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Abstract— Modeling of biological signal pathways forms the
basis of systems biology. Also, the problem of identifying
dynamics of biological networks is of critical importance in
order to understand biological systems. In this paper, we
propose a data-driven inference scheme to identify dynamics
with a local point of view, the Jacobian matrix. A graph model
is a natural way to represent a biological signal pathway and
doesn’t require any constraints on dynamics such as mass action
kinetics or Hill function representations, used in Ordinary
Differential Equation (ODE) models. A graph is a set of vertices
which represents state, and a set of edges which depicts the
relationship or connection between two or more states. Once a
system is abstracted by a graph, in order to identify the activity
level of the corresponding interactions based on a given data
set, we reformulate the problem as a Linear Quadratic (LQ)
Optimal Control problem by transforming the unknown entries
of the activity of edges into the control inputs of the LQ setting.
In the formulation of the LQ problem, we use an adjacency map
as a priori information and define a performance index which
both drives the connectivity of the graph to match the biological
data as well as generates a sparse network. Through simulation
studies on simple examples, it is shown that this scheme can
help to capture the topological change of a biological signal
pathway and show the influence or activity of each edge over
time. Also, we sketch briefly the potential application of this
approach to correcting the graph model.

I. INTRODUCTION

Systems biology problems focus on modeling or recon-
struction of a biological network in which many variables
interact with each other over time. Many current data-driven
inference algorithms such as Bayesian analysis [1][2][3]
are limited in their ability to represent temporally evolving
dynamics. Also, many existing modeling methods in systems
biology assume a physical model is given, as an ODE
model, for example, and try to estimate a large number
of parameters, reaction rates for example, based on the
given system [4][5][6][7]. But these assumptions about the
model structure could be problematic. For example, a key
assumption of a mass action kinetics model is that there is
large number of molecules which are homogeneously mixed,
an assumption which may fail inside a cell because there are
only a few molecules governing the reaction. These dynamics
might be best modeled using discrete transitions. Therefore,
theory-driven modeling such as mass action kinetics requires
a good understanding of the dynamics of the signal pathway.
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Since a graph is a natural way to represent a biological
system, if a system can be abstracted into a graph, it might
help to understand the underlying dynamics of the system[8].
To address modeling of biological networks without any
prejudices of structure, we focus our attention on identifying
time varying linear models of sparse biological networks
represented as graphs. With this approach in mind, our
question becomes how to infer dynamics from a set of data
and how to find the most reasonable model among many
possible configurations, since our problem formulation has
fewer constraints than theory-driven mechanism modeling. In
[9], we presented a precursor to this algorithm for discrete
time.

In order to find the most biologically reasonable configura-
tion among many representations, we formulate this problem
using LQ optimal control with a given graph model. One of
the main strengths of our method is the ability to capture
key pathways or important influences over time which we
use to identify the dynamics. Also, unlike existing ODE-
based approaches, we only impose a few constraints such as
a graph structure in our model.

The rest of this paper is organized as follows: in Section
II and III, we present a problem formulation with a graphical
model and reformulate it as an LQ optimal control problem.
In Section IV, we apply the proposed algorithm to simple
examples through simulation studies. Moreover, we briefly
mention a possible application to correction of a priori graph
structure.

II. PROBLEM STATEMENT

We define a state vector x(t) = [x1(t), ..., xn(t)]T , the
components of which represent concentrations of proteins or
states in a biological network. It is assumed that the state of
network evolves over time and this evolution of state x(t) can
be usually modeled using an ordinary differential equation
(ODE):

ẋ = f(x, p) (1)

where p is a parameter set. Many studies in systems biology
impose a structure on f(·), such as mass action kinetics or
Hill function dynamics, and identify parameters using least-
square criteria. In this paper, however, we are interested
in finding the time varying influence map which can be
formulated as a time varying linear system. In this, we
are motivated by the methodology of [10]. The nonlinear
dynamic system (1) can be approximated by a time varying
linear system based on forming the Jacobian around steady
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states as shown below:


δẋ1(t)
δẋ2(t)
...

