
TD-Learning with Exploration

Sean P. Meyn and Amit Surana

Abstract— We introduce exploration in the TD-learning al-
gorithm to approximate the value function for a given policy.
In this way we can modify the norm used for approximation,
“zooming in” to a region of interest in the state space. We
also provide extensions to SARSA to eliminate the need for
numerical integration in policy improvement. Construction of
the algorithm and its analysis build on recent general results
concerning the spectral theory of Markov chains and positive
operators.

I. INTRODUCTION

This paper concerns a Markov Decision Process, or MDP,
defined by a state space X, action space U, and controlled
transition law Pu. Our goal is value function approximation:
We focus on the discounted-cost optimal control problem
with cost function c : X × U → R+, and discount factor
β ∈ (0, 1). For a given control sequence U , the resulting
value function is given by

h(x) =

∞∑
t=0

βtEx
[
c(X(t), U(t))]

]
(1)

The subscript indicates that the initial condition is X(0) = x.
The state process X evolves on X, and the control (or

action) process U evolves on U. The state space and action
space are general, with associated sigma-algebras, denoted
B(X) and B(U), respectively. There may be state constraints,
in which case there is, for each x ∈ X, a set U(x) ⊂ U
that consists of permissible values of U(t) = u when
X(t) = x. In this generality we cannot hope to compute
an optimal policy, so we turn to approximation based on
Monte-Carlo methods, or experiments on a physical system
via reinforcement learning [2].

One approach is through approximate policy iteration.
For this, we are given control sequence U , and we require
an approximation of the resulting value function h. Under
general conditions, this approximation can be constructed
using the Temporal-Difference (TD) learning algorithm. For
a linear approximation hθ(x) = θTψ(x), where θ ∈ Rn
and ψ : X → Rn, the LSTD algorithm can be applied.
This coincides with stochastic Newton-Raphson, which is
known to have minimal variance (the same optimal asymp-
totic variance as obtained in the two-time-scale stochastic
approximation algorithm of Polyak and Juditsky [3]).

S. P. Meyn is with the Department of Electrical and Com-
puter Engineering and the Coordinated Science Laboratory at UIUC
meyn@illinois.edu

A. Surana is with United Technologies Research Center (UTRC)
suranaa@utrc.utc.com

Financial support from UTRC, AFOSR grant FA9550-09-1-0190, IT-
MANET DARPA RK 2006-07284, and NSF grant CPS 0931416 is grate-
fully acknowledged.

However, TD-learning has a serious drawback: The norm
under which the approximation is based depends on the
steady-state distribution of the controlled Markov model.
That is, the TD- or LSTD-learning algorithms compute the
solution to the quadratic program,

min
θ
‖h− hθ‖2π = Eπ[(h(X)− hθ(X))2] (2)

where in the expectation on the right we have X ∼ π, where
π is the steady-state distribution of X (it is assumed that this
exists).

There is no reason why the norm defined in (2), or any
of its weighted refinements, should provide an appropriate
metric. In fact, for deterministic systems with a unique
equilibrium, π will be a point-mass at the equilibrium, so
any of these norms will only weight the equilibrium!

The Q-learning algorithm of Watkins addresses this diffi-
culty [23], [24], [2], [21]. However, while the technique is
provably convergent when the parameterization captures all
functions on the joint state-action space, there is little theory
to deal with approximations, and no Q-learning algorithm has
been devised that approaches the efficiency of TD-learning.

In this paper we marry the benefits of these two approaches
by introducing exploration in the TD-algorithm, and by
extending the resulting algorithm to approximate the “Q-
function” that appears in Q-learning. Construction of the
algorithm and its analysis builds on recent general results
concerning the spectral theory of Markov chains and positive
operators.

The notion of exploration in machine learning and statis-
tics has a very long history (see [7], [1] and the references
therein). Note that in this paper the exploration is introduced
to obtain an approximation of the value function for a
given policy. The algorithms introduced here can be used
to approximate the value function for a given policy, even
for deterministic systems for which the state and action
sequence converge to an equilibrium. Such approximations
are valuable for performance evaluation, as well as policy
improvement.

The remainder of this paper is organized as follows:
Background on MDPs and Markov chains is surveyed in
Sec. II. The Least Squares algorithms are developed in two
sections: Sec. III contains a construction of LSTD with
exploration, and in Sec. IV we show how this can be “lifted”
to obtain the LS-SARSA algorithm, by viewing (X,U) as a
state process. Numerical examples are contained in Sec. V.
Sec. VI contains conclusions, and suggests some topics for
future research.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 148

II. MARKOV AND MDP BACKGROUND

A. MDP background

For any set A ∈ B(X), x ∈ X, and u ∈ U(x), the transition
law Pu introduced at the start of Sec. I defines the probability
of transition in one step, Pu(x,A) := P{X(t + 1) ∈ A |
X(t) = x, U(t) = u}. We view Pu as a mapping from
functions on X to functions on X × U: For any measurable
h : X→ R we denote,

Puh (x) := E[h(X(t+ 1)) | X(t) = x, U(t) = u]

We denote by φ : X→ U a stationary policy, giving U(t) =
φ(X(t)). The controlled process X is then a Markov chain
with transition kernel denoted Pφ(x, dy) = Pφ(x)(x, dy).

