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Abstract— We consider finite dimensional semidiscrete
approximation of an LQR control problem for a model
in linear thermoelasticity. A test problem is constructed

for which the exact solution of the associated algebraic
Riccati equation is known. We can then determine the
exact feedback functional gain, and compare convergence
behavior of different semidiscrete Galerkin approximation
schemes. Numerical results are presented.

I. INTRODUCTION

Let us consider the following equations, which arise

in the modeling of thermoelastic damping in flexible

structures:

ytt(t, x) = yxx(t, x)− γθx(t, x) + b(x)u(t)

θt(t, x) = θxx(t, x) − γytx(t, x), (1)

with initial conditions

y(0, x) = y0(x), yt(0, x) = v0(x), θ(0, x) = θ0(x),

and boundary conditions

y(t, 0) = yx(t, 1) = 0, θx(t, 0) = θ(t, 1) = 0. (2)

Here y(t, x) represents displacement (longitudinal or

transverse, depending upon the application) at time t
and position x along the interval [0, 1], and θ(t, x)
represents temperature at time t and position x. The

small positive constant γ is the thermomechanical cou-

pling parameter, and the function b(x) characterizes a

one dimensional distributed controller. We will consider

an LQR control problem for these dynamics and will

construct a quadratic cost functional for which the exact

solution to the associated algebraic Riccati equation can

be determined. With this exact solution we may also

determine the exact feedback gain operator, and the

related feedback functional gains. This constitutes the

main contribution of the paper. Finally we use this test

problem to numerically investigate the performance of

certain semidiscrete approximation schemes.

A natural setting for approximation and control is to

reformulate the dynamics as a Cauchy problem on the

energy space. It is convenient to introduce the Sobolev

spaces

H1
L(0, 1) = {f ∈ L2(0, 1) : f ′ ∈ L2(0, 1), f(0) = 0},
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and

H1
R(0, 1) = {f ∈ L2(0, 1) : f ′ ∈ L2(0, 1), f(1) = 0}.

For the model (1), we define the energy space

X = H1
L(0, 1)× L2(0, 1)× L2(0, 1),

equipped with the energy norm defined by

‖(y, v, θ)‖2X =

∫ 1

0

|y′(x)|2 + |v(x)|2 + |θ(x)|2 dx.

Next define the operator A on the domain

domA =
{
(y, v, θ) ∈ X : y ∈ H2(0, 1), y′(1) = 0,

θ ∈ H2(0, 1) ∩H1
R, θ

′(0) = 0,

v ∈ H1
L(0, 1)

}
,

by

A(y, v, θ) = (v, y′′ − γθ′, θ′′ − γv′).

Also define the control operator B : U → X by

Bu = (0, b(x)u, 0), where U = C| is a one dimensional

control space. If we set

z(t) = (y(t, x), yt(t, x), θ(t, x)),

then the system (1)-(2) can be reformulated as the

Cauchy problem

d

dt
z(t) = Az(t) + Bu(t),

z(0) = (y0, v0, θ0) (3)

evolving on the energy space X . It is known that A
is the infinitesimal generator of an exponentially stable

C0-semigroup T (t) on X (see e.g. [1], [2], [3], [4]).

We observe that for all z = (y, v, θ) ∈ domA,

Re 〈Az, z〉X = Re

{∫ 1

0

(v′y′ + y′′v)− γθ′v

−γv′θ − |θ′|2 dx
}

=

∫ 1

0

−|θ′|2 dx

≤ 0, (4)

so by (4) A is dissipative.

We consider the LQR problem of minimizing the cost

functional

J(u) =

∫ ∞

0

〈Wz(t), z(t)〉X + ‖u(t)‖2U dt (5)
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subject to dynamics governed by (3). Here W : X → X
is a self-adjoint, nonnegative definite, bounded linear

operator which we shall specify below. Under appro-

priate assumptions, it is known that the solution of the

LQR problem (3),(5) is given in feedback form by

u(t) = −Kz(t), K = B∗Π,

where Π is the unique nonnegative definite solution of

the algebraic Riccati equation

ΠA+A∗Π−ΠBB∗Π+W = 0. (6)

In section II we show how to define W so that the

exact solution Π of (6) is known, and hence the exact

gain K is known.

II. EXACT SOLUTION OF RICCATI EQUATION

In this section we construct an operator W for which

the exact solution to the algebraic Riccati equation (6)

can be determined. To begin, one can check that the

adjoint operator A∗ is defined on the domain

domA∗ = domA

by

A∗(f, g, h) = (−g,−f ′′ + γh′, h′′ + γg′).

Because of the nature of the boundary conditions in the

model, it will be convenient to introduce the follow-

ing operators. Define the operator DL on the domain

domDL = HL by

DLf = f ′,

and the operator DR on the domain domDR = HR by

DRf = −f ′.

