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Abstract— This paper presents a formulation of controlled
geometric reduction with one degree of underactuation for
mechanical systems with an unactuated cyclic variable subject
to passive damping. We show that the first control term in the
fully actuated case reduces to passive joint-velocity feedback,
which can be equivalently provided by viscous friction. The
underactuated control strategy is applied to a five-link 3D biped
with a hip, torso, knees, and unactuated yaw at the foot contact
point. We show asymptotically stable walking in the presence
of passive yawing for realistic friction coefficients.

I. INTRODUCTION

Human walking is a dynamic task involving distinct phases
of static instability. Motor control of this task is challenged
by different forms of underactuation during a gait cycle. A
dynamic walking biped engages in controlled falling during
single-support phase, where gravity and momentum propel
the center of mass along a pendular arc causing the support
foot to passively rotate about different contact points from
heel-strike to toe-off. In addition to pitching in the sagittal
plane-of-motion, body dynamics induce yawing about the
gravity vector at these contact points. The human ankle joint
provides substantial actuation in the sagittal plane through
plantar/dorsiflexion and some actuation in the frontal plane
through inversion/eversion, but internal/external rotation (i.e.,
yaw) of the stance leg is mostly passive [1].

Different control strategies have been proposed to confront
these forms of underactuation in walking robots. Works
based on hybrid zero dynamics model the foot/ankle as a
point with passive degrees of freedom (DOFs) [2]–[5]. This
method has produced walking without ankle actuation on the
planar testbeds RABBIT [3] and MABEL [4], and recent
work has simulated 3D walking with yaw rotation [5].

Controlled geometric reduction [6]–[10] uses symmetry-
based momentum constraints to create zero dynamics corre-
sponding to planar bipeds that are known to have passively
stable gaits (i.e., gravity-powered walking down shallow
slopes [11]). This approach exploits the natural existence of
limit cycles in the sagittal plane as a sufficient condition
for generating gaits in actuated 3D bipeds. Feet with fixed
yaw are modeled in [10] to demonstrate that reduction-based
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control is robust to phases of underactuation associated with
non-flat foot contact with ground. However, this body of
work has not considered the steady form of underactuation
associated with passive yaw rotation.

This paper derives an underactuated formulation of con-
trolled reduction that produces 3D walking in the presence
of passive yawing. We constrain our investigation to a fixed
contact point by modeling the biped with point feet. Section
II introduces the momentum constraints induced by cyclic
variables (i.e., invariants in dynamics) and passive joint-
velocity feedback. We use these constraints in Section III
to show that controlled reduction can be achieved with an
unactuated cyclic variable subject to passive damping. This
controller produces locally exponentially stable walking gaits
for a five-link 3D biped in Section IV. We conclude in
Section V with discussion and future work.

II. LAGRANGIAN MECHANICS AND SYMMETRY

We consider the class of n-DOF mechanical systems with
configuration space Q = Rn, where the state (q, q̇) in tangent
bundle TQ ∼= R2n consists of configuration q ∈ Q and
tangential velocity q̇ ∈ Rn. The system dynamics are derived
from the Lagrangian L : TQ→ R, given in coordinates by

L(q, q̇) = 1
2 q̇
TM(q)q̇ − V(q), (1)

where V(q) is the potential energy and n × n symmetric,
positive-definite M(q) is the mass/inertia matrix. System
integral curves satisfy the Euler-Lagrange (E-L) equations

d
dt∇q̇L−∇qL = τ, (2)

where τ ∈ Rn contains the external joint torques. This
second-order system of ordinary differential equations gives
the dynamics for the actuated mechanism in phase space TQ:

M(q)q̈ + C(q, q̇)q̇ +N(q) = Bu, (3)

where n×n-matrix C(q, q̇) contains the Coriolis/centrifugal
terms, vector N(q) = ∇qV(q) contains the potential torques,
and n × m-matrix B (full row rank) maps actuator input
vector u ∈ Rm to joint torques τ = Bu ∈ Rn for m ≤ n.