In this paper we focus on the discounted-cost optimal
control problem: We wish to minimize the infinite-horizon
discounted cost (1) over all policies, where c is a non-
negative cost-function of states and actions. The minimal
value function h∗(x), if it exists, satisfies the discounted-
cost optimality equation (DCOE),

min
u∈U(x)

{c(x, u) + βPu h
∗(x)} = h∗(x), x ∈ X. (3)

The minimizer then defines an optimal policy in state feed-
back form.

B. Reinforcement learning background

Two approaches to approximation of an optimal policy
are TD-learning and Q-learning [2], [21]. In Q-learning we
attempt to approximate the “Q-function” given by the term
within the brackets in (3): Q∗(x, u) := c(x, u) + βPu h

∗(x).
Letting Q∗(x) = minu∈U(x)Q

∗(x, u), we deduce from (3)
that Q∗ solves a similar fixed point equation:

c(x, u) + βPuQ
∗(x) = Q∗(x, u) .

In Watkins’ Q-learning algorithm the goal is to compute Q∗

exactly based on observations of (X,U) using a random-
ized, non-optimal policy [23], [24]. In the general state space
case considered here we can only consider approximations.

For approximation consider an affine parameterization of
the form

Qθ(x, u) = c(x, u) + θTψ (x, u). (4)

with θ ∈ Rn and ψ : X × U → Rn. With Qθ(x) :=
minQθ(x, u), the resulting Bellman error is denoted,

Eθ(x, u) :=Qθ(x, u)−
(
c(x, u) + βPuQ

θ(x)
)

(5)

Minimization of the Bellman error in an appropriate metric
can be transformed to the solution of a linear program, but
the theory of on-line learning algorithms for optimization
is not well developed. To the best of our knowledge, the
only globally convergent algorithms are obtained under very
special assumptions: [25] applies only to the optimal stop-
ping problem, and [12] (with convergence justified in [19])
is applicable only for deterministic control problems.

Approximation theory is more complete for approximation
of the value function for a fixed policy. Suppose that P = Pφ

is a transition law obtained for a feedback law φ. The fixed-
policy discounted-cost dynamic programming equation is (3)
without the minimization,

c+ βPh = h (6)

Assuming that the Markov chain with transition law P has
an invariant measure π, in TD-learning we assume that a
parameterized family of approximations is given, denoted
{hθ : θ ∈ Rn}, and we seek a solution to the minimization
(2).

The main motivation for TD-learning is policy improve-
ment: Given a solution h to (6), we obtain an improved policy
via,

φ+(x) = arg min
u∈U(x)

{c(x, u) + βPuh (x)}

This may be impossible to compute due to complexity of the
integration required in computation of Puh, or because Pu
is not known.

SARSA is an alternative to TD-learning, designed to ad-
dress this difficulty. The idea is to formulate a Q-function
for the fixed-policy problem as follows:

Q(x, u) := c(x, u) + βPu h(x) (7)

where h is the solution to (6), so that Q(x, φ(x)) = h(x).
If Q is known, then the updated policy is obtained without
integration:

φ+(x) = arg min
u∈U(x)

Q(x, u) (8)

SARSA is an acronym for State-Action-Reward-State-
Action – it was introduced in the 1994 technical report of
Rummery & Niranjan [18], and developed in several later
papers and texts [21], [20]. It is in fact equivalent to Watkins’
Q-learning algorithm, with the restriction to a trivial action
space (equivalently, a fixed policy).

Just as in Q-learning, the theory for approximation in
SARSA is currently weak. The main goal of this paper
is to address these weaknesses, and thereby combine the
advantages of TD- and Q-learning.

Basis selection In any of these approximation techniques,
the question always then comes to this: How do we choose
the basis? General approaches to basis selection are given in
[22], [11]. A recent approach is to approximate the dynamic
programming equations using a simpler model, such as a
fluid or diffusion model that approximates the discrete-time
MDP model, or an approximation via a limiting model,
as constructed in mean-field games [8]. Some successful
applications of this approach are presented in the final
chapter of [13], and in [16], [12], [4], [15], [7].

A general procedure can be described as follows. Suppose
that the evolution of the controlled Markov chain is described
by the nonlinear state space model,

X(t+1) = X(t)+f(X(t), U(t),W (t+1)), t ≥ 0, (9)

where W is i.i.d., and the state and control evolve on
Euclidean space. On denoting f(x, u) = E[f(x, u,W (t))],
the fluid model is defined by the controlled ODE,

d
dtx(t) = f(x(t), u(t)) (10)

149

A diffusion model that takes into account variability is
defined similarly. In many cases, the fluid model gives
enough insight to obtain a good basis using the procedure
we describe.

Consider first the approximation of h appearing in (6),
for a Markov model without control (or with fixed policy).
In this case the models (9,10) are the same, except that the
control terms are dropped:

X(t+1) = X(t)+f(X(t),W (t+1)), d
dtx(t) = f(x(t))

Let D = P−I denote the “generator” for the Markov model,
and write (6) in the form,

c+ βDh = (1− β)h

Now, note that Dh (x) = E[h(X(t+1))−h(X(t)) | X(t) =
x]. We approximate this by the differential generator for the
fluid model, DFh (x) = f(x) · ∇h(x). Hence our goal is to
solve,

c+ βDFh = (1− β)h

This has the solution h = β−1Jγ(x), with γ = (1 − β)/β,
and

Jγ(x) =

∫ ∞
0

e−γtc(x(t)) dt, x(0) = x. (11)

If this discounted-cost value function is computable, or if an
approximation exists, then it is often a good starting point
for a basis in the Markov model.