δẋn(t)

 =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

... ... ... ...

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn



δx1
δx2
...
δxn

 = G(t)δx(t)

(2)
where we assume there is no parameter variation (δp =
0). A system in the form of (2) can be considered as a
temporally evolving weighted directed graph. Then, G(t)
is a time-varying adjacency matrix, or influence matrix, of
dimension n× n which describes the temporal evolution of
the edges with strength change. In general, G(t) is a sparse
matrix[11][12][13]:

Gi,j(t) =
∂fi
∂xj

=

{
6= 0 if node j can affect node i directly
= 0 otherwise

(3)
where Gi,j(t) is non-zero if there exists a direct connection
between node j (input node) and node i (output node).
Otherwise, Gi,j(t) is zero.

Definition. Let G(t) be a time-varying adjacency matrix
which represents a dynamic graph with n nodes and k
edges where k is the number of candidate edges from a
priori information. The component of G(t), denoted e(t) =
comp(G(t)), is a k×1 vector whose elements are the nonzero
entries of G(t)[13].

Fig. 1. A simple graph model.

Example 1. Consider the dynamic graph shown in Figure 1.
Following the conventions introduced above, the correspond-
ing adjacency matrix G(t) has the form:

G(t) =


0 e21 0 e41
0 0 0 0
e13 0 0 e43
0 e24 0 0

 (4)

Its component e(t) is constructed by extracting the nonzero
elements from each column, which produces the vector:

e(t) = [e13, e21, e24, e41, e43]T =: [e1, e2, e3, e4, e5]T (5)

Using e(t), we can reformulate system (2) as follows (for

Example 1, n = 4, k = 5):
ẋ1
ẋ2
ẋ3
ẋ4


n×1

=


0 e21 0 e41
0 0 0 0
e13 0 0 e43
0 e24 0 0


n×n


x1
x2
x3
x4


n×1

=


0 x2 0 x4 0
0 0 0 0 0
x1 0 0 0 x4
0 0 x2 0 0


n×k


e13(t)
e21(t)
e24(t)
e41(t)
e43(t)


k×1

= A(x)e(t)

= e1(t)


0
0
x1
0

+ e2(t)


x2
0
0
0

+

e3(t)


0
0
0
x2

+ e4(t)


x4
0
0
0

+ e5(t)


0
0
x4
0

 (6)

where A(x) ∈ Rn×k is a linear function of x, which can be
constructed from a priori information, representing possible
influence modes of biological networks. For example, the
first mode, [0 0 x1 0]T in equation (6) shows that node
1 activates node 3 (i.e, x1 → ẋ3 → x3) in Figure 1.
Also, each ei(t) represents a time varying coefficient or an
activity of i-th mode ∈ Rn×1. Therefore, we can assign the
network topology by adding edges, for example, if there are
suspicious interactions among nodes.

Here, we are using a similar notion to modal analysis in
mechanical vibration systems but the main difference is that
our mode is constructed by a graph model. For example,
each ei(t) is similar to a generalized coordinate in modal
analysis and each column vector (influence mode) represents
the eigenvector in modal analysis. In order to find all ei(t)
which drive our system dynamics with influence modes, we
formulate a Linear Quadratic (LQ) optimal control problem,
as a regulation problem (x(t) → xd(t)) with control inputs
both e(t) and ė(t). Once we solve the LQ problem, ei(t)∗

shows the optimal activity or sequence of each mode over
time which drives our dynamic system to match biological
data.

