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Abstract— During deployment, mobile robots must form
an ad-hoc wireless communication network guaranteeing
reliable communications between agents and possibly with
some fixed base stations. First, when only connectivity
constraints need to be enforced, we discuss deployment
algorithms whose execution does not require a model of
the communication channels, but exploits possibly random
and time-varying channel gain measurements between
the robots to maintain a connected network. We then
turn our attention to the more realistic situation where
the communication network linking the robots must sup-
port certain rates between possibly distant terminals. For
this problem, we propose deployment algorithms based
on a projected-gradient scheme that provide end-to-end
bandwidth guarantees, assuming a channel model with
deterministic exponential path loss. In addition to setting
the robot positions to optimize the deployment objective,
these algorithms adjust the transmission powers at the
wireless nodes and route communication packets through
the network to support the desired flow rates.

I. INTRODUCTION

In the near future, teams of mobile robots will be
used to perform autonomously a variety of intelligence,
surveillance and reconnaissance missions, rescue mis-
sions, or transportation tasks. A prerequisite for real-
izing this vision however is to guarantee that reliable
communication can be maintained with each vehicle
in a deployed network. Moreover, the communication
network should generally provide certain end-to-end
quality of service guarantees. For example, an unmanned
vehicle might have to transmit a video feed from its
current position to a given base station, which requires
maintaining a minimum communication rate between
these two terminals.

In many scenarios, e.g. involving robot deployment
underwater or in disaster or conflict areas, no external
communication infrastructure is available. Therefore the
robot team must establish the communication flows
necessary to the accomplishment of the mission by
forming an ad-hoc network. The problem of deploying a
mobile robotic or sensor network under communication
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constraints has been the object of much research, see
e.g. [1]–[4]. Most of this work assumes very simple
communication models, typically disc models with a
fixed and known communication radius for each agent,
and often a fixed or perhaps randomly varying topology
for the communication network, in order to leverage ge-
ometric and graph theoretic techniques. Wireless channel
models are notoriously difficult to characterize however
[5], and in recent years, researchers have started using
more realistic wireless communication models in robotic
applications where ad-hoc networking problems and
controlled mobility are coupled, see e.g. [6]–[12].

Our focus is on deployment problems, where a mo-
bile robotic network attempts to reach a good steady-
state spatial configuration, whose quality is measured
by a scalar potential field to minimize, as with cer-
tain classical motion planners [13]–[15]. Deployment
problems include source seeking [16], formation control
[17], coverage control [18], and certain vehicle routing
problems [19] for example. For concreteness, throughout
the paper we frame the discussion in the context of
a particular deployment problem, namely the adaptive
coverage control problem discussed in [12].

Two types of communication constraints for the
robotic network are discussed, for which we propose
solutions that make increasingly strong assumptions
about the wireless channel models. First, for the problem
of maintaining connectivity between agents, we propose
a simple adaptive algorithm that does not require any
model of the communication channels, exploits measure-
ments of received signal strength between the robots,
and is robust to stochastic and time-varying fluctua-
tions in the channel gain values. In contrast, algorithms
relying on channel models are typically executed in
an open-loop manner without ever actually testing the
communication links between the robots. Next, for the
more complex problem of maintaining communication
rates between possibly distant pairs of agents, we resort
to postulating a known path loss model for the wireless
channels. It was pointed out in [6] that an exponential
path-loss form for the model is useful for the joint
optimization of wireless node locations and powers.
With this assumption, we propose a projected-gradient
heuristic that constrains the motion of the agents and
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sets transmission powers and routing parameters in order
to satisfy the communication constraints during deploy-
ment. The projection step relies on a successive convex
optimization approach, which can be implemented in a
distributed way by using the techniques presented in e.g.
[20], [21].

The rest of the paper is organized as follows. Section
II discusses robot deployment problems and the par-
ticular adaptive coverage control algorithm used in the
illustrative examples and simulations. In Section III we
review some basic terminology and principles of wire-
less networking. Section IV discusses a penalization-
based adaptive algorithm that maintains connectivity
between the robots in the network without relying on a
model of the communication channels. Finally, Section
V considers the problem of jointly optimizing the de-
ployment configuration and the networking parameters
to enforce end-to-end communication rate constraints.