Also define the operator S = DLDR on the domain

domS = {f ∈ H2(0, 1) : f ∈ HR, f
′ ∈ HL},

and the operator T = DRDL on the domain

domT = {f ∈ H2(0, 1) : f ∈ HL, f
′ ∈ HR}.

Thus Tf = −f ′′ with boundary conditions associated

with y in the thermoelastic model, and Sf = −f ′′ with

boundary conditions associated with θ in the model. All

of these are closed, densely defined, linear operators on

L2(0, 1), with bounded inverses. Note that D∗
L = DR

and D∗
R = DL, so T and S are self-adjoint, positive

definite operators. Also observe that

A(y, v, θ) = (v,−Ty + γDRθ,−Sθ − γDLv)

and

A∗(f, g, h) = (−g, T f − γDRh,−Sh+ γDLg).

The operators DL, DR, S, T , and their bounded

inverses are used in our construction and subsequent

analysis. To proceed, define the linear operator W :
X → X by

W (f, g, h) = (w1, w2, w3),

where

w1 = cγ2T−1T−1b(x) + 2γT−1D−1
L h+ 2γ2T−1f

w2 = cT−1b(x)

w3 = cγS−1D−1
R b(x) + 2S−1h+ 2γD−1

R f.

Here c = c(f, g, h) is a bounded linear functional on

X defined by

c =

∫ 1

0

b(x)[T−1g + γT−1D−1
L h+ γ2T−1f ] dx. (7)

In the interest of space we leave out the straightforward

but lengthy calculation which shows that W is self-

adjoint on X (but see below the similar argument where

we show that Π is self-adjoint). For this and other

calculations it is useful to observe that the inner product

on X can be written as

〈(f, g, h), (y, v, θ)〉X

=

∫ 1

0

[f ′(x)y′(x) + g(x)v(x) + h(x)θ(x)] dx

=

∫ 1

0

[DLfDLy + g(x)v(x) + h(x)θ(x)] dx.

We claim that W is nonnegative definite. To see this,

for all (f, g, h) ∈ X we have

〈W (f, g, h), (f, g, h)〉X =
∫ 1

0

DL[cγ
2T−1T−1b(x) + 2γT−1D−1

L h

+2γ2T−1f ]DLf dx

+

∫ 1

0

cT−1b(x)g dx

+

∫ 1

0

[cγS−1D−1
R b(x) + 2S−1h+ 2γD−1

R f ]hdx.

Since D∗
L = DR, we have in general

∫ 1

0

DLT
−1yDLf dx =

∫ 1

0

DLD
−1
L D−1

R yDLf dx

=

∫ 1

0

D−1
R yDLf dx

=

∫ 1

0

D∗
LD

−1
R yf dx

=

∫ 1

0

yf dx. (8)
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So we may continue from above and get

〈W (f, g, h), (f, g, h)〉X =
∫ 1

0

[cγ2T−1b(x) + 2γD−1
L h+ 2γ2f ]DLf dx

+

∫ 1

0

cT−1b(x)g dx

+

∫ 1

0

[cγS−1D−1
R b(x) + 2S−1h+ 2γD−1

R f ]hdx

= c

∫ 1

0

b(x)[γ2T−1f + T−1g + γD−1
L S−1h] dx

+2γ2

∫ 1

0

|f |2 dx+ 4γRe

∫ 1

0

D−1
L hf

+2

∫ 1

0

S−1hh dx.

Now use the fact that D−1
L S−1 = T−1D−1

L , so

the first integral is just c, and that
∫ 1

0 S−1hhdx =

D−1
R D−1

L hh dx =
∫ 1

0
D−1

L hD−1
L h dx. We continue

from above and get

〈W (f, g, h), (f, g, h)〉X =

cc+ 2γ2

∫ 1

0

|f |2 dx+ 4γRe

∫ 1

0

D−1
L hf

+2

∫ 1

0

|D−1
L h|2 dx

= |c|2 + 2

∫ 1

0

|γf +D−1
L h|2 dx

≥ 0.

Thus W is nonnegative definite, and this choice of W
defines the cost functional (5) and the algebraic Riccati

equation (6). We claim that the exact solution of (6) is

given by the operator Π : X → X defined by

Π(f, g, h) = (π1, π2, π3),

where

π1 = [I + γ2(1 + γ2)T−1]T−1f + γ2T−1T−1g

+γ(1 + γ2)T−1T−1D−1
L h

π2 = γ2T−1f + T−1g + γT−1D−1
L h

π3 = γ(1 + γ2)S−1D−1
R f + γS−1D−1

R g

+(1 + γ2)S−1S−1h

(While this operator seems unwieldy, we shall see

later that the functional gains are quite accessible).