III. TIME VARYING LINEAR SYSTEM

In order to formulate the LQ optimal control problem, we
define the controlled system as follows:

dx(t)

dt
= A(x)e(t) (7)

and the optimal control is sought to minimize the quadratic
performance index as follows:

J =
1

2
(x(tf )− xd(tf ))TS1(x(tf )− xd(tf ))

+
1

2

∫ tf

0

{[x(t)− xd(t)]TQ1[x(t)− xd(t)]

+ė(t)TRė(t) + e(t)TQ2e(t)}dt (8)
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where S1, Q1 and Q2 are positive semidefinite matrices
and R is a positive definite matrix. The LQ problem as
formulated above is concerned with tracking of the desired
trajectory (xd(t), biological data). In the performance index
J , the first term penalizes the deviation of x(tf ) from the
desired trajectory at the final time. Inside the integral, the
first term penalizes the transient deviation of x(t) from the
desired trajectory xd(t) which represents the error dynam-
ics. The second penalizes the change of activity of edges
(dynamic graph) which attempts to minimize the variation
of activity of edges over time (smoothly evolving). Also,
the third term penalizes the activities of edges. Therefore,
the second and third term attempt to achieve a sparse and
smoothly evolving biological network. In order to use a
general LQ framework, first, we define ė(t) = v(t) and
x̄(t) = x(t) − xd(t). Here, we assume that we know xd(t)
and ẋd(t) for 0 ≤ t ≤ tf because once we have xd(t) then
we can get ẋd(t) by using the derivative of a polynomial
fitting. We define an (n+ k)× 1-dimensional state X(t) =
[x̄(t)T , e(t)T ]T . Then, the state equation for the enlarged
state vector can be formulated as follows:
d

dt

[
x̄(t)
e(t)

]
=

[
0n×n A(x)n×k

0k×n 0k×k

] [
x̄(t)
e(t)

]
+

[
−ẋd(t)
v(t)

]
= A(x)X(t) +

[
−ẋd(t)
0k×1

]
+

[
0n×1

v(t)

]
= A(x)X(t) +W (t) + V (t) (9)

where A(x) is also a linear function of x. Note that the
augmented system is still a linear system because there is no
multiplication between A(x) and x̄(t). Also, the performance
index (8) can be written as follows:

J =
1

2
X(tf )T

[
S1 0
0 0

]
X(tf ) +

1

2

∫ tf

0

{X(t)T
[
Q1 0
0 Q2

]
X(t)

+V (t)T
[
0 0
0 R

]
V (t)}dt

=
1

2
X(tf )TSX(tf ) +

1

2

∫ tf

0

{X(t)TQX(t) +

V (t)TRV (t)}dt (10)

The problem is now reformulated as a standard LQ problem
with the exception of R which is a singular matrix. However,
we are interested in v(t) so the solution of the continuous
time LQ problem is given by the state feedback control law
as shown below:

V (t) = −R+P (t)X(t) = −
[
0 0
0 R−1

]
P (t)X(t)

=

[
0

v∗opt(t)

]
(11)

−dP (t)

dt
= A(x)TP (t) + P (t)A(x)− P (t)TR+P (t)

+Q (12)

where P (tf ) = S and (12) is a Riccati equation.

Proof:
(for convenience, we will use abbreviated notations

without (x), (t))

∫ tf

0

d

dt
{XTPX}dt

= X(tf )TP (tf )X(tf )−X(0)TP (0)X(0)

=

∫ tf

0

{ẊTPX +XT ṖX +XTPẊ}dt

=

∫ tf

0

{(AX +W + V )TPX +XT ṖX

+XTP (AX +W + V )}dt (13)

Select P which satisfies following equation:

ATP +
dP

dt
+ PA = −Q+ PTR+P, P (tf ) = S (14)

Using P , we can reformulate (13) as follows:

0 = −1

2
X(tf )TSX(tf ) +

1

2
X(0)TP (0)X(0)

+
1

2

∫ tf

0

{XT (−Q+ PTR+P )X

+(W + V )TPX +XTP (W + V )}dt (15)

Then, we can combine the cost function (8) and above
equation as follows:

J =
1

2
X(0)TP (0)X(0) +

∫ tf

0

{XTPTR+PX

+(W + V )TPX +XTP (W + V ) + V TRV }dt
(16)

We have the following relation because of the specific
structure of R, V and W as follows:

V TRV =
[
01×n v(t)T

] [0n×n 0n×k

0k×n Rk×k

] [
0n×1

v(t)