II. ADAPTIVE DEPLOYMENT

Consider a mobile robotic network consisting of n
robots evolving in a workspace W ⊂ Rd, with positions
denoted x = [x1, . . . ,xn] ∈ Wn. For simplicity, we
assume throughout the paper that W is compact and
convex. We denote [n] = {1, . . . , n}. Some of the robot
positions might be fixed, so that these “robots” can
also in fact represent access points of a communication
infrastructure, with which the mobile elements must
maintain certain communication flows. We consider
high-level motion planning problems where we neglect
the dynamics of the robots, whose positions evolve in
discrete time as

xk+1
i = xki + uki , i ∈ [n],

where uki is the control input for robot i at period k.
The quality of the deployment of the robotic network

is captured by a potential field G(x) [15], whose mini-
mum corresponds to a desired steady-state configuration
x∗ for the network. Hence the deployment problem
for this potential field consists in designing control
laws allowing the system to reach x∗ starting from an
initial configuration x0 = [x0

1, . . . ,x
0
n]. Most multi-

robot controllers take a simple gradient form

uk(xk) = −γk∇G(xk), (1)

where γk are pre-specified stepsizes, which in general
only leads to a critical point of G. Truncated versions of
(1) can be used to account for velocity constraints but
are omitted for simplicity of exposition, as they do not
change the convergence results. Our discussion follows
this gradient descent approach, as global minimization

of G for many multi-robot deployment problems is
computationally intractable.

For concreteness, we focus here on the coverage
control problem introduced by Cortés et al. [18]. Let
us assume that an event occurs in the workspace at each
period at some random position Zk. The probability
distribution of the events is denoted PZ . Alternatively,
Zk can denote the position of a single target with ergodic
Markov dynamics and PZ is its stationary distribution.
The coverage control problem consists in finding a
steady-state configuration for the robotic network that
minimizes the objective

G(x) = EZ
[

min
i∈[n]

c(‖Z − xi‖)
]
, (2)

where EZ is the expectation operator corresponding to
PZ and c is an increasing, continuously differentiable
function. This objective measures the average “service”
performance for the events assuming that an event is
serviced by the robot closest to its location, say robot i,
at a cost c(‖Z − xi‖).

Following the gradient controller (1) to minimize the
coverage control objective (2) requires the knowledge
of the distribution PZ , which for many scenarios of
interest is difficult to estimate or to compute. Recently,
the authors introduced stochastic gradient controllers for
multi-robot deployment problems [12], which do not
require this knowledge and in many cases lead to simple
distributed algorithms. Consider an artificial potential
such as (2) which takes the form of an expected value
G(x) = Eξ [g(x, ξ)] , where ξ is a random variable
with unknown distribution Pξ. Assume that we can
observe i.i.d. realizations ξk of the random variable ξ,
or that {ξk}k≥0 is an ergodic Markov chain with sta-
tionary distribution Pξ. Then, provided that the identity
∇xEξ [g(x, ξ)] = Eξ [∇xg(x, ξ)] holds, the stochastic
controller

uk(xk) = −γk∇xg(xk, ξk), (3)

leads asymptotically almost surely to a configuration
x, which under broad conditions is a local minimum
of G, if the stepsizes satisfy the standard conditions∑∞
k=0 γ

k = ∞,
∑∞
k=0(γk)2 < ∞. In other words,

we recover the asymptotic behavior of the deterministic
controller (1), but now the scheme does not require the
knowledge of Pξ. In particular, the stochastic controller
(3) for the coverage control problem (2) takes the simple
form [12], [22]

xk+1
i =

{
xki + uki,1(Zk,xki ), if i = ik∗
xki , otherwise,

(4)
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where

uki,1(Zk,xki ) = γkc′(‖Zk − xki ‖)
Zk − xki
‖Zk − xki ‖

(5)

and ik∗ is the index of the closest robot to the kth target
location

ik∗ ∈ arg min
i∈[n]
{‖Zk − xki ‖}, (6)

with ties resolved arbitrarily. Determining ik∗ at each
period in the robotic network can be done with a
finite number of message exchanges using a simple
Floodmin algorithm for example [23]. At each period,
only the agent closest to the event is required to detect
its location in order to implement this scheme [22].

