
Discrimination of Waist Motions Based on Surface EMG

for Waist Power Assist Suit Using Support Vector Machine

Kouta Kashiwagi, Takashi Nakakuki and Chiharu Ishii

Abstract— This paper presents a signal processing for dis-
crimination of waist motions including forward and backward
bendings and right and left twists. The system is planed to
implement to a waist power assist suit that physically helps
a caregiver in personal care tasks. The motion discrimination
is based on surface electromyogram (SEMG) of right and left
erector spinae muscles that dominate the motions of interest,
and accomplished by using four SVMs in which each SVM is a
binary classifier for each of four motions. We construct a strong
multi-class classifier based on combination use of four SVMs.
With a peripheral FFT-based prefilter, the start point of motion
is estimated, and employed for a trigger to calculate a feature
vector. We show that the proposed processing has a promising
discrimination and false-positive rates for implementation. In
addition, we summarize some essential problems to improve
the performance of the system as future works.

I. INTRODUCTION

In Japan, people aged 65 or over currently account for 23.1

percent of the total population, and we are well on the way to

an super aging society [1]. The Japanese government’s white

book reports that the population aging rate will continue to

increase steadily and reaches about 40 percent in 2055, which

is not a special case in Japan, rather it is a common issue in

many countries. Recently, the problem of nursing care have

been emerging that a numerical disbalance between people

who need nursing care (as a demand) and caregivers (as a

supply) becomes prominent. Since nursing care is typically

a hard work regarding both physical and mental burdens,

the study on how workload of caregivers can be reduced is

one of the major works in various research fields including

robotics.

Recently, a power assist suit, which is a wearable robot and

assists his/her muscular power with actuator, is expected to

be one of the promising remedies in the near future. Actually,

some commercial products or prototypes have already been

released [2], [3], [4], [5], [6], [7]. Those power assist suits

are classified according to the types of actuators and sensors.

Regarding actuators, the weight and size are the most impor-

tant specifications and should be as light as possible unlike

industrial robots since the suit presupposes worn by person.

At the moment, motor-driven or artificial muscle actuator is

commonly-used for powered suits. Representative examples

are the robot suit HAL (Cyberdyne Inc.) [2] and Muscle Suit

[3], respectively.
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Fig. 1. Our waist power assist suit (prototype)

Regarding selection of sensors, there are mainly two strate-

gies, pressure (touch) sensors [3] and surface electromyo-

gram (SEMG) [2] that detects membrane potential change

in a muscle from an electrode placed on skin surface. The

difference is explained with the following simple example.

Consider a motion of bending your arm, and the motion is

assumed to be physically assisted by any rotating actuator.

Then, the former detects the motion after your arm makes

contact with any touch sensor. The merit is that we know

the direction and the strength of motion, and the signal

processing from sensor to motion detection can be simple.

On the other hand, with the latter, we can detect an relevant

potential change before the motion, followed by quick assist

compared with a simple touch sensor.

Currently, we have been developing a motor-driven power

assist suit to physically assist waist motions of caregivers in

personal care tasks in which the target motions are forward

and backward bendings (FW and BW) and right and left

twists (RW and LW). Fig. 1 shows the appearance in wearing

the suit. The motivation comes from a situation that (i) not

few people suffer from their backache in personal care tasks

such as transfer from bed to wheelchair holding person,

and (ii) the suit should be cheap and easy-to-use so that

the target motions should be narrowed. Although there are

several powered suits supporting waist motions [3], [4], they

commonly assist only FW and BW motions, not including

RW and LW. In order to quickly detect the motion and assist

his/her muscle, we propose a motion discrimination system
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based on SEMG of right and left erector spinae muscles that

dominate FW, BW, RW and LW motions. The signal flow

from raw SEMG signals to discrimination is summarized as

follows. When any waist motion occurs, the start point of the

motion is estimated from SEMG signals by using FFT-based

low pass filter that has been proposed in [8]. Then, a feature

(input) vector is generated with 512 sampling data stored in

memory before the estimated start point, and classifiers by

support vector machine (SVM) predict which waist motion

occurs. As is well known, the calculation method of feature

vector plays a major part in machine learning. As a method

to calculate a feature vector from SEMG signals for motion

discrimination, we utilize the calculation in [8] that is also

employed in other studies [9].