This approach is easily extended to SARSA. Returning to
the model with control, we define the controlled generator
for any function h by Duh (x) = E[h(X(t+1))−h(X(t)) |
X(t) = x, U(t) = u]. The fixed point equation (7) is
expressed in terms of the generator by,

Q(x, u) = c(x, u) + β
(
h(x) +Duh (x)

)
If {hθ = θTψ} is an approximation family for h, then a
natural choice for Q is,

Qθ(x, u) := c(x, u) + β
(
hθ(x) +DF

u h
θ(x)

)
(12)

where DF
uh(x) := f(x, u) · ∇h(x).

C. Markov background

The Markov chains considered in this paper are assumed
to be geometrically ergodic. This is essentially equivalent to
a solution V : X→ [1,∞) to the drift condition (V4) of [14]:

PV (x) ≤ λV (x) + bIS(x), x ∈ X , (13)

where λ ∈ (0, 1), b <∞, and the set S is “small”. We refer
the reader to [14] for further background.

Following the notation of [14], we denote by LV∞ the
Banach space of functions bounded by V , with norm,

‖f‖V = sup
x∈X

|f(x)|
V (x)

.

We let ||| · |||V denote the induced operator norm: For two
transition laws P and P ′ we denote,

|||P − P ′|||V = sup
‖f‖V =1

‖Pf − P ′f‖V

Under mild conditions, geometric ergodicity is equivalent to
a solution to (V4), and this in turn is equivalent to the V -
uniform ergodicity: The existence of an invariant measure π
such that P t converges to π in the induced operator norm,
geometrically fast: For some R0 <∞, r0 > 1,

|||P t − 1⊗ π|||V ≤ R0r
−t
0 , t ≥ 0.

This implies that Ex[f(X(t))] → π(f) at rate r−t0 for any
function f ∈ LV∞.

The exploration introduced in this paper is analogous
to importance sampling: We will perform a transformation
to obtain a new Markov chain, and then transform the
invariance equation (such as (6)) so that the solutions of the
two equations match.

The transformed equation will involve a scaling of the
transition law, of the following form: For a bounded function
G : X → R, denote g = eG, and P̂ (x,A) = g(x)P (x,A),
x ∈ X, A ∈ B(X). The new invariance equation has the form,

P̂ h = h− c (14)

where c : X → R is a simple function of c. Solutions to
identities of this form can be characterized by appealing to
the Perron-Frobenius theory of positive matrices [17], [9],
[10].

Under (V4), we view P̂ as a bounded linear operator on
LV∞. Its log-spectral radius is denoted,

Λ(G) := lim
n→∞

1

n
log(|||P̂n|||V) (15)

If Λ(G) < 0, this means that the spectral radius of P̂ is
less than one. If moreover the function c : X → R satisfies
c ∈ LV∞, it then follows that P̂nc→ 0 geometrically fast in
LV∞. We conclude that the unique solution to (14) is given
by the infinite sum,

h =

∞∑
t=0

P̂ tc (16)

where P̂ 0 = I . This representation will be used to construct
learning-algorithms in the next two sections.

III. LSTD WITH EXPLORATION

We begin in the simpler setting without control. We have
transition matrix P and a cost function c : X → R+. For a
given discount factor β ∈ (0, 1), we seek an approximation
to the fixed-policy discounted-cost dynamic programming
equation (6). The starting point of the construction of the
algorithm is the construction of a regeneration time, and a
regeneration distribution µ on B(X).

The following assumptions are taken for granted through-
out this section:
Assumptions for Sec. III: The chain is V -uniformly
ergodic, so that the drift condition (13) holds for some
V : X→ [1,∞). The cost function satisfies c2 ∈ LV∞, and the
n-dimensional basis satisfies ψ2

i ∈ LV∞ for each 1 ≤ i ≤ n.
The regeneration distribution µ satisfies µ(V) <∞.

Under these ergodicity assumptions, there is a unique
steady-state distribution π for X , and the steady state cost
π(c) :=

∫
c(x)π(dx) as well as its variance are finite.

150

A. Regeneration

We construct a new transition matrix P̃ by restarting the
chain: Let µ denote a probability measure on B(X), and
suppose that the process is restarted according to µ at a
randomized stopping time, denoted T . Assume there is a
function δ : X → [0, 1], such that for any state x and set
A ∈ B(X),

P̃ (x,A) = (1− δ(x))P (x,A) + δ(x)µ(A) (17)

In the notation of [17], [9] this is expressed P̃ = I1−δP +
δ ⊗ µ.

The distribution of the randomized stopping time T , taking
values in {0, 1, 2, . . . }, is specified by P{T = 0 | X̃(0)} =
δ(X̃(0)), and for n ≥ 1,

P{T > n | T > n− 1, X̃(0), . . . , X̃(n)} = 1− δ(X̃(n)) .

When δ(x) ≡ δ is constant then T is a geometric random
time. The process evolves according to P until the time
T , and then regenerates with distribution µ. The chain with
transition law P̃ is denoted X̃ .