Note that the controllers (3) or (4) replace the re-
quirement of a model of the uncertainty distribution by
actual measurements in the workspace. We call such
algorithms adaptive deployment algorithms, by analogy
with the algorithms developed in adaptive control and
signal processing [24].

III. WIRELESS NETWORKING

For the deployed robotic network to maintain com-
munication, the gradient controllers (1) or (3) need to
be further constrained. Indeed, wireless communication
rates are related to inter-robot distances due to path loss
and interferences. Each robot acts as a wireless terminal
that wishes to deliver packets to other robots and base
stations for different application level flows, where a
flow is associated to a given destination. Packets for flow
φ are generated at robot i at rate aφi , with aφi ≤ 0 if i
is the destination of flow φ and

∑n
i=1 a

φ
i = 0. Robots

communicate using a set of frequency tones f ∈ F .
For every frequency f ∈ F and pair (i, j) ∈ [n], let
hf,kij (xi,xj) denote the communication channel power
gain at period k from robot i at position xi to robot
j at position xj . In wireless communications, {hf,kij }ij
is modeled as the realization of a random vector Hf,k.
Models of wireless channel gains generally take the form

hf,kij (xi,xj)|dB = 10 log10 h
f,k
ij (xi,xj)

= lf (xi,xj) + Y f,kij , (7)

where Y f,kij is a zero-mean random variable model-
ing fading and shadowing effects [5]. The function
lf (xi,xj) represents a deterministic path loss compo-
nent between positions xi and xj in the frequency band
f .

The simplest notion of communication network in-
tegrity consists in keeping the channel gains between
robots above a certain threshold in steady state. Inter-
ferences can be neglected if we assume that distinct

robot pairs communicate on different frequency bands
for example. Much of the robotic literature relies on
the classical disc model, where Y kij = 0 in (7), and
l(xi,xj) = 1{‖xi − xj‖ ≤ Rc} for a known com-
munication radius Rc. By assuming Rc to be perfectly
known, one can develop open-loop algorithms that plan
the motion of the robots without testing the wireless
connectivity. However, such models lack realism and
robustness to unavoidable modeling errors. In Section
IV, we describe a simple algorithm to reach a steady-
state configuration with sufficiently strong communi-
cation links. It does not require the knowledge of a
channel model such as (7), relying instead on actual
signal strength measurements to guide the robots.

Enforcing simple connectivity constraints is often not
sufficient to carry out the tasks of a mobile robotic
network. In general, the robots need to transmit back
information in real-time to other robots or base stations
(e.g. audio and video feeds), and for this purpose certain
end-to-end rate constraints need to be enforced for
particular flows. We assume that in addition to properly
choosing their positions, the robots can adjust their
wireless transmission powers in order to enforce these
additional communication requirements and limit the
effects of inter-robot interferences. We thus consider
in Section V a more general but model-based wireless
network optimization problem that constrains the de-
ployment problem of the previous section and lets us
set specific communication rates between terminals.

For this problem, we neglect the stochastic component
of the channel gains, i.e., let Y f,kij ≡ 0 in (7), assuming
essentially that lf (xi,xj) can be estimated reliably. Let
pf,kij denote the power used by robot i to send packets to
robot j at period k on tone f , and let pf,k = {pf,kij }ij .
The powers and robot positions at each period k are
constrained as follows in order to support the required
communication rates

cf,kij ≤ C
f
ij(x

k, pf,k), (8)

ckij ≤
∑
f∈F

cf,kij , (9)

pi,max ≥
n∑
j=1

∑
f∈F

pf,kij (10)

aφi ≤
n∑
j=1

rφ,kij −
n∑
j=1

rφ,kji (11)∑
φ

rφ,kij ≤ c
k
ij . (12)

Here pi,max is the maximum power that can be trans-
mitted by the wireless terminal on robot i ∈ [n],
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Cfij(x
k, pf,k) is the achievable communication capacity

on the link between robots i and j for frequency f , ckij
is the communication rate actually used on this link,
and rφ,kij is the rate used for flow φ. The flow-balance
equation (11) ensures that the packets of flow φ are
properly delivered to their destination. Note in particular
that to maintain a certain flow rate between two given
terminals, we can split the flow along several routes
linking these terminals. Refer to [21] for a more detailed
discussion of the constraints (8)-(12), and to Section V
where in particular the achievable capacities appearing
in (8) are discussed in more details.