The following sections are organized as follows. In the

Section II, we introduce the structure of our waist power

assist suit. The Section III describes about SEMG data

acquisition in which training and test data for SVM are

collected from six people. In the Section IV, a proposed

motion discrimination system is explained in detail, and the

performance is evaluated with test data in the Section V. We

summarize our concluding remarks and future plans in the

Section VI.

II. STRUCTURE OF WAIST POWER ASSIST SUIT

Our power assist suit consists of three units including

shoulder, lumbar and leg parts (Fig. 2). The lumber unit has

right and left motor boxes that are coupled by a rotating

shaft, and rotate independently. Figs. 3 and 4 demonstrate

forward bending and twist motions, respectively where FW

and BW motions, which require a considerably large rotating

torque for actuator, are driven by rotating both motors in

the same direction, and RW and LW motions are realized

by differently rotating each motor without any additional

Fig. 2. Appearance of the waist power assist suit (prototype)

Fig. 3. Bending motion

Fig. 4. Twisting motion

motors. It is noted that a combinatorial motion such as FW

and RW can be also assisted by properly setting each rotation

axis. Therefore, the merit of this structure is to assist four

waist motions with the minimum number of motors that

leads to weight saving of the total weight. The detailed

specification of actuator is summarized in Tables II and III in

which DC motor (Sanyo Denki, co., ltd.) with harmonic drive

speed reducer (Harmonic Drive Systems, inc.) is adopted. It

should be highlighted that the maximal torque is 141 Nm.

Regarding wearing, we just have to wear the suit by fixing

the shoulder and the leg units with belts as shown in Fig. 1,

expecting that a caregiver can easily wear and remove it that

is quite important specification on daily use.

Fig. 5 overviews the whole signal processing from raw

SEMG signals to motor control. The SEMG signals from

right and left erector spinae muscles are transmitted to the

discrimination system via A/D converter, and the system

decides which waist motion(s) is operating by using SVM,

which is the main topic of this paper. With the discrimination

result, motor torque is controlled to assist the motion. In the

following sections, we explain the discrimination system in

detail.
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TABLE I

SPECIFICATION OF DC MOTOR

Item Unit

Company SANYO DENKI

Type T511B-012EL8

Rated output 110 [W]
Rated speed 3000 [r/min]

Maximum speed 3000 [r/min]
Rated torque 0.270 [Nm]

Continuous stall torque 0.358 [Nm]
Instant. maximum stall torque 0.784 [Nm]

Weight 1.2 [kg]

TABLE II

SPECIFICATION OF HARMONIC DRIVE SPEED REDUCER

Item Unit

Company Harmonic Drive Systems

Type CSF-20-100-GH-J6FAL

Reduction ratio 100
Rated torque at 2000r/min 40 [Nm]

Average toeque 49 [Nm]
Peak torque at start and stop 82 [Nm]
Maximum momentary torque 147 [Nm]

Maximum input speed 6500 [r/min]
Weight 1.8 [kg]

Fig. 5. Whole signal processing

III. TRAINING AND TEST DATA ACQUISITION

For training and evaluating SVM, the SEMG signals of

four waist motions (FW, BW, RW and LW) are measured

from left and right erector spinae muscles. Fig. 6 shows

the actual position of attaching the electrodes and ground

terminal. Since the SEMG sensor can detect a potential

change of erector spinae muscles even if the attachment

position is slightly shifted in daily use, we just have to

attach the electrodes around the circles shown in Fig. 6. The

sampling frequency of A/D converter is set to Fs = 2kHz

since a band frequency is at most 500Hz as mentioned in

[8]. In data acquisition, we establish the following protocol

to obtain FW, BW, RW and LW data.

(i) FW and BW data acquisition

standing posture → spend a second for FW motion →

maintain bending 90◦ at the waist for two seconds → spend

a second for BW motion → standing posture

Fig. 6. The attachment position of electrodes and ground terminal

(ii) RW and LW data acquisition

standing posture → spend a second for RW (LW) motion →

maintain twisting at the waist for two seconds → spend a

second LW (RW) motion → standing posture

For each case, the sequence is repeated 30 times, and a

series of data acquisition is performed for six individuals

(named A-F), followed by 720 data (= 30 data × 4 motions

× 6 individuals). It should be noted that although a larger

number of training data are better for learning SVM, since

broadness of the distribution of training data differed little

beyond 30 data, the number of iteration is reasonable also

from a viewpoint of physical strain in data acquisition.