Let us first check that Π is self-adjoint. For all

(f, g, h), (y, v, θ) ∈ X , we have

〈Π(f, g, h), (y, v, θ)〉X =

∫ 1

0

[DLπ1DLy+π2v+π3θ] dx.

We collect the f , g, and h terms together. For example,

the first f term is

∫ 1

0

DLT
−1fDLy dx =

∫ 1

0

DLD
−1
L D−1

R fDLy dx

=

∫ 1

0

D−1
R fDLy dx

=

∫ 1

0

f(D−1
R )∗DLy dx

=

∫ 1

0

fy dx

=

∫ 1

0

D−1
L DLfy dx

=

∫ 1

0

DLfD
−1
R y dx

=

∫ 1

0

DLfDLD
−1
L D−1

R y dx

=

∫ 1

0

DLfDLT
−1y dx.

Similar manipulations occur for the other terms, which

we list without details of the derivations. The remaining

f terms are

∫ 1

0

DLγ
2(1 + γ2)T−1T−1fDLy dx =

∫ 1

0

DLfDLγ
2(1 + γ2)T−1T−1y dx

∫ 1

0

γ2T−1fv dx =

∫ 1

0

DLfDLγ
2T−1T−1v dx

∫ 1

0

γ(1 + γ2)S−1D−1
R fθ dx =

∫ 1

0

DLfDLγ(1 + γ2)T−1T−1D−1
L θ dx.

The g terms are

∫ 1

0

DLγ
2T−1T−1gDLy dx =

∫ 1

0

gγ2T−1y dx

∫ 1

0

T−1gv dx =

∫ 1

0

gT−1v dx

∫ 1

0

γS−1D−1
R gθ dx =

∫ 1

0

gγD−1
L S−1θ dx

=

∫ 1

0

gγT−1D−1
L θ dx.
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The h terms are
∫ 1

0

DLγ(1 + γ2)T−1T−1D−1
L hDLy dx

=

∫ 1

0

hγ(1 + γ2)D−1
R T−1y dx

=

∫ 1

0

hγ(1 + γ2)S−1D−1
R y dx

∫ 1

0

γT−1D−1
L hv dx =

∫ 1

0

hγD−1
R T−1v dx

=

∫ 1

0

hγS−1D−1
R v dx

∫ 1

0

(1+γ2)S−1S−1hθ dx =

∫ 1

0

h(1+γ2)S−1S−1θ dx.

It follows that

〈Π(f, g, h), (y, v, θ)〉X =
∫ 1

0

DLfDL[(I + γ2(1 + γ2)T−1)T−1y

+γ2T−1T−1v + γ(1 + γ2)T−1T−1D−1
L θ] dx

+

∫ 1

0

g[γ2T−1y + T−1v + γT−1D−1
L θ] dx

+

∫ 1

0

h[γ(1 + γ2)S−1D−1
R y + γS−1D−1

R v

+(1 + γ2)S−1S−1θ] dx

= 〈(f, g, h),Π(y, v, θ)〉X .

Thus Π is self-adjoint. A lengthy but straightforward

calculation, which we omit, shows that Π is nonnegative

definite. It remains to verify that Π solves the algebraic

Riccati equation (6). To see this, first note that B∗ :
X → U is defined by

B∗(f, g, h) = (

∫ 1

0

b(x)g(x) dx.

Consequently BB∗ : X → X is given by

BB∗(f, g, h) = (0, b(x)

∫ 1

0

b(x)g(x) dx, 0).

It follows that

ΠBB∗Π(f, g, h) = c(γ2T−1T−1b, T−1b, γS−1D−1
R b),

(9)

where c is defined by (7). It is straightforward to check

that for all (f, g, h) ∈ domA,

(−ΠA−A∗Π)(f, g, h) = (10)

(2γT−1D−1
L h+ 2γ2T−1f, 0, 2S−1h+ 2γD−1

R f).

From (9), (10), and the definition of W , it follows that

ΠBB∗Π−ΠA−A∗Π−W = 0 (11)

on domA. Since the operators W , −ΠA − A∗Π, and

ΠBB∗Π are all bounded and domA is dense in X , (11)

extends to hold on all of X . Thus Π is the solution to

(6).

With this solution Π we may define the exact gain

operator

K = B∗Π : X → U.

Since the control space U = C| is one-dimensional,

the gain operator is in fact a bounded linear functional.