IV. ENFORCING CONNECTIVITY

In this section we consider the problem of approxi-
mately enforcing an average minimum channel strength
between neighbors in the robotic network. We assume
that the topology of the network is fixed, with robot
i ∈ [n] initially able to communicate with its set
of neighbors denoted N (i) ⊂ [n]. For concreteness,
the network topology chosen in the simulations is the
Delaunay triangulation [25] of the initial configuration
of the robots, see Fig. 1. Interferences between robots
are ignored in this section, for example by assuming that
distinct robot pairs communicate on different frequency
bands. We omit the indication of the frequency tone f
from the notation for the channel gains hkij(xi,xj).

In order to reach a configuration that takes into
account the connectivity constraints, we consider the fol-
lowing modified cost function for the coverage control
problem

G(x) =EZ

[
min
i∈[n]

c(‖Z − xi‖)

]

+ κ1

n∑
i=1

∑
j∈N (i)

(−l(xi,xj) + h1), (13)

where κ1 and h1 are constants. The second term penal-
izes low channel gains. Note in particular from (7) that
−l(xi,xj)→ +∞ when the channel gain tends to zero.
The stochastic gradient controller (3) takes the form

xk+1
i =

{
xki + uki,1 + uki,2, if i = ik∗
xki + uki,2, otherwise,

(14)

where uki,1 and i∗k are given by (5), (6), and

uki,2(xk) =− γk
∑

j∈N (i)

∂l

∂xi
(xi,xj)

− γk
∑

j:i∈N (j)

∂l

∂xi
(xj ,xi). (15)

Here the notation ∂/∂xi denotes the vector of partial
derivatives with respect to the components of xi. Typ-
ically l(xi,xj) and the neighborhoods are symmetric,
e.g. because they depend only on the distance ‖xi−xj‖,
and the two terms in (15) are equal.

In practice we do not necessarily know the function
l but we can reconstruct an estimate of its gradient
(15) using noisy finite differences based on the channel
gain measurements hk. In particular, as noted in [12],
the simultaneous perturbation stochastic approximation
idea [26] is very useful to reduce the amount of co-
ordination necessary in a multi-robot system to obtain
such a gradient estimate. In this scheme, robot i ∈ [n]
generates at period k independently of the other robots
a d dimensional random vector ∆k

i with entries ∆m,k
i =

±1,m = 1, . . . , d, each with equal probabilities 1/2. A
period is then divided into two subperiods. In the first
subperiod, all robots move to the positions xki − εk∆k

i ,
i ∈ [n], and measure the channel strengths h1,kij with
their neighbors. In the second subperiod, they move to
the positions xki + εk∆k

i and measure again the channel
strengths h2,kij with their neighbors. Now consider two
connected robots i, j, and the following expressions
computed by robot i

gm,kij =(h1,kij |dB − h
2,k
ij |dB)/(2εk∆m,k

i ),m = 1, . . . , d,

(16)

ĝm,kij =(h1,kji |dB − h
2,k
ji |dB)/(2εk∆m,k

i ),m = 1, . . . , d.

(17)

By a Taylor expansion of (16), assuming l is twice
continuously differentiable, we have

gm,kij =
∂l

∂xm,ki

(xki ,x
k
j ) +

∂l

∂xm,kj

(xki ,x
k
j )

∆m,k
j

∆m,k
i

+ (Y 1,k
ij − Y

2,k
ij )/(2εk∆m,k

i ) + bm,kij ,

where the term bm,kij is a small second-order bias. Now
note that all the random terms have zero mean, due
to the properties of Yij and the choice of the random
vectors ∆k

i . In other words, up to the small bias term,
gm,kij is an unbiased gradient estimate of ∂l

∂xm,ki

(xki ,x
k
j ),

and similarly ĝm,kij is an unbiased gradient estimate of
∂l

∂xm,ki

(xkj ,x
k
i ). Hence with two simultaneous random

motions of the robots, robot i can construct an estimate
of the terms appearing in (15) by communicating only
with its neighbors, and updates its location by replacing
the gradient expressions in (15) by

uki,2(xk) =− γk
 ∑
j∈N (i)

gkij +
∑

j:i∈N (j)