We assume throughout that the chain with transition law
P̃ is V -uniformly ergodic. This is justified by the following
simple lemma:

Lemma 3.1: Suppose there is δ̄ < 1 such that δ(x) ≤ δ̄ for
all x. Then the chain with transition law P̃ is V -uniformly
ergodic.

Proof: Condition (V4) (the bound (13)) holds for this
chain. Moreover, under the assumed bound, a set S is small
for P̃ (see [14]), whenever it is small for P .

The dynamic programming equation for P results in a
similar invariance equation for P̃ . However, it will be helpful
to first refine the construction of the Markov chain X̃ . Let
I denote the randomized function of X̃ , taking values in
{0, 1}, defined via

P{I(t) = 1 | X̃t
0, I

t−1
0 } = δ(X̃(t))

That is, the process I explicitly models the ‘coin flip’ used
in the construction of the regeneration epochs for X̃ . We
denote the joint process by Ỹ (t) = (X̃(t), I(t)). Since I(t)
is a randomized function of X̃(t), the transition kernel for
Ỹ is specified by,

P{X̃(t+ 1) ∈ A | Ỹ (t) = (X̃(t), I(t)) = (x, a)}

=

{
P (x,A) If a = 0;
µ(A) If a = 1.

We can then interpret the difference P̃ − δ ⊗ µ as follows:

[P̃−δ⊗µ](x,A) = P{X̃(t+1) ∈ A and I(t) = 0 | X̃(t) = x}
(18)

Returning to the dynamic programming equation (6), we
have

β[P̃ − δ ⊗ µ]h = (1− δ)βPh = (1− δ)(h− c) . (19)

We denote, g(x) = β/(1−δ(x)) and G = log(g) = log(β)−
log(1− δ). Denote P̂ = Ig[P̃ − δ ⊗ µ], or equivalently

P̂ (x,A) = g(x)[P̃ (x,A)−δ(x)µ(A)], x ∈ X, A ∈ B(X).

Then, the expression (19) gives,

P̂ h = h− c (20)

The identity (20) is not surprising since, combining all
of the definitions above, P̂ is nothing but βP ! It is the
interpretation of (20) in terms of the new Markov chain
that will lead to a more flexible family of algorithms for
approximating h.

The solution to (20) is obtained as the infinite sum (16):

h =

∞∑
0

P̂ ic . (21)

To understand the solution we must provide an interpretation
of the products of P̂ . For this we generalize the interpretation
given in (18), which we write in the form

P̂ (x,A) = g(x)P{X̃(t+ 1) ∈ A and I(t) 6= 1 | X̃(t) = x}
= E[eG(X̃(0))I{X̃(1) ∈ A and I(0) 6= 1} | X̃(0) = x]

Using this as a starting point, we can show by induction that
for any i ≥ 1, and any function c ∈ LV∞,

P̂ ic (x) = Ex
[
exp
(i−1∑
t=0

G(X̃(t))
)
c(X̃(i))I{T ≥ i}

]
Recall that the subscript represents the conditioning on
X(0) = x. In the special case i = 0, the sum is interpreted
as zero, giving P̂ 0c (x) = c(x). For i ≥ 1, the notation
I{T ≥ i} is equivalent to the restriction that I(t) = 0 for
0 ≤ t < i.

Given this interpretation for P̂ i, the function h given in
(21) has the representation,

h(x) = Ex
[T∑
i=0

exp
(i−1∑
t=0

G(X̃(t))
)
c(X̃(i))

]
(22)

B. Approximation

Now we assume we have a linearly parameterized family
hθ = θTψ, where θ ∈ Rn and ψ : X → Rn. Let π̃ denote
the invariant measure for P̃ . We seek an approximation in
L2(π̃):

min
θ
‖h− hθ‖2π̃ = min

θ
Eπ̃[(h(X̃)− hθ(X̃))2] (23)

To characterize a minimum we simply compute the derivative
of ‖h − hθ‖2π̃ with respect to each θi, and set it equal to
zero. On denoting 〈f, g〉 = Eπ̃[f(X̃)g(X̃)] for any functions
f, g ∈ L2(π̃), this gives

0 =
∂

∂θi
‖h− hθ‖2π̃ = 2〈hθ − h, ψi〉 , 1 ≤ i ≤ n.

On denoting Ξi,j = 〈ψj , ψi〉 and bi = 〈h, ψi〉, we conclude
that the optimizer θ∗ is any solution to the linear equation,
Ξθ∗ = b. We assume that Ξ is full-rank, so that the the
optimizer θ∗ = Ξ−1b is unique.

The apparent difficulty in TD learning, as well as the
approximation technique described here, is computation of b.
This is resolved by further consideration of the representation
of h given in (22).

151

Let R̂ denote the potential kernel,

R̂ =

∞∑
t=0

P̂ t (24)

so that h = R̂c. Letting R̂† denote its adjoint, we have

bi = 〈R̂c, ψi〉 = 〈c, R̂†ψi〉 (25)

The adjoint has an elegant interpretation that we now de-
scribe.

