to investigate the agent controllability of Ĝ effi-
ciently. The new digraph is termed the node-edge-duplication
of G , and is denoted by Ğ . The node-edge-duplication of the
digraph in Fig. 1(a) is depicted in Fig. 1(d). Lemma 1 provides
a method for converting the problem of agent controllability
in Ĝ to link controllability in Ğ . Polynomial-time algorithms
presented in [9], [10] for investigating the link controllability
of a given digraph can now be applied to Ğ , which, in fact,
gives the joint controllability degree of the original digraph G .

(a) G (b) G̃ (c) Ĝ (d) Ğ

Fig. 1. A digraph G , its node-duplication G̃ , its edge-duplication Ĝ , and
its node-edge-duplication Ğ are depicted in (a), (b), (c) and (d), respectively.
The upper most vertex in all four digraphs is assumed to be a root.

Two special cases of interest are addressed in the sequel.

Proposition 1. Given a complete digraph Gcn = (Vcn,Ecn),
where |Vcn| = n and Ecn = Vcn × Vcn, choose a vertex r
as the root and remove the n − 1 edges, which are headed
by r. The resulting information flow digraph is joint (n −
1)−controllable.

Proof: The proof follows from the fact that Gcn has exactly
n− 1 disjoint rν paths for every ν ∈ VcnK {r}. �

Proposition 2. Consider a Kautz digraph Gk = (Vk,Ek),
where Vk and Ek are given by (See Section 3.3 of [11]):

Vk = {ν1, . . . , νn} , n = |Vk|,

Ek = {(νi, νj)|i, j ∈ Nn ∧ j ≡ (−id− τ) mod n, τ ∈ Nd} ,

for some d ∈ NK{1} and κ ∈ N, where n = dκ+dκ−1. Choose
a vertex r as the root and remove all of the edges which are
headed by r. The resulting information flow digraph is joint
d−controllable.

Proof: The proof follows from the fact that Gk has exactly
d disjoint rν paths for every ν ∈ VkK {r}. �

IV. EXAMPLES AND DISCUSSION
The following examples will illustrate and elaborate upon

the ideas discussed in Section III.

Example 1. A jointly uncritical digraph.

Consider the digraph in Fig. 2(a) with the colored vertices as
the roots. Every non-root vertex in this digraph is an uncritical
agent whose removal will not affect the controllability of the
digraph. This digraph is 2−link and 3−agent controllable, and
is also joint (2, k)−controllable for any k ∈ N3. Remark
3 states that the joint controllability degree of this digraph
cannot exceed its link controllability degree and this digraph

is in effect joint 2−controllable. The joint controllability
degree, however, does not provide much information about
this digraph because it is jointly uncritical.
On the other hand, the digraph in Fig. 2(b) with the colored

vertices as the roots, is not jointly uncritical and is 2−link and
2−agent controllable. It is also joint (1, 1)−controllable, and
its joint controllability degree is 2.

(a) (b)

Fig. 2. (a) An example of a graph which is jointly uncritical (with three
uncritical agents). (b) An example of a graph which is not jointly uncritical
(with no uncritical agents).

Example 2. Circulant digraphs.

Circulant digraphs are introduced and discussed in Section
3.4.5 of [11]. Accordingly, a circulant digraph Gc = (Vc,Ec)
with |Vc| = n is given by:

Vc = {ν1, . . . , νn} ,

Ec = {(νi, νj)|i, j ∈ Nn ∧ j − i ≡ b mod n, b ∈ B} ,

for some B ⊆ Nn−1. Choose a vertex r ∈ Vc as the
root, and remove every edge whose head is r. Then in the
resulting information flow digraph Gc, lc(Gc; {r}) = |B|
and ac(Gc; {r}) � |B|. The former equality follows upon
noting that Gc has exactly |B| edge-disjoint rν paths for
every ν ∈ VcK {r}. The latter inequality, on the other hand,
follows from Theorem 5 and the fact that Gc is not jointly
uncritical. The choices of B1 = {1}, B2 = {1, n− 1}, and
B3 = {1, n− 2} correspond to a simple loop G1 = (V1,E1),
a distributed double-loop G2 = (V2,E2), and a daisy chain
loop G3 = (V3,E3), respectively, and they are introduced
in Section 3.4.1 of [11]. For a simple loop lc(G1; {r}) =
ac(G1; {r}) = jc(G1; {r}) = 1, while for the other two
cases lc(Gi; {r}) = ac(Gi; {r}) = jc(Gi; {r}) = 2, i =
2, 3. These three have the additional property that for every
r+s > jc(Gi; {r}), i ∈ N3, Gi is not joint (r, s)−controllable.
Accordingly, the joint controllability degree alone provides a
complete characterization of the controllability preservation
properties for Gi, i ∈ N3. The three digraphs are depicted in
Fig. 3(a)−(c) for |Vi| = 5, i ∈ N3, with the colored vertices
selected as the roots.
On the other hand, with B4 = {2, 3, 5}, |V4| = 6 and the

uppermost vertex selected as the root, the resulting information
flow digraph G4, shown in Fig. 3(d), is 3−link and 2−agent
controllable [9]. The joint controllability degree for G4 is 2,
and unlike Gi, i ∈ N3, jc(G4; {r}) = 2 does not proffer a full
characterization of the controllability preservation properties
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in G4. Accordingly, G4 is joint (r, s)−controllable for (r, s) ∈
{(2, 1), (3, 0)}, whereas r + s > jc(G4; {r}).

(a) G1 (b) G2 (c) G3 (d) G4

Fig. 3. The digraphs in Example 2.

Let the values of (r, s) ∈ W × W for which Gi is joint
(r, s)−controllable be shown as discrete points in the plane.
For i ∈ N3, the line r + s = jc(Gi; {r}) divides the plane
into two regions, where for r + s � jc(Gi; {r}), Gi is joint
(r, s)−controllable and otherwise it is not. This is depicted in
Fig. 4 for G2 and G3, where the closed shaded region contains
all pairs of integers belonging to the joint controllability
set (these pairs are shown by black circles). This property,
however, does not hold for G4; it is evident from Fig. 5 that
there exist two points above the r + s = jc(G4; {r}) line for
which G4 is joint (r, s)−controllable.

0 1 2 3
0

1

2

3

s (agents)

r
(l

in
k
s)

Joint (r, s)−Controllable
Joint t−Controllability Border Line

Fig. 4. Joint controllability of G2 and G3 in Example 2. The filled circles
in the shaded area represent the pair of integers belonging to the jointly
controllable set.

V. CONCLUSION
Structural controllability of a network of single-integrator

agents with leader-follower architecture was investigated,
and the notions of joint (r, s)−controllability and joint
t−controllability were introduced. These notions provide
quantitative reliability measures in a multi-agent system sub-
ject to simultaneous failure of communication links and agents.
Graphical conditions to determine one or more so-called
“uncritical agents” in the network were derived, and examples
of digraphs containing such agents were presented. It was
further stated that the failure of the uncritical agents would

0 1 2 3
0

1

2

3

4

s (agents)

r
(l

in
k
s)

Joint (r, s)−Controllable
Joint t−Controllability Border Line

Fig. 5. Joint controllability of G4 in Example 2. The filled circles represent
the pair of integers which belong to the jointly controllable set.

not affect the controllability of a jointly uncritical digraph.
Moreover, a method was presented to transform the problem
of joint t−controllability of a given digraph into t−agent
controllability of another digraph. The latter problem could
then be handled using existing polynomial-time algorithms.
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