ĝkij

 . (18)
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Fig. 1. Adaptive coverage control under stochastic wireless connec-
tivity constraints. The topology of the network is fixed here to be the
Delaunay triangulation for the initial configuration shown on the left
figure. This figure also shows a green dot at the approximate mean
of the distribution of the events. The figure on the right shows the
configuration reached after 100 events occured. Here κ1 = 2, h1 = 1,
and γk = 0.05 + 0.1/(1 + 0.01k). The asymptotically constant
stepsizes ensure tracking of potential slow temporal variations in the
target distribution but only provide convergence of the configurations
to a neighborhood of a critical point of (13).
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Fig. 2. Empirical average service time and and minimum channel
gain value over all links for 500 periods in the adaptive coverage
control scenario of Fig. 1.

Theorem 1: Assume that the robots follow Algorithm
1, that the stepsizes γk, εk are positive, tend to 0 as
k →∞, and satisfy

∞∑
k=0

γk =∞,
∞∑
k=0

(γk/εk)2 <∞,

and that l is three times continuously differentiable.
Then the sequence of configurations xk converges al-
most surely to a critical point of the objective (13).

Proof: Follows from e.g. [27, chapter 7].

V. NETWORK PARAMETER OPTIMIZATION

We now turn to the problem of deploying robots while
enforcing end-to-end rate constraints. Here our approach
is different from the one used in the previous section and
based on a projected gradient heuristic. We assume in
this section a deterministic model of the channel gains,

Algorithm 1 Connectivity-Constrained Adaptive Cover-
age Control Algorithm

1: At period k, when a target appears at Zk:
2: Determine ik∗ as in (6), e.g. via Floodmin
3: Each robot 1 ≤ i ≤ n moves to xki−εk∆k

i , measures
the channel gain h1,kij with its neighbors and collects
the values h1,kji from its neighbors.

4: Repeat 3 for xki + εk∆k
i , h2,kij , h2,kji .

5: Robot i updates xki according to (14), with uki,2
given by (18).

6: Go to 1.

as in e.g. [6], [20]. Moreover, to simplify the joint power
optimization and motion planning problem, we assume
that lf takes the simple form

lf (xi,xj) = c′f1 − c
′f
2 ‖xi − xj‖, (19)

which corresponds to an exponential path loss model,
with c′f1 , c

′f
2 known constants. Path loss models are in

fact more often assumed to be of the form

l(xi,xj) = c′′f1 − 10c′′f2 log10 ‖xi − xj‖, (20)

where c′′f1 , c′′f2 are locally constant [5]. One possibility is
to approximate locally a model such as (20) by the more
conservative form (19), and to constrain the motions
of the robots at each gradient step in the following
algorithms to be limited to the trust region where the
approximation is valid. In addition, the achievable ca-
pacity Cfij(x, p) of each link (i, j) takes the form

Cfij(x, p
f ) = K ln(1 + SINRfij) (21)

SINRfij =
hfij(xi,xj)p

f
ij

σfj +
∑

(k,l)∈Ifij
hfkl(xk,xl)p

f
kl

, (22)

with K a constant, σfj the receiver noise, Ifij the
set of pairs (k, l) interfering with packet transmissions
between i and j, and

hfij(xi,xj) = 10l
f (xi,xj)/10, ∀i, j,

see (7). Expression (21) assumes a capacity-achieving
channel code.

The intermediate and asymptotic configurations of the
robots must satisfy the constraints (8)-(12). We look for
a final desired configuration which is solution to

min G(x) (23)
subject to (8), (9), (10), (11), (12),

where G(x) is the deployment objective. The variables
are x, {pfij}, {r

φ
ij}, {c

f
ij}, {cij}, and there are implicit

positivity constraints on all but the position variables.
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The projected gradient algorithm used to minimize
(23) operates as follows. Starting from some configura-
tion xk at period k, we first compute the unconstrained
configuration

x̂k+1 = xk − γk∇xG(xk), (24)

or its stochastic version (3). Then the iterate xk+1

is obtained by projection on the set of configurations
satisfying the communication constraints, i.e., by solving
the following auxiliary optimization problem

min ‖x− x̂k+1‖2 (25)
subject to (8), (9), (10), (11), (12).