Conservation Laws. Symmetry of the system Lagrangian
implies a conservation law by Noether’s theorem [12], i.e., a
physical quantity of the system is conserved by the dynamics.
We are interested in conservation laws that can be expressed
as nonholonomic constraints of the form

Jc(q)q̇ = b(q), (4)

where Jc ∈ Rk×n has rank k < n. The system dynamics
restricted to the invariant level-set

Z = {(q, q̇) | Jc(q)q̇ − b(q) = 0} (5)
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then correspond to lower-dimensional zero dynamics. We
now discuss the kind of symmetries that we will use to design
a desirable submanifold Z for controlled reduction.

Cyclic Variables. Let Lagrangian L be defined in coordi-
nates of configuration space Q = G×S, where G = Rk is the
configuration symmetry group and S = Rn−k is the shape
space. We are interested in symmetries of L characterized
by cyclic variables qc ∈ G, such that

∇qcL = 0. (6)

If these cyclic variables are free from external and actuator
forces, equations (2) and (6) imply that the generalized
momenta pc = ∇q̇cL conjugate to the cyclic coordinates are
constant. The dynamics then evolve on the invariant level-
set (5) of these conserved momentum quantities, where Jc =
[Ik×k 0k×n−k]M and b(q) = µ for some constant vector µ.
Routhian reduction uses these constraints to directly relate
full-order integral curves on phase space TQ to reduced-
order integral curves on phase space TS, and vice versa.

In the case of mechanical systems, often only the world
coordinates are cyclic, e.g., position and orientation of the
stance foot. However, extensive symmetries known as recur-
sively cyclic variables exist in subsystems of open kinematic
chains, a general property proven in [7], [8]. The rigid-body
inertia matrix M can be expressed in relative coordinates
to be independent of (cyclic) variable q1. The lower-right
n − 1 × n − 1 submatrix is additionally independent of q2,
and the lower-right n− 2× n− 2 submatrix is independent
of q3. This nested cyclic structure holds recursively through
the inertia matrix until a branch in the kinematic chain [8].

Many systems have an unactuated cyclic variable and actu-
ated shape variables (e.g., bipedal runners in flight phase), for
which stability can be achieved by breaking the momentum
conservation law with a rotary spring in the cyclic coordinate
[13]. We will instead use passive damping to replace the
existing conservation law with a new functional momentum
law that controls the cyclic variable.

Controlled Momentum Constraints. Our controlled ver-
sion of Routhian reduction shapes the conservation laws
arising from cyclic variables [6]–[8], [14]. These controlled
momentum constraints will uniquely describe the dynamics
of the constrained coordinates qc ∈ Rk in terms of the
reduced coordinates qr ∈ Rn−k, where q = (qTc , q

T
r )T .

Although the generalized momentum is typically defined
as p̃ := ∇q̇L = Mq̇, multistage controlled reduction exploits
the recursively cyclic structure of the inertia matrix by
considering the momentum p := M̂ q̇, where matrix M̂ is
defined by upper-triangular blocks from M :

M̂(q) =

(
M̂c(qc, qr) Mc,r(qc, qr)

0 Mr(qr)

)
, (7)

where M̂c ∈ Rk×k is the upper-triangular part of the top-
left k × k submatrix in M , and Mc,r ∈ Rk×(n−k), Mr ∈
R(n−k)×(n−k) are, respectively, the top-right and bottom-
right submatrices in M . The first k momentum terms are

pc :=
[
Ik×k 0k×(n−k)

]
M̂ q̇, (8)

which we wish to constrain in order to control coordinates
qc to neighborhoods around set-points q̄c ∈ Rk (cf. [14]):

pc = −K(qc − q̄c)
⇔

[
M̂c Mc,r

]
q̇ = −K(qc − q̄c) (9)

⇔ q̇c = −M̂−1
c [K(qc − q̄c) +Mc,r q̇r] , (10)

where gain matrix K ∈ Rk×k is constant, diagonal, and
positive-definite. These momentum constraints define the
smooth, invariant, (2n − k)-dimensional submanifold Zq̄c
as in (5), where Jc = [M̂c Mc,r] has row rank k and
b = −K(qc − q̄c) is continuously parameterized by q̄c.