IV. MOTION DISCRIMINATION SYSTEM USING

SVM

SVM is a kind of classifier that can be applied to linear

or nonlinear multiclass classification problems [10]. The

concept for classification is that a separating hyperplane is

created to miximize the minimum value in margins between

the hyperplane and training samples in which training sam-

ples with the minimum margin are called support vectors,

and the hyperplane is therefore characterized by them. It is

a beneficial property that the calculation for obtaining the

hyperplane is formulated as a convex quadratic programming

problem. In addition, SVM can solve nonlinear classification

problems by introducing a technique called ”kernel trick”

where input space constructed by training samples is mapped

into a high dimensional feature space with a coordinate

transformation, and the linear classification is performed

there.

Fig. 7 shows the block diagram of motion discrimination

system that is mainly two subsystems, start flag generator

(SFG) and motion discrimination block (MDB). The quan-

tized SEMG signals at the A/D converter are transmitted to

SFG and MDB. In SFG, (i) any membrane potential change

is detected by evaluating smoothed SEMG signals, (ii) a start
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Fig. 7. Flow of signal processing

point of motion is estimated if detected, and (iii) a start flag,

which is 0 in no motion and 1 in motion, is sent to MDB.

Then, a rising edge of start flag is employed as a timing for

calculating feature vector in MDB, and the vector is tested in

each of four SVMs. With all outputs of SVMs, classification

block decides which motion is about to perform. In what

follows, we describe the specification of signal processing

in detail.

A. Start flag generator

Since a raw SEMG signal is quite noisy, we utilize a FFT-

based low pass filter and motion detection method proposed

in [8]. Let two SEMG signals from left and right electrodes

be EMG(c, n), (c = 1, 2) where n denotes a sample number

of quantized SEMG signal. We calculate the power spectrum

F (c, f) with respect to f -th frequency element by fast

Fourier transformation,

F (c, f) =

∣

∣

∣

∣

∣

N
∑

n=1

EMG(c, n)(e−j2π/N )(n−1)(f−1)

∣

∣

∣

∣

∣
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where N is the number of data points (N = 512). The signal

Y (n) is defined by

Y (n) =
1

N

2
∑

c=1

N
∑

f=1

(

F (c, f) 2
)

(2)

It is known that Y (n) becomes a kind of smoothed signal,

and N determines the degree of smoothing. Then, a start flag

of motion is defined by

Yref (n) =

{

1 if Y(n) > TH

0 otherwise
(3)

where TH is a threshold, and should be set to a value that

the number of false negative is as low as possible, which

means that the start flag is generated even in a case with

relatively weak motion. At the same time, a threshold should

be selected considering a basal noise level. Fig. 6 illustrates a

typical example regarding a raw SEMG signal, the smoothed

signal, and the generated start flag. The time delay τ is

calculated by dt × 512 [sec] where dt is a sampling time

of A/D converter.

Fig. 8. Example of start flag generation

Remark I: Although we evaluate other smoothing filters

such as averaging and median with various N , we conclude

that the FFT-based filter is effective in our case.

B. Calculation of feature Vector

Feature vector is generated with N data points at the time

when the start flag changes from low to high, by using the

following definition [8].

MAV (c) =
1

N

∣

∣
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∣
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∑
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EMG(c, n)

∣

∣

∣

∣

∣

(4)

which is the absolute average value of SEMG signal from

a rising edge to N data points. The distribution of feature

vectors for each individual is depicted in Fig. 9. Since the

distributions are considerably different among individuals,

the parameters of SVMs are optimized for each individual.

C. SVM block

In this study, we construct a strong classifier for FW,

BW, RW and LW motions based on two dimensional feature

vector. In general, it is easier to discriminate several classes

by using combinatorial binary classifiers instead of single

multi-class classifier. Thus, we also prepare four SVMs

which are binary classifiers for FW, BW, RW or LW, and

determine the motion based on the Table III. It should be

noted that with such a strategy the system can detect a

combinatorial motion such as FW+RW.