Subject to growth conditions on any two functions f and
c, we obtain from (22) that 〈f, R̂c〉 =

∞∑
i=0

Eπ̃
[
f(X̃(0)) exp

(i−1∑
t=0

G(X̃(t))
)
c(X̃(i))I{T ≥ i}

]
(26)

To obtain the adjoint, we consider a stationary version of
Ỹ = (X̃, I), defined on the two-sided time axis. We have
by stationarity,

Eπ̃
[
f(X̃(0)) exp

(i−1∑
t=0

G(X̃(t))
)
c(X̃(i))I{T ≥ i}

]
= Eπ̃

[
f(X̃(−i)) exp

(−1∑
t=−i

G(X̃(t))
)
c(X̃(0))I{T − > i}

]
where I{T − > i} = I{I(t) 6= 1, −i ≤ t < 0}. That is, T −
is a regeneration time for the time-reversed process:

T − = min{t ≥ 1 : I(−t) = 1}
Thus, we arrive at a representation for the adjoint appearing
in the right hand side of (25):

Lemma 3.2: For any function f satisfying f2 ∈ LV∞, the
adjoint can be expressed,

R̂†f (x) = Ex
[T −−1∑
i=0

f(X̃(−i)) exp
(−1∑
t=−i

G(X̃(t))
)]

(27)

where the sum within the exponential is defined to be zero
when i = 0.

The form (27) is useful because it involves the past of
the process, rather than the expression for h in (22), which
depends on the future.

Following the standard development of TD-learning, de-
fine the sequence of eligibility vectors,

ψg(t+1) = ψ(X̃(t+1))+ I{I(t) = 0}g(X̃(t))ψg(t), (28)

with ψg(0) ∈ Rn given as initial condition. For any t denote
T −(t) = min{T ≥ 1 : I(t− T) = 1}. On iterating (28), we
obtain for any t > T (so that at least one regeneration has
occurred),

ψg(t) =

t∑
i=t−T −(t)+1

exp
(t−1∑
k=i

G(X̃(k))
)
ψ(X(i)) (29)

Under general conditions, we can combine this representa-
tion with (25) and (27) to conclude that b is given by the
ergodic limit,

b = lim
T→∞

1

T

T∑
t=1

ψg(t)c(X̃(t)) (30)

Much simpler is the Law of Large Numbers for Ξ:

Ξ = lim
T→∞

1

T

T∑
t=1

ψ(X̃(t))ψ(X̃(t))T (31)

The LSTD algorithm with exploration is then defined as the
sequence of approximations, θ̂T = Ξ−1T bT , where
• bT appears on the right hand side of (30):

bT :=
1

T

T∑
t=1

ψg(t)c(X̃(t)) (32)

• {Ξt : t ≥ 0} approximates the average appearing in (31),
defined recursively by,

Ξt+1 = Ξt+
1

t+ 1

(
ψ(X̃(t+1))ψ(X̃(t+1))T−Ξt

)
, t ≥ 0 ,

with Ξ0 > 0 arbitrary.
The inverses of {Ξt : t ≥ 0} can be obtained recursively
using the Matrix Inversion Lemma.

We believe that convergence of this algorithm will hold
under the conditions we have imposed. All that is required for
convergence is the justification of the Law of Large Numbers
to establish convergence of {bt, Ξt}. This will follow from
the fact that the triple {X̃(t), I(t), ψg(t)} is Markov, but
we may require additional assumptions to establish sufficient
regularity of this chain to apply Theorem 17.3.2 of [14].

IV. EXTENSION TO SARSA

We now introduce control: The state process X evolves
on X as before, but we return to the MDP setting outlined
in Sec. II-A: The model is defined by a controlled transition
law Pu, cost function c(x, u), and discount factor β. We
fix a policy φ, and let Pφ denote the resulting transition
law, Pφ(x, dy) = Pφ(x)(x, dy), and where cφ denotes the
resulting cost function on X: cφ(x) = c(x, φ(x)), x ∈ X.
The value function h solves the DCOE (6):

cφ + βPφh = h . (33)

Our goal is to approximate the Q-function defined in (7).
Given the form Q(x, u) = c(x, u) + βPuh (x), we take the
affine parameterization (4), giving Q(x, u) − Qθ(x, u) =
βPuh (x) − θTψ (x, u). We proceed by embedding this ap-
proximation problem in the TD-learning framework of the
previous section. This embedding is based on the simple
observation that the joint process Φ := (X,U) is a Markov
chain.

For the joint-process Φ, the Q-function defined in (7) is
entirely analogous to the function h that solves (6). Hence
we can proceed as in the previous section to solve

min
θ
‖Q−Qθ‖2π̃ = min

θ
Eπ̃[(Q(Φ̃)−Qθ(Φ̃))2] (34)

where here π̃ is the steady-state distribution for Φ̃. The main
difference here is a slightly more general construction of the
regenerated process Φ̃, since we regenerate the joint-process
Φ. We impose the same assumptions used in Sec. III for the
joint process:

152

Assumptions for Sec. IV: The chain Φ is V -uniformly
ergodic, so that the drift condition (13) holds for some
V : X × U → [1,∞). The cost function satisfies c2 ∈ LV∞,
and the n-dimensional basis satisfies ψ2

i ∈ LV∞ for each
1 ≤ i ≤ n. The regeneration distribution µ on B(X × U)
satisfies µ(V) <∞.