Due to the recursively cyclic and upper-triangular structure
of M̂ , it is easily shown that scaling matrices M̂−1

c K and
M̂−1
c Mc,r have no dependence on configuration elements

q1,..,i in row i, for i ∈ 1, .., k. We then see that equation (10)
represents a homogeneous first-order linear system in qc with
time-varying coefficients based on trajectories (qr(t), q̇r(t)).
The diagonal blocks of inertia matrix M are positive definite,
implying that M̂−1

c K is also positive definite. System (10)
then has negative gain linearity in qc, by which we can prove
the existence of a unique T -periodic orbit (q∗c (t), q̇∗c (t)) in a
neighborhood about q̄c given the existence of a T -periodic
orbit (q∗r (t), q̇∗r (t)). We can similarly prove that asymptotic
convergence to the reduced orbit implies asymptotic con-
vergence to the constrained orbit [14]. These constraints
decompose the control problem into upper triangular form,
allowing us to construct limit cycles for locomotor patterns
in a manner analogous to forwarding/backstepping [15].

The first of these k constraints is achieved with passive
joint-velocity feedback (e.g., viscous damping from friction),
which we will exploit in underactuated controlled reduction.

Lemma 1: Letting q1 in configuration vector q correspond
to the first DOF and ∂

∂q1
V = 0, then passive feedback

τ1 = −K1q̇1, for K1 > 0, (11)

in system (2) implies the functional conservation law

[1 0Tn−1]Jc(q)q̇ = −K1(q1 − q̄1) (12)

for some constant q̄1 satisfying initial boundary condition

p1(t0) = −K1(q1(t0)− q̄1). (13)

Proof: Recursively cyclic M and ∂
∂q1

V = 0 imply that
q1 is cyclic, so plugging (11) into (2) implies ṗ1 = −K1q̇1.
Momentum p1 is no longer conserved as a constant but rather
as a function by the fundamental theorem of calculus:

p1(t) = p1(t0)−
∫ t

t0

K1q̇1(τ)dτ

= p1(t0)−K1(q1(t)− q1(t0)).

Given (13), then p1(t) = −K1(q1(t)− q̄1) for all t ≥ t0.
Remark 1: Every initial condition has an associated con-

servation law, so we have rendered invariant infinitely-many
submanifolds, each parameterized by q̄1:

Zq̄1 = {(q, q̇) | [1 0]Jc(q)q̇ +K1(q1 − q̄1) = 0}. (14)
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This so-called foliation of manifold TQ will be the result of
underactuated controlled reduction in Section III.

Lemma 1 suggests that viscous damping, whether from a
mechanical damper or friction, will be helpful in enforcing
the constraints needed for controlled reduction.

III. CONTROLLED GEOMETRIC REDUCTION

We now render the reduced dynamics (e.g., the sagittal
plane of a biped) decoupled from the coordinates constrained
by (9). Although Lagrangian/energy shaping is used in [6],
[7], we will instead insert joint accelerations that directly
enforce the desired constraints and decouple the reduced
coordinates as in the fully actuated approach of [9].

Constraint Jacobian Jc = [M̂c Mc,r] maps joint veloci-
ties to momenta in first-order constraint (4), but this Jacobian
can also map joint accelerations to torques. We take the time-
derivative of (4) to obtain the second-order constraint

Jcq̈ = −J̇cq̇ + ḃ, (15)

where J̇c = [
˙̂
Mc Ṁc,r] and ḃ = −Kq̇c. This second-order

constraint, which does not depend on set-point q̄c, renders
invariant infinitely-many first-order submanifolds Zq̄c in a
foliation of TQ. This includes all possible conservation laws
provided by passive feedback in Lemma 1.