]
=

[
−ẋd(t)T v(t)T

] [0n×n 0n×k

0k×n Rk×k

] [
−ẋd(t)
v(t)

]
= (W + V )TR(W + V ) (17)

Using this relation, we can reformulate J as follows:

J =
1

2
X(0)TP (0)X(0) +

∫ tf

0

{XTPTR+PX

+(W + V )TPX +XTP (W + V )

+(W + V )TR(W + V )}dt

=
1

2
X(0)TP (0)X(0) +∫ tf

0

{(R+PX +W + V )TR(R+PX +W + V )}dt

(18)

To minimize J , Vopt = −R+PX −W but as we defined
the structure of V and W in equation (9), V only satisfies
the following condition: V ∗ = −R+PX . However, when
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we plug in V ∗, the optimal cost is J∗ =
1

2
X(0)TP (0)X(0)

which is the same as using Vopt since WTRW = 0.

Note that the Riccati equation (14) includes A(x) term in
A, yet we can handle this easily by replacing x by xd:
this trick is reasonable because our optimal control input,
v∗opt(t), drives x(t) to xd(t) by choosing proper Q1, Q2

and R. Otherwise, we would have to solve a Two Point
Boundary Value Problem (TPBVP) by numerical iteration.

Proposition. The Ricaati equation (14) can be solved by
replacing x by xd, using Q,R which drive x to xd.

Proof: Consider L = XTP2X as a Lyapunov function,
then we can differentiate a Lyapunov function as follows:

L̇ = XT {A(x)TP2 + Ṗ2 + P2A(x)}X
+(W + V )TP2X +XTP2(W + V ) (19)

Select a Riccati equation which satisfies A(xd)TP2 + Ṗ2 +
P2A(xd) = −Q + PT

2 R+P2 and consider ∆A satisfying
A(xd) = A(x) + ∆A, then we can reformulate the Riccati
equation as follows:

A(x)TP2 + Ṗ2 + P2A(x)

= −Q+ PT
2 R+P2 − (∆ATP2 + P2∆A) (20)

where intuitively, if x→ xd, ∆A becomes zero matrix.
Also, we can reformulate L̇ as follows:

L̇ = XT {−Q+ PT
2 R+P2 − (∆ATP2 + P2∆A)}X

+(W + V )TP2X +XTP2(W + V ) (21)
= −XTQX +

(R+PT
2 X + (W + V ))TR(R+PT

2 X + (W + V ))

−(W + V )TR(W + V )−XT (∆ATP2 + P2∆A)X

(22)

We pick the optimal input V = −R+PT
2 X and we can

use the relations (W + V )TR(W + V ) = V TRV =
XTPT

2 R+P2X and WTRW = 0:

L̇ = −XTQX +WTRW − (W + V )TR(W + V )

−XT (∆ATP2 + P2∆A)X (23)
= −XT (Q+ PT

2 R+P2 + ∆ATP2 + P2∆A)X

(24)

Thus, by choosing Q,R large enough to guarantee L̇ < 0,
we can drive x→ xd (i.e., ∆A becomes zero matrix).
Also, we can evaluate the dynamic graph e(t) by integration:

e∗(t) =

∫ t

0

v∗opt(τ)dτ (25)

Therefore, this proposed LQ optimal control framework al-
lows us to capture pivotal development events and dynamics
of the temporally evolving system.

IV. NUMERICAL EXAMPLE

In this section, we consider numerical examples to
illustrate the proposed scheme. In order to understand the
method, we present the procedure step by step with a
biological system.