The transition matrix P̃ for Φ̃ is defined using the proba-
bility µ, and function δ : X×U→ [0, 1]. For any ζ = (x, u)
and set A ∈ B(X × U), the definition of P̃ coincides with
(17) on this larger state space:

P̃ (ζ,A) = (1− δ(ζ))P (ζ,A) + δ(ζ)µ(A)

As in previous section, we let I denote the randomized
function of Φ̃, taking values in {0, 1}, defined via

P{I(n) = 1 | Φ̃n0 , In−10 } = δ(Φ̃(n)), n ≥ 0,

and the distribution of the randomized stopping time T ,
taking values in {0, 1, 2, . . . }, is specified by P{T = 0 |
Φ̃(0)} = δ(Φ̃(0)), and for n ≥ 1,

P{T = n | Φ̃n0 , T ≥ n} = δ(Φ̃(n)).

Next, we recall that Q solves a fixed point equation identical
to (3) for the joint-process:

c(x, u) + βE[Q(Φ(t+ 1)) | Φ(t) = (x, u)] = Q(x, u)
(35)

On letting PQ denote the conditional distribution for the
joint-process,

PQ (x, u):=E[Q(Φ(t+1)) | Φ(t) = (X(t), U(t)) = (x, u)] ,

the fixed point equation (35) can be expressed c+βPQ = Q.
Consequently, the Q function satisfies a fixed point equation
for Φ̃ that is identical to (19):

β[P̃ − δ ⊗ µ]Q = (1− δ)βPQ = (1− δ)(Q− c) . (36)

With the state process lifted in this way, the LS-SARSA
algorithm with exploration is essentially the algorithm con-
structed in the previous section, with X replaced by Φ. The
only difference is the different parameterization (4).

We arrive at the sequence of approximations, θ̂T =
Ξ−1T bT , where the definition is a variation on (30),

bT :=
1

T

T∑
t=1

(
ψg(t)− ψ(Φ̃(t))

)
c(Φ̃(t)) (37)

and the positive matrices {Ξt : t ≥ 0} are generated as
before by the recursion,

Ξt+1 = Ξt+
1

t+ 1

(
ψ(Φ̃(t+1))ψ(Φ̃(t+1))T−Ξt

)
, t ≥ 0 .

V. NUMERICAL EXAMPLES

We now present a examples to illustrate these methods.
For purposes of evaluating an approximation we consider
two types of Bellman error:

Eθ(x) = hθ(x)−
(
cφ(x) + βPφ h

θ(x)
)

(38)

Eθ◦ (x) = min
u

[
hθ(x)−

(
c(x, u) + βPu h

θ(x)
)]

(39)

If θ optimizes (23), then we expect that the first error will
be small on the support of π̃, in a mean-square sense. The
error Eθ◦ will be small only if hθ approximates h∗β .

A. LQR with exploration
Consider first a deterministic linear model on R2, without

control,
X(t+ 1) = AX(t), t ≥ 0

We take a purely quadratic cost function c : R2 → R+. To
impose stability we assume that the eigenvalues of A are
strictly within the unit circle in C. In this case, the assump-
tions for Sec. III are not quite satisfied, but the transformed
chain will be V -uniformly ergodic, with V = 1 + ‖x‖2,
provided µ admits a second moment (i.e., µ(V) <∞).

X2

X1

Exploration
No Exploration

Fig. 1: Sample paths of X and
X̃ under LSTD with exploration.

The value function for
the deterministic model is
of the form hβ(x) = cβ +
xTQx, with Q ≥ 0. There
is not theory to support
the application of standard
TD learning to approxi-
mate hβ because π = δ0.
The value of exploration in
this case is clear: Shown in
Figure 1 is a comparison
of a sample path of X
for a particular example in
which A has complex eigenvalues within the unit circle. The
trajectory spirals to the origin exponentially quickly. The
dashed-line trajectory shows a sample path of X̃ , where µ
is uniformly distributed on [−4, 4]× [−4, 4], and δ(x) = δ =
0.1.

Next, we consider an example to illustrate the application
of LS-SARSA with exploration. Consider the scalar, deter-
ministic model with control, X(t + 1) = 0.8X(t) + U(t).
The discounted total-cost criterion (1) is considered, with
c(x, u) = 1

2 (x2 + u2), and discount factor β = 0.9. The
optimal policy is static gain feedback; for any such policy,
there is a linear relationship between X(t) and U(t), for
all t, which rules out application of standard TD learning
algorithms.

The exploration procedure was defined as follows. When-
ever (X(t), U(t)) lies in the region [−0.2, 0.2]× [−0.2, 0.2],
the process regenerates at time t+1, with probability δ0 > 0;
the regeneration distribution µ is uniform on the square
annulus, [−1, 1]× [−1, 1] \ [−0.2, 0.2]× [−0.2, 0.2].

The LS-SARSA algorithm with exploration was run using
an ideal basis, {ψi} = {x2, xu, u2}. An initial policy was
chosen as linear state feedback, with K = A/18. After each
run, a new policy was obtained using approximate policy
iteration, via (8).

Figure 2 shows results from two experiments. The density
plots and Bellman error plots shown were obtained in the
third iteration of the algorithm; the policy was updated three
times. The density for π̃ is the steady-state distribution for
Φ̃, and the Bellman error is defined in (5), using θ obtained
at the conclusion of the third run.