We now design joint accelerations q̈d ∈ Rn that enforce
(15) and follow a reference acceleration q̈ref = (q̈Tcd , q̈

T
rd

)T ∈
Rn within the constraint nullspace. This can be interpreted
in terms of hierarchical operational space control [16], where
constraint enforcement is the primary task and tracking q̈ref is
a secondary task that complies with the primary. All solutions
for this desired acceleration can be given by

q̈d = J−c (−J̇cq̇ −Kq̇c) + (I − J−c Jc)q̈ref , (16)

where J−c ∈ Rn×k denotes any generalized inverse of Jc
(i.e., a matrix such that JcJ−c Jc = Jc).

Since Jc is full row rank, we can choose an inverse of
the form J−c = WJTc (JcWJTc )−1, where W ∈ Rn×n
is a positive definite weight matrix that manipulates how
accelerations q̈ref are projected into the null space of the
constraints. We choose W = M̂−T to find that J−c =
[M̂−Tc 0]T , so the nullspace projector takes the simple form

(I − J−c Jc) =

[
0 −M̂−1

c Mc,r

0 I

]
. (17)

This choice of weight matrix (and nullspace projector)
renders orthogonal the projections of the constrained and
unconstrained dynamics (recall that Jc is defined by M̂ ,
and M̂W = WM̂ = I). We can now express desired
accelerations (16) in terms of the partitions

q̈d =

(−M̂−1
c (J̇cq̇ +Kq̇c +Mc,r q̈rd) + [0 vT ]T

q̈rd

)
, (18)

where v ∈ Rk−1 is an auxiliary control term in the con-
strained dynamics. We see that nullspace projector (17) has
removed any dependence on q̈cd – the first k coordinates in-
stead evolve according to the constraints – leaving command

over the reference acceleration q̈rd in the decoupled reduced
partition. This term also appears in the constrained partition,
which will provide synchrony between different planes-of-
motion in our biped application, i.e., the constrained orbit
will have the same period as the reduced orbit.

In order to impose joint accelerations (18), we first define
the fully-actuated inverse dynamics controller

τ⊥(q, q̇) = M
(
q̈d + [0 vT 0Tn−k]T

)
+ Cq̇ +N. (19)

Applying control (19) to system (3), the closed-loop dynam-
ics are finally decomposed into upper-triangular form (18).

Although second-order constraint (15) is always enforced
under (19), initial conditions determine one of infinitely-
many first-order constraints (4). System (18) possesses a
symmetry with respect to set-points of the constrained
coordinates. This may be desirable in some coordinates,
e.g., biped dynamics should be invariant with respect to
yaw/heading on a flat surface. We can achieve this foliation
of TQ even if the first DOF is unactuated, provided that it
is subject to viscous damping from passive forces.

Proposition 1: Letting v = 0, the first term of control (19)
reduces to passive feedback (11), i.e., [1 0]τ⊥ = −K1q̇1.

Proof: Plugging (18) into (19) and noting that
[1 0]McM̂

−1
c = [1 0], we first evaluate

[1 0]Mq̈d = −[1 0]J̇cq̇ −K1q̇1.

Because q1 is a cyclic variable of the Lagrangian and thus
the potential energy, [1 0]N = ∂

∂q1
V = 0. The definition

of Coriolis matrix C (computed from M ) can be invoked to
show that −[1 0]J̇cq̇ + [1 0]Cq̇ = 0.

Hence, the first control term can be provided by passive
forces instead of actuation. This term enforces the second-
order constraint with respect to q1 by Lemma 1, and the
remaining control terms in (19) need only know the friction
coefficient in (11) to enforce the remaining k − 1 second-
order constraints. Any given solution trajectory belongs to a
submanifold defined by some first-order constraint (4), and
we can invoke Lemma 1, specifically (13), to determine the
specific vector q̄c parameterizing this submanifold.