V. RESULTS AND DISCUSSIONS

A. Learning

As shown in the Section III, we collect 720 samples

(30 samples × 4 motions × 6 people). However, unlike

the distribution shown in Fig. 9, distributions from three

individuals (Testee D, E and F) becomes chaotic (Fig. 10)

where feature vectors with respect to FW, RW and LW
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Fig. 9. Separable distribution (Testee A, B and C)

TABLE III

COMBINATION OF BINARY SVM CLASSIFIERS

Estimated motion FW-SVM BW-SVM RW-SVM LW-SVM

forword bending 1 0 0 0

backword bending 0 1 0 0

right twisting 0 0 1 0

left twisting 0 0 0 1

forword + right 1 0 1 0

motions are mixed. Thus, in what follows, we deal with

only Testee A, B and C that show separable distributions.

As mentioned in the previous section, we optimize SVMs for

each of three individual. As a comparison, we also show the

results in a case that SVM is optimized with mixed training

data from all three individuals. For example, in a case of FW,

Fig. 10. Inseparable distribution (Testee D)

20 samples are from FW motion, and other 60 samples from

BW/RW/LW. Thus, the corresponding reference vector also

contains 20 elements with 1 and 60 elements with 0. Fig.

11 illustrates a classification result of four motions for testee

A. In all learning, Gaussian kernel is utilized with γ = 10.0
and σ2 = 0.4. Regarding SVM solver, LS-SVMlab1.7 [11]

is employed on Matlab (MathWorks, Inc.).

B. Discrimination and false-positive rates

After learning of SVMs, we evaluate the discrimination

and false-positive rates with 40 test samples. We check the

following two tests.

Discrimination rate: For each SVM, the SEMG data from

the corresponding motion are checked where each SVM

should output ”1” for every test samples. We count the

number of correct answer, and summarized in Table IV.

False-positive rate: For each SVM, the SEMG data from

four motions are checked where each SVM should output ”1”

for the test samples that are from the corresponding motion,

and ”0” for the test samples that are from other motions

(Table V).

From Tables IV and V, we conclude that the rates for

Testee A, B and C are promising whereas the rates in mixed

case is considerably low. On the other hand, if we see the

results on FW-SVM of Testee A, RW-SVM of Testee B and

BW-SVM of Testee C, the discrimination rates are not high.

More worse, the false-positive rates regarding FW-SVM of

Testee B and C are not good. Although additional training

might improve the performance, since a SEMG signal alters

depending on his/her physical condition even if the electrodes

are very carefully attached on the same positions, including

additional touch or pressure sensors would be required that

is our future works.

VI. CONCLUSIONS

In this paper, we construct a signal processing for dis-

criminating four waist motions FW, BW, RW and LW by

using multiple SVMs based on two SEMG signals from left
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Fig. 11. Binary classification (Testee A)

and right erector spinae muscles. With a peripheral FFT-

based prefilter, a start point of motion is detected, and its

rising edge is employed as a trigger to calculate the feature

vector. We show that the proposed processing has promising

discrimination and false-positive rates.
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TABLE IV

RESULTS OF DISCRIMINATION RATE

Motion FW BW RW LW Average

A 90.0% 100% 100% 100% 97.5%
(9/10) (10/10) (10/10) (10/10) (39/40)

B 100% 100% 70.0% 100% 92.5%
(10/10) (10/10) (7/10) (10/10) (37/40)

C 100% 80.0% 100% 100% 95.0%
(10/10) (8/10) (10/10) (10/10) (38/40)

Mix 70.0% 96.7% 76.7% 76.7% 80.0%
(21/30) (29/30) (23/30) (23/30) (96/120)

TABLE V

RESULTS OF FALSE-POSITIVE RATE

Motion FW BW RW LW Average

A 0% 0% 0% 0% 0%
(0/30) (0/30) (0/30) (0/30) (0/120)

B 2.5% 0% 0% 0% 0.6%
(1/30) (0/30) (0/30) (0/30) (1/120)

C 5.0% 0% 0% 0% 1.3%
(2/30) (0/30) (0/30) (0/30) (2/120)

Mix 6.7% 1.1% 11.1% 6.7% 6.4%
(6/90) (1/90) (10/90) (6/90) (23/360)
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