153

−1
0

1 −1

0

10

1

2

x 10−3

−1
0

1 −1

0

1

0

1

-0.2

0

0.2

−0.5 0.50

-0.2

0

0.2

−0.5 0.50

Minimal ExplorationWith Exploration

De
ns

ity
Be

llm
an

 Er
ro

r
π̃

Fig. 2: LS-SARSA for the scalar LQR model in two experiments,
differentiated by the level of exploration.

The column denoted “With Exploration” is based on δ0 =
0.1, and “Minimal Exploration” is δ0 = 10−4. When using
exploration, the Bellman error was less that 3 × 10−3 over
the range shown. The algorithm failed to converge in the
case of minimal exploration.

B. Dynamic speed scaling

We consider here the example of [4], based on the
controlled-queue models considered in [5]. In the latter
reference, the controlled queue is meant to model dynamic
speed scaling, which is an approach to power management
in computer system design. The goal is to control processing
speed so as to optimally balance energy and delay costs –
reducing (increasing) the speed in times when the workload
is small (large). However, the general model has many
applications. In particular, speed scaling approaches can
be applied in wireless applications (see the aforementioned
references, and the recent work [6] for an investigation of the
analysis of the computation of “cost” in these applications).

The model is a simple controlled random walk (the CRW
model of [13]),

X(t+ 1) = X(t)− U(t) +A(t+ 1), t ≥ 0, (40)

in which X , U , A each evolve on R+, and A is i.i.d.:
Its marginal is supported on R+, with finite mean α, and
variance σ2

A.
The state X(t) represents ‘workload’ in a processor,

or packets in a communication buffer, and U(t) is the
processing rate at time t. Both evolve on R+: That is,
X = U = R+. In addition, we have U(x) = [0, x] for each x.
In computer system applications the following cost function
is well motivated,

c(x, u) = x+ νu2 , (41)

where ν > 0. This is meant to balance the cost of unfinished
work, with the cost in terms of power for high processing
rates.

The associated fluid model is defined by ẋ = u − α,
where α denotes the mean of A(t). The value function (11),
minimized over all u, is derived in [4], in the special case

α = 0 and γ = 0. It has the simple form,

J∗0 (x) = kx3/2 , k = 4/(3
√
ν) . (42)

This solves the DP equation minu{c(x, u)+DF
uJ
∗
0 (x)} = 0,

x ≥ 0, where DF
uh(x) = −u d

dxh(x), for any h : R → R. It
is shown in [4] that J∗0 (x) is a tight approximation to the
ACOE for the stochastic model, under general assumptions
on A.

When γ > 0, we do not have a closed form expression
for the optimal value function. However, we can show that
the function below is a tight approximation,

J∗γ (x) := min

∫ ∞
0

e−γtc(x(t), u(t))dt

≈ Jγ(x) :=
x

γ
(1− exp(−γk√x))

(43)

where k is defined in (42). Observe that Jγ(x)→ J∗0 (x) as
γ ↓ 0, uniformly on any bounded interval.

In view of these results we choose a three dimensional
basis for approximation: hθ = θ1ψ1 + θ2ψ2 + θ3ψ3 for θ ∈
R3, with

ψ1 = x, ψ2(x) = x exp(−γk√x), ψ3 = 1. (44)

We take γ = (1− β)/β, as explained above (11). The value
function approximation given in (43) can be expressed as
a linear combination of {ψ1, ψ2}. The constant is chosen
because the value function hβ grows with increasing β. If
the controlled chain satisfies the assumptions for Sec. III,
then limβ→1(1− β)hβ(x) = π(c) for each x.

The marginal of A was chosen to be the scaled geometric
distribution of the form used in [4], with the scaling factor
denoted by ∆A. For exploration we consider µ to be uni-
formly distributed on [5, 15] and δ(x) ≡ δ = 0.2 (we did
not consider state-dependent regeneration rates). The control
U(t) is taken to be integral multiple of ∆A and is saturated
to lie in U = {0,∆A, · · · , 30}.

For any function h, and any stationary policy φ, the
function Ph is given as follows

Ph (x) =

∞∑
i=0

h([x− φ(x) + ∆Ai])p
i
A(1− pA), (45)

where, [·] denotes projection on R+. For the purposes of
computation, the above sum will be truncated to i ≤ Napprox.
In all of our experiments we took Napprox = 100, ∆A = 1/24,
and pA = 0.96.

To illustrate the importance of exploration, we choose for
the initial policy U0(t) = X(t). That is, φ0(x) = x. This
results in a minimal state process, X(t) = A(t) for t ≥ 1, but
is very costly for non-zero ν: The resulting value function
(1) is quadratic,

h0(x) = x+ νx2 +
β

1− β (α+ ν(v2A + α2))

The optimal value function h∗β for the discounted-optimal
control problem has linear growth. It is easily shown that
x−1h∗β(x)→ (1− β)−1, as x→∞.

154

Eθ(x)

No exploration
With exploration

Eθ
◦ (x)

x

1

3

5

Iteration

100

0

0

0

2

4

5

10

0 5 10 15 0 5 10 15

Fig. 3: LSTD, with and without exploration, in the dynamic speed
scaling model.