We let the initial conditions determine q̄1 in this manner,
but the remaining k − 1 constrained coordinates can be
controlled to desired set-points through auxiliary input v. We
wish to render globally exponentially attractive the surface
Zk−1 defined by the last k− 1 first-order constraints of (4),
where Zq̄c ⊂ Zk−1. This is equivalent to zeroing k − 1
outputs y := [0 I](Jcq̇ − b), so we will feedback linearize
the associated output dynamics into the exponentially stable
system ẏ = −Ly, for some positive-definite gain matrix
L ∈ Rk−1×k−1. In terms of the constraints this system is

[0 I](J̇cq̇ + Jcq̈ − ḃ) = −Ly. (20)

Plugging (18) into q̈, we solve for the linearizing control law:

vlinz(q, q̇) = −[0 I]M̂−1
c [0 I]TLy. (21)

This proportional controller is zero when restricted to the
constraint surface, i.e., v|Zk−1

= 0, allowing us to invoke
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Fig. 1. Diagrams of the 3D biped’s hybrid system H (left), frontal and sagittal planes (middle), and controlled reduction (right). The first stage reduces
the yaw DOF of the transverse plane, and the second stage reduces the lean DOF of the frontal plane, yielding the dynamics of the sagittal-plane biped.

Proposition 1. Letting torque map B = [0 I]T in system
(3), the underactuated version of (19) is finally given by

uund(q, q̇) := [0 I]τ⊥(q, q̇), v = vlinz(q, q̇). (22)

We will see that the biped’s discontinuous impact events
tend to violate first-order constraints (4), i.e., Zk−1 is not
hybrid invariant, but subcontroller (21) will correct these
errors shortly after each impulsive event.

IV. FIVE-LINK 3D BIPED RESULTS

The 3D biped model in Fig. 1 has two phases during
single-support: a knee-swing phase with six DOFs and a
knee-lock phase with five DOFs. The knee of the stance leg
remains locked during that leg’s entire single-support cycle.
We assume the biped walks on a flat surface with sufficient
Coulomb friction to prevent slipping and non-zero viscous
friction in the yaw DOF. This can be interpreted as a point
foot in contact with a textured surface or as a flat foot with
passive elements in the yaw DOF of the ankle (e.g., tissue).

This biped has coordinates q = (ψ,ϕ, θT )T in config-
uration space Q = R6, where ψ,ϕ ∈ R are respectively
the heading/yaw and roll/lean variables at the stance foot,
and vector θ = (θs, θt, θth, θsh)T contains the sagittal-plane
(pitch) variables for the stance leg, torso, swing thigh, and
swing shank, respectively. Knee-lock phase provides θth ≡
θsh. Yaw is the first DOF in the kinematic chain and is
defined about the gravity vector on a flat surface, implying
that variable ψ is cyclic in both kinetic and potential energy.

The system state is x = (qT , q̇T )T in domain D, defined
as the subset of TQ such that the swing foot height is non-
negative. We assume that both knee-strike and ground-strike
impact events are instantaneous and perfectly plastic, result-
ing in transitions between the six and five DOF dynamics
according to hybrid system H of Fig. 1. The ground-strike
guard Gg is defined as the set of states in D where the swing
foot height is zero, and its reset map ∆g(x) is computed
following the method of [2]. The knee-strike guard Gk is
the set of states in D where θth− θsh = 0, and its reset map
∆k(x) is computed as in [17]. Bilateral symmetry across the
sagittal plane provides that hybrid dynamics are mirrored
between left and right leg stance, where the signs of hip
width w and angle ρ are flipped at ground strike.

Model-Specific Controller. We partition this model’s con-
figuration into constrained coordinates qc = (ψ,ϕ)T and
reduced coordinates qr = θ. Ankle yaw is unactuated, cyclic,
and subject to viscous damping as in (11). Each phase of
H has an associated controller (22), which switches with
the model during walking. Control gains are uniform across
phases, and control torques are saturated at Umax.