In general, this projection step is not easy to perform,
due to the nonconvexity of the constraints (8). These
constraints become convex under a high-SINR regime
assumption which neglects the 1 in expression (21)
[20]. However, this assumption usually leads to bad
solutions for non-symmetric flows such as the ones
often encountered in robotic networks. Indeed, consider
a simple example with two nodes and node 2 only
required to transmit to node 1 at a very small rate. Then
the high-SINR assumption still forces the power p21 to
be relatively large for SINR21 to be much greater than
one. As a result, we only make this assumption to obtain
initial values for the decision variables in (23). We then
follow a sequential convex optimization procedure to
improve the solution for this projection step.

A. Sequential Convex Optimization

We first develop a convex approximation of the con-
straint (8). Let η = 1/K and for simplicity of notation
we drop the superscript f . Rewrite (8) as

eηcij − 1 ≤ ec1−c2‖xi−xj‖+p̃ij

σj +
∑

(k,l)∈Iij e
c1−c2‖xk−xl‖+p̃kl

, (26)

with p̃ij = ln pij . The left hand side of this inequality
is then approximated around some value of c = c̃, by
using the Taylor expansion

ln(eηcij − 1) ≈ ln(eηc̃ij − 1) + (cij − c̃ij)
ηeηc̃ij

eηc̃ij − 1

so that

eηcij − 1 ≈ αijeβijcij , (27)

with βij = ηeηc̃ij

eηc̃ij−1
, αij = (eηc̃ij − 1)e−βc̃ij . Using

this approximation (27), constraint (26) becomes

αijσje
βijcij +

∑
(k,l)∈Iij

αije
c1−c2‖xk−xl‖+p̃kl+βijcij

≤ ec1−c2‖xi−xj‖+p̃ij . (28)

We then introduce the variables

q̃ij = p̃ij − c2‖xi − xj‖, ∀i, j, (29)

which can be interpreted as received powers [6]. We
rewrite the constraint (28) and relax the identity (29) as

ln

αijσje−c1+βijcij−q̃ij + αij
∑
k,l

eq̃kl+βijcij−q̃ij

 ≤ 0

q̃kl + c2‖xk − xl‖ ≤ p̃kl,∀k, l ∈ [n]. (30)

These constraints are now convex, see [28, p.87]. The
relaxation (30) is valid because if q̃, p̃,x is a solution
of the problem (25) with the relaxed constraints (30),
tightening these constraints is possible since the power
variables are only involved in (10), a constraint that
cannot be violated by reducing the transmission powers.
Moreover, this tightening does not change the objective
(25), which does not involve the power variables.

The sequential convex optimization approach attempts
to reach the solution of (25) in several steps, as follows.
Starting with an initial value c̃ for the capacity variables
obtained say by convex programming under the high-
SINR assumption, we approximate the constraints (8)
as explained above. The resulting convex problem is
then solved to provide a new value for the capacity
variables c̃ around which we approximate again (8)
for the next iteration. The heuristic also fixes to zero
the link capacities that are found to be zero during an
iteration, since the approximation above is not valid for
c̃ij = 0. We stop when the value between two successive
iterations changes by less than a small threshold, or after
a given number of iterations.

Note finally that in practice, we would need to solve
the the projection step (25) in a distributed manner
as well. For this purpose, a distributed algorithm can
be derived based on the techniques presented in [21].
An example of final configuration obtained with this
algorithm is shown on Fig. 3.

VI. CONCLUSION

This paper has discussed robot deployment prob-
lems under wireless communication constraints. First,
an adaptive algorithm is proposed for maintaining con-
nectivity between robots by exploiting the possibility
of measuring the channel gains during deployment.
Second, we consider a joint deployment and wireless
networking optimization problem, where rate constraints
must be enforced between pairs of terminals. Under
some assumptions on the wireless channel model, we de-
scribed a projected gradient heuristic that provides good
deployment configurations in practice. Future work will
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Fig. 3. Illustration of the adaptive coverage control algorithm with
flow rate constraints. All the robots must transmit packets to the fixed
base station at (0, 0) at a rate ai = 1 (there is a single flow). All
robots transmit on the same frequency band, hence all pairs interfere
with any given link. Fig. (a) shows the initial configuration, and Fig (b)
shows the configuration obtained after the occurrence of 150 events.
The width of the lines indicate the flow rates along that particular link,
which is also indicated by numerical values.

refine this algorithm by incorporating channel sensing
to handle a priori unknown channels.
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