The results of some of our experiments are illustrated in
Figure 3. The three rows correspond to iterations 1, 3, and 5
of approximate policy iteration. With or without exploration,
in this example we see rapid convergence, in the sense that
the Bellman error (39) becomes small after just four or
five iterations. The column on the left shows the pair of
histographs for X̃ and X , obtained respectively with and
without exploration. Exploration led to a distribution with
broader support. The column on the left also shows the
policy-specific Bellman error (38): Exploration reduces this
error significantly for larger values of x.

VI. CONCLUSIONS

We have shown how a simple restart mechanism leads to
a new version of TD-learning that allows for exploration. In
particular, value function approximation for a given policy is
possible even for deterministic systems for which the state
and action sequence converge to an equilibrium.

There are many open questions. We are interested in
performance bounds for approximate policy iteration for
TD-learning or SARSA with exploration. In the case of
SARSA with exploration, we believe that the regenerative
structure of the chain {Φ̃(t), I(t), ψg(t)} will lead to simple
characterization of ergodicity, but this requires further study.
Also, we believe that this regenerative structure will simplify
extension to the average-cost value function approximation,
perhaps leading to algorithms with reduced variance as
compared to the TD-learning algorithm introduced in Ch. 11
of [13].

We are also considering various applications of these
techniques, to control and to anomaly detection.

REFERENCES

[1] Dimitri P. Bertsekas and Huizhen Yu. Q-learning and enhanced
policy iteration in discounted dynamic programming. In 49th IEEE
Conference on Decision and Control (CDC), pages 1409 –1416, 2010.

[2] D.P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Atena Scientific, Cambridge, Mass, 1996.

[3] V. S. Borkar. Stochastic Approximation: A Dynamical Systems
Viewpoint. Hindustan Book Agency and Cambridge University Press
(jointly), Delhi, India and Cambridge, UK, 2008.

[4] Wei Chen, Dayu Huang, Ankur A. Kulkarni, Jayakrishnan Unnikrish-
nan, Quanyan Zhu, Prashant Mehta, Sean Meyn, and Adam Wierman.
Approximate dynamic programming using fluid and diffusion approx-
imations with applications to power management. In Proc. of the 48th
IEEE Conf. on Dec. and Control, pages 3575–3580, 2009.

[5] Jennifer M. George and J. Michael Harrison. Dynamic control of a
queue with adjustable service rate. Operations Research, 49(5):720–
731, September 2001.

[6] P. Grover, K.A. Woyach, and A. Sahai. Towards a communication-
theoretic understanding of system-level power consumption. Arxiv
preprint arXiv:1010.4855. Submitted to IEEE J. on Selected Areas in
Communication, 2010.

[7] D. Huang, W. Chen, S. Mehta, P. Meyn, and A. Surana. Feature
selection for neuro-dynamic programming. In F. Lewis, editor,
Reinforcement Learning and Approximate Dynamic Programming for
Feedback Control. Wiley, 2011.

[8] M. Huang, P. E. Caines, and R. P. Malhame. Large-population
cost-coupled LQG problems with nonuniform agents: Individual-mass
behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat.
Control, 52(9):1560–1571, 2007.

[9] I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems
for geometrically ergodic Markov processes. Ann. Appl. Probab.,
13:304–362, 2003. Presented at the INFORMS Applied Probability
Conference, NYC, July, 2001.

[10] I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the
spectral theory of multiplicatively regular Markov processes. Electron.
J. Probab., 10(3):61–123 (electronic), 2005.

[11] S. Mannor, I. Menache, and N. Shimkin. Basis function adaptation
in temporal difference reinforcement learning. Annals of Oper. Res.,
134(2):215–238, 2005.

[12] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum
principle. In Proc. of the 48th IEEE Conf. on Dec. and Control, pages
3598–3605, Dec. 2009.

[13] S. P. Meyn. Control Techniques for Complex Networks. Cambridge
University Press, Cambridge, 2007. Pre-publication edition available
online.

[14] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic
stability. Cambridge University Press, Cambridge, second edition,
2009. Published in the Cambridge Mathematical Library. 1993 edition
online.

[15] Sean Meyn, Wei Chen, and Daniel O’Neill. Optimal cross-layer
wireless control policies using td learning. In Proc. of the 49th IEEE
Conf. on Dec. and Control, pages 1951 –1956, 2010.

[16] C.C. Moallemi, S. Kumar, and B. Van Roy. Approximate and data-
driven dynamic programming for queueing networks. Submitted for
publication., 2006.

[17] E. Nummelin. General Irreducible Markov Chains and Nonnegative
Operators. Cambridge University Press, Cambridge, 1984.

[18] G. A. Rummery and M. Niranjan. On-line Q-learning using connec-
tionist systems. Technical report 166, Cambridge Univ., Dept. Eng.,
Cambridge, U.K. CUED/F-INENG/, 1994.

[19] S. Shirodkar and S. Meyn. Quasi stochastic approximation. In Proc.
of the 2011 American Control Conference (ACC), pages 2429–2435,
July 2011.

[20] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence
results for single-step on-policy reinforcement-learning algorithms.
Mach. Learn., 38:287–308, 2000.

[21] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2010.

[22] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE Trans. Automat. Control,
42(5):674–690, 1997.

[23] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, UK, 1989.

[24] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3-4):279–292, 1992.

[25] H. Yu and D. P. Bertsekas. Q-learning algorithms for optimal stopping
based on least squares. In Proc. European Control Conference (ECC),
July 2007.

155