Example 2. [Biological Signaling Pathways] Consider the
system of coupled positive and negative feedback networks
as follows [14]:

dA

dt
= k1h(out, τA)(10−A)− k2A

dB

dt
= k1h(out, τB)(10−A)− k2B (short term)

dC

dt
= k1h(out, τC)(10− C)− k2C (long term)

dO

dt
= (kstiS + fAA+ fCC)(10−O)− (fBB + kmin)O

(26)

where ksti = 0.04, kmin = 0.4, fA = 0.012, fB = 1.5,
fC = 0.008, k1 = 0.2, k2 = 0.25, τA = 5, τB = 0, τC = 10

and h(out, τ) =
out(t− τ)3

out(t− τ)3 + 13
. Here, we consider the

(a)

(b)

Fig. 2. (a) A graph model of simple biological network (b) simulation result
(PN feedback (for short-term) and PP feedback (for long-term behavior)).
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(a) (b) (c)

Fig. 3. (a) x and xd (b) the activity of edges (c) ẋ and ẋd

change of topology of the network (for the short term,
Positive Negative (PN) feedback (A,B only) and for the
long term, Positive Positive (PP) feedback (A,C only))[14].
In Figure 2, we can see that output signal (O) goes to
zero once the stimulation (S) or input signal goes to zero
for short term behavior because of PN feedback. However,
for the long term, even a small pulse input can make the
output signal stay with high amplitude because of PP feed-
back. Define xd(t) = [x1, x2, x3, x4, u] = [O,A,B,C, S],
e(t) = [e21, e31, e41, e12, e13, e14, e15] and the a priori map
as shown in Figure 2 (a). Then, a time varying linear system
can be formulated as follows:


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 0 x2 x3 x4 u
x1 0 0 0 0 0 0
0 x1 0 0 0 0 0
0 0 x1 0 0 0 0





e21
e31
e41
e12
e13
e14
e15


(27)

Here, we introduce constraints that all edges eij(t) are
positive, representing activation edges. Therefore, for
inhibition edges such as e13(t), we replace x3 by −x3 in
order to satisfy our constraints. Also, we use a gradient
projection method for constrained optimization which makes
our feasible solution satisfy these constraints.

Figure 3 shows that the optimal activities of all edges
(e(t)) cannot drive our system to be consistent with de-
sired output (biological data) at some points. This result
is expected because our simulation data are generated by
equation (26) which includes self-degradation terms such as

Fig. 4. A modified graphical model of the simple biological network of
Figure 2 (a).

−k2A,−k2B,−k2C. However, in our graphical represen-
tation in Figure 2 (a), there are no self-degradation edges
so there is no way to decrease the concentration of states
themselves. Therefore, if our graphical model cannot repre-
sent the experimental data, we should suspect our graphical
model and update or modify by adding new edges, which
are self-degradation edges (e11, e22, e33, and e44) as shown
in Figure 4.

Figure 5 shows that the optimal control input can drive
our system to be consistent with desired output quite well.
Here we have included degradation edges (e11, e22, e33, e44)
so it can reflect the underlying dynamics (26). Also, we can
understand the behavior with a systematic point of view.
For example, we can see that for the short term, the edges
(e21, e31, e13) related to [A] and [B] are activated, meaning
PN feedback. For long term, the edges related to [A] and
[C] are activated, showing PP feedback (e21, e12, e41, e14).
Also, for example, e21(t) shows a step input at the point at
which [A] start to increase. We can interpret this pulse as a
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(a) (b) (c)

Fig. 5. (a) x and xd (b) the activity of edges (c) ẋ and ẋd.

trigger which activates the relation between x1 and x2. Once,
e21(t) shows zero value meaning that the edge is deactivated
(switched off). Therefore, by using a continuous model, we
can capture the underlying dynamics or key signal pathways
over time. Also, this method can be useful to build time series
models with fine sampled data set such as neural activities
and identify general systems with graphical representation.

V. CONCLUSIONS

In this paper, we proposed a data-driven inference method
in order to understand and identify underlying dynamics for
temporally evolving biological networks with a local point
of view. The identification problem has led to an LQ control
problem with two main penalty functions by which we can
match the experimental data with a sparse representation
using a priori information of structure. We show that the
proposed schemes can be useful to capture the dynamic
evolution of the network and understand the biological
system with a systems point of view through examples.
A logical next step would be to develop a theory-driven
mechanism model such as an ODE by understanding the
actual dynamics. Also, we presented the possible application
of correcting graph model.
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