Lean is the only constrained coordinate that is controlled
by output linearizing control (21) to a specific set-point, ϕ̄ =
0 corresponding to upright. We build pseudo-passive walking
gaits by closing an outer feedback loop that inserts sagittal-
plane dynamics into the unconstrained accelerations of (18):

θ̈d = M−1
θ (θ)([0, vpd, 0]T − Cθ(θ, θ̇)θ̇ −Nθ(θ + β)), (23)

where vpd = −kpθt − kdθ̇t is a torso controller and we
have virtually rotated the gravity vector to mimic downhill
dynamics (slope angle β = 0.06 rad) on flat ground [18].
This slope-changing “controlled symmetry” exploits passive
limit cycles to render system (18) strictly minimum phase.

Simulation Results. We set the rotational friction coefficient
to K1 = 0.5 and adopt the parameters given in Fig. 2.
Recall that system H under (22) is invariant with respect to
heading, implying that no isolated orbits exist in the given
coordinate system. We therefore analyze the hybrid system
modulo yaw, for which a hybrid limit cycle may exist with
respect to the change in heading over two steps.

1) Gait stability: We show the existence and local ex-
ponential stability of a hybrid limit cycle by the method of
Poincaré sections [3]. Defining a return map P : Gg → Gg

between intersections with the ground-strike guard, we find
a fixed-point x∗ = P 2(x∗) corresponding to the hybrid limit
cycle shown in Fig. 2. We numerically linearize the Poincaré
map P 2 about x∗ to show that all eigenvalues are within the
unit circle (|eig|max = 0.58), confirming exponential stability
of the discrete system and thus the hybrid system.

The yaw conserved quantity hψ = [1 0]Jcq̇ + K1ψ is
piecewise constant throughout the walking gait in Fig. 2,
switching signs every double-support transition due to the
biped’s heading about ψ = 0. The hybrid dynamics in
fact stabilize the relative difference between these output
values. Recall that a constant value of hψ does not imply
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Model : Mt = 15 kg, `t = 0.55 m, Mh = 10 kg, m = 5 kg, mth = 0.7m,msh = 0.3m, ` = 1 m, α = 0.5, w = 0.2 m, ρ = 0.0564 rad
Gains : K1 = 0.5, K2 = 25, L = 68, kp = 700, kd = 265, β = 0.06 rad, Umax = 40 Nm

x∗ ≈ (−0.0741,−0.0016, 0.3089,−0.0498,−0.3084,−0.3084, 0.2008, 0.0450,−0.8307,−1.1639, 0.7324, 0.7324)T
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Fig. 2. Gait animation (top left), conserved quantity errors (top right), joint trajectory (middle left), phase portrait (middle right), saturated control torques
(lower middle left), yaw friction torque (lower middle right), vertical ground reaction force (bottom left), and Coulomb friction ratios (bottom right). A
supplemental downloadable movie of this 3D walking simulation is available at: http://vimeo.com/20956363.
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that yaw is constant, but rather that the biped rotates toward
some heading ψ̄ parameterizing the first-order constraint
(4) during that continuous phase. Directional changes in
yaw correspond to jumps in hψ at discrete events, and the
resulting yaw trajectory in Fig. 2 resembles internal/external
rotation of the tibia during human walking [1, Fig. 1-15].

The control and joint trajectory plots in Fig. 2 also show
that the biped leans and yaws in the direction of the swing
leg after the knee-lock event. The passive damping element
in the yaw DOF contributes two orders of magnitude less
torque than the actuators, but yaw motion remains bounded
and stable due to our momentum constraints.

2) Viscous friction: We next examine the effect of vis-
cous friction coefficient K1, which enters into control (22).
Decreasing the coefficient from K1 = 1, instability ensues
for coefficients smaller than K1 = 0.4, which demonstrates
that the yaw DOF requires a certain degree of damping for
gait stability. The smallest maximum eigenvalue modulus is
0.518 for K1 = 0.7. We also find that yaw range-of-motion
increases as we decrease the damping coefficient.