Thus by the Riesz representation theorem there exists

(k1, k2, k3) ∈ X such that

K(f, g, h) = 〈(k1, k2, k3), (f, g, h)〉X

=

∫ 1

0

k′1(x)f
′(x) dx+

∫ 1

0

k2(x)g(x) dx

+

∫ 1

0

k3(x)h(x) dx. (12)

We refer to the functions k1 ∈ H1
L(0, 1), k2, k3 ∈

L2(0, 1) as the feedback functional gains. To calculate

these functional gains, observe that

K(f, g, h) = B∗Π(f, g, h)

=

∫ 1

0

b(x)[γ2T−1f + T−1g

+γT−1D−1
L h] dx. (13)

It follows by comparing (12) and (13) that the exact

feedback functional gains are

k1(x) = γ2T−1T−1b(x)

k2(x) = T−1b(x)

k3(x) = γD−1
R T−1b(x).

This construction is possible for any choice of the

control function b(x). With these exact solutions, it is

possible to test convergence behavior for semidiscrete

approximation schemes applied to the original LQR

problem. In the next section we present preliminary

numerical results in this direction.

III. SEMIDISCRETE APPROXIMATION OF LQR

PROBLEM

In this section we give very preliminary numerical

results from a semidiscrete approximation scheme for

the LQR problem (3), (5). We use cubic B-splines to

define basis functions on which to construct Galerkin

approximations, and then solve the resulting finite

dimensional LQR problem. From this we get finite

dimensional approximations to the functional feedback

gains, which we can compare with the exact gains given

above. Detailed discussion of the general methodology

for matrix representations of such LQR approximation

schemes can be found in [5] and [6], for example. If we

recall that k2(x) = T−1b(x), then k′′
2 (x) = −b(x). In
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the example we present here, we take b(x) ≡ 1 and give

numerical results for approximations to −k ′′
2 = b(x).

To proceed, for each N define a partition of [0, 1]
by xj = j/N for j = 0, 1, . . . , N . From the usual

set of N + 3 cubic B-spline basis functions for this

partition, let {βL
j (x)}

N+2
j=1 be a set of basis functions

which satisfy the boundary condition (for example, see

[7])

βL
j (0) = 0,

and let {βR
j (x)}

N+2
j=1 be a set of basis functions which

satisfy the boundary condition

βR
j (1) = 0.

Define

XN
L = span {βL

j }
N+2
j=1 XN

R = span {βR
j }

N+2
j=1 ,

and observe that XN
L ⊂ H1

L and XN
R ⊂ H1

R. Define

XN = XN
L ×XN

L ×XN
R ,

and observe that XN ⊂ V = H1
L × H1

L × H1
R. For

j = 1, . . . , N+2, define ej = (βL
j (x), 0, 0), eN+2+j =

(0, βL
j (x), 0), and e2(N+2)+j = (0, 0, βR

j (x)). Thus

{ej}
3(N+2)
j=1 is a basis for XN . On the space V define

the sesquilinear form σ : V × V → C| by

σ((y, v, θ), (f, g, h)) =
∫ 1

0

[v′f
′
− y′g′ − γθ′g − θ′h− γv′h] dx.

The form σ is related to A by

σ((y, v, θ), (f, g, h)) = 〈A(y, v, θ), (f, g, h)〉X

for all (y, v, θ) ∈ domA, (f, g, h) ∈ V . The Galerkin

method is used with the form σ to define the finite

dimensional operators AN : XN → XN by

〈ANz, z̃〉X = σ(z, z̃)

for all z, z̃ ∈ XN . We do not provide details, but it

can be shown that one obtains Trotter-Kato type con-

vergence for both the semigroup T (t) and its adjoint.

That is,

eA
N t → T (t)

e(A
N )∗t → T ∗(t)

in the Trotter-Kato sense. For approximation of an LQR

problem as we are doing here, typical convergence the-

orems (for the feedback control and the gain) generally

require this type of convergence as well as some sort

of uniform exponential stability condition (for example,

see [8], [9], [10]). It turns out there is numerical

evidence that this scheme lacks any reasonable uniform

preservation of stability, similar to the example in [11].

This lack of uniform stability manifests itself in Figure

1, which shows a kind of weak convergence in the

approximation of the second derivative of the feedback

functional gain k2(x).
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Fig. 1. Functional gain - approximation of −k
′′

2
(x) ≡ 1

Similar behavior (weak convergence of functional

gain approximations) was seen for examples in delay

equations in [12], [13], [14]. In [14] it was seen that

using a different norm for the Galerkin construction

could mitigate the problem of weak convergence, and

it remains an issue for future research to apply this

strategy to thermoelastic models.

IV. CONCLUSION

We have considered renorming and approximation

issues for an LQR control problem with dynamics

governed by a model in linear thermoelasticity. A

cost functional was constructed for which the exact

solution of the corresponding algebraic Riccati equation

can be found. Consequently the exact feedback gain

and functional gain can be determined and used to

test behavior of approximation schemes. Preliminary

numerical results were given.
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