3) Gait efficiency: Integrating q̇TBu to obtain the net
work per step, we find that the specific average mechanical
power is 0.52 W/kg. Moreover, the specific mechanical cost
of transport (work done per unit weight per unit distance)
is cmt = 0.037, which compares favorably with popular
walking robots such as the Cornell biped at cmt = 0.055 and
Honda ASIMO at cmt = 1.6 [19]. By choosing momentum
constraints based on symmetries and reinserting the original
planar dynamics, our inverse dynamics approach retains the
energetic efficiency that is characteristic of dynamic walking.

4) Contact constraints: Bipedal locomotion is unilaterally
constrained in the ground reaction forces (GRF). In order to
validate the fixed-base assumption in our simulations, we
need to show that the GRF vector F = (Fx, Fy, Fz)

T keep-
ing the stance foot fixed satisfies two conditions: the vertical
GRF component remains strictly positive, i.e., Fz(t) > 0 for
all t, and the GRF vector remains within the friction cone,
i.e., |Fx(t)/Fz(t)|, |Fy(t)/Fz(t)| < η for all t with Coulomb
friction coefficient η = 1 (e.g., rubber feet). We verify these
conditions (Fig. 2) using the procedure outlined in [2].

V. CONCLUSIONS

By proving that the first control term reduces to passive
feedback, we have shown that controlled reduction can be
achieved with one degree of underactuation in the presence
of viscous damping from friction. This underactuated control
strategy produced asymptotically stable walking for a five-
link 3D biped with passive yawing at the foot contact point.

Future work will construct steering gaits for motion plan-
ning applications [20]. Our controller does not provide direct
control of heading set-point ψ̄, but a desired lean set-point ϕ̄
can be forced by output linearizing law (21). This angle can
be chosen to lean into the direction of the desired heading.

The human-like yawing in our simulations was based on
anthropomorphic ankle actuation, where viscous damping
comes from passive elements such as tissues or ground
friction. We unexpectedly found that the inclusion of knees in

the model contributed to more natural GRF curves in Fig. 2,
such as the double hump in vertical force that is characteristic
of human walking. The addition of feet is not necessary for
this profile but would likely improve the comparison.

Our walking model was not intended to be validated as
human-like behavior, but it can be studied for insight into
fundamental biped mechanics, such as the emergence of
asymmetry [21]. This will guide the design of human subject
experiments and ultimately novel interventions for locomotor
deficits caused by stroke, amputation, or spinal injury.
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ear Control. New York, NY: Springer-Verlag, 1997.

[16] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” Int. J. Humanoid
Robotics, vol. 2, no. 4, pp. 505–518, 2005.

[17] F. Asano and M. Yamakita, “Extended PVFC with variable velocity
fields for kneed biped,” in IEEE Int. Conf. Humanoid Robots, 2000.

[18] M. W. Spong and F. Bullo, “Controlled symmetries and passive
walking,” IEEE Trans. Automatic Control, vol. 50, no. 7, pp. 1025–
1031, 2005.

[19] S. H. Collins and A. Ruina, “A bipedal walking robot with efficient
and human-like gait,” in IEEE Int. Conf. Robotics and Automation,
Barcelona, Spain, 2005, pp. 1983–1988.

[20] R. D. Gregg, T. W. Bretl, and M. W. Spong, “Asymptotically stable
gait primitives for planning dynamic bipedal locomotion in three
dimensions,” in IEEE Int. Conf. Robotics and Automation, Anchorage,
AK, 2010, pp. 1695–1702.

[21] R. D. Gregg, Y. Dhaher, and K. M. Lynch, “Functional asymmetry
in a five-link 3D bipedal walker,” in IEEE Int. Conf. Engineering in
Medicine and Biology Society, Boston, MA, 2011.

674


