
 
 

Abstract—Nonlinear constrained optimal trajectory control 
is an important and fundamental area of research that 
continues to advance. This paper proposes an improved 
version of the bio-inspired virtual motion camouflage (VMC) 
method, which is based on the natural phenomenon of motion 
camouflage.  Currently, the VMC method offers fast solutions 
that fall close to the optimal solution, but the solution 
optimality is affected by a selected and fixed search space that 
is defined by a fixed polynomial type prey motion. To increase 
the flexibility of the search space and thus improve the solution 
optimality, this paper proposes using B-spline curves to 
represent the prey motion, in which the control points and thus 
the prey motion can be optimized. It is expected that the 
proposed B-spline augmented VMC method will improve the 
solution optimality without sacrificing the CPU time too much. 
A minimum time obstacle avoidance robot problem will be 
simulated to demonstrate the capabilities of the algorithm. 

Index Terms—optimal control, virtual motion camouflage, B-
spline 

I. INTRODUCTION 

Nonlinear constrained optimal control that considers 
equality and inequality constraints on state and control 
variables is an important and fundamental area in dynamical 
systems’ path and trajectory design. Many methodologies 
have been developed for a myriad of applications, and new 
developments continue to emerge in this active field of 
research. In addition to many heuristic methodologies [1]-[3] 
that solve for global optimal solutions, and hybrid methods 
[11] that combine heuristic approaches with other methods, 
many methods focus on finding a local optimum or 
improving upon it and can be generally grouped as 
mathematical programming 

Two often used mathematical programming methods are 
(1) the calculus of variations (CoV) with Pontryagin’s 
Minimum Principle (PMP) approach [4]-[6], and (2) direct 
collocation (DC) with nonlinear programming (NLP) 
approach [7],[8],[18]-[22]. Both methods have their own 
advantages and disadvantages. A more comprehensive 
literature review can be found in [27][28].   

To achieve the optimal or very-close-to optimal solution 
rapidly, a virtual motion camouflage (VMC) method has 
been proposed recently [12]. Inspired by the biological 
motion known as motion camouflage, the VMC method 
dramatically reduces the dimension of the achieved NLP 
formulation.  A dimension reduced search space is defined 
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using a selected virtual trajectory called the prey motion 
(which is a virtual one and selected according to boundary 
conditions) and an optimized reference point. Over this 
subspace, the optimal or near optimal trajectory is found 
through optimizing the path control parameters (PCPs) for 
each of the optimization iterations. Because the problem is 
solved in a reduced search space, the computational time is 
significantly reduced. The dynamic equation and boundary 
constraints are satisfied by using the differential flatness or 
differential inclusion technique [15] and the necessary 
condition derived. 

Despite these advantages, the VMC method might only be 
able to achieve suboptimal (but close to the optimal solution) 
for general cases if the dimension of the “position” state of 
the dynamics is larger than one. One promising approach to 
improve the optimality of the solution is to increase the 
flexibility of the prey motion and at the same time not 
significantly increase the problem dimension. In this paper, 
the B-spline technique will be applied and the VMC 
algorithm will be modified accordingly. 

The paper is organized as follows. First, the problem 
definition will be listed. The regular VMC approach will 
then be overviewed, followed by an overview of the 
necessary conditions. Section III will introduce the B-spline 
augmented VMC algorithm. The basics of B-spline curves 
are discussed, and then linked to the VMC method through 
modified necessary conditions and the augmented algorithm 
itself. An analysis on the dimension and optimality of the 
augmented algorithm is then presented. Section IV provides 
a simulation example to demonstrate the capabilities of the 
new algorithm. Finally, conclusions are given in Section V. 

II. PROBLEM DEFINITION AND VMC METHODOLOGY 

In this section, the problem definition will be provided. 
After this, the regular VMC approach [12],[17],[29] will be 
discussed briefly. 

A. Problem Definition 

(P1) For a typical nonlinear constrained optimal control 
problem [13], there exists a cost function 

( ) ( )
0

, , ,
ft

f f t
J t t L t dtϕ  = +  x x u    (1) 

that needs to be minimized (or maximized) through a set 
containing state 1n×∈ℜx  and control 1m×∈ℜu  variables and 
(if it is free) the final time ft . The system is subject to 
inequality constraints 

( ) 1, , 0, pt ×≤ ∈ℜg x u g      (2) 

and equality constraints 
( ) 1, , 0, qt ×= ∈ℜh x u h      (3) 

The equality constraints include the boundary conditions 
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( ) ( ) 1
0 0, , , 0, l

f ft t t t ×  = ∈ℜ ψ ψx x   (4) 

and the dynamic equations of motion 
( ) 1 1, , , ,n mt × ×= ∈ℜ ∈ℜx f x u x u    (5) 

In this paper, it is assumed that the state x  can be 
organized into two portions: the “position” state 1an

a
×∈ℜx  

and the “state rate” ( ) 1an n
sr

− ×∈ℜx . The “state rate” can also 
be seen as the “remaining state.” Therefore, the equations of 
motion in Eq. (5) can be rewritten as ( ) ( , )a at t=x f x  and 

( ) ( , , )sr srt t=x f x u . When applying the differential inclusion 
technique [15], the “state rate” srx  can be written as 

1( , , )sr a a a t−= x f x x  and the control u  can be written as 
1( , , )sr sr t−= u f x x . These injective mappings can be solved 

either explicitly or implicitly through an iterative scheme. 

B. VMC Approach 

The virtual motion camouflage (VMC) method was 
inspired by the stealth strategy called “motion camouflage” 
(MC) observed in mating hoverflies [14]. In MC, a moving 
aggressor is attempting to chase down a moving prey 
without being noticed by the prey. In the VMC framework, 
the aggressor position ( )a tx  is confined by the following 
variables: the prey trajectory ( )p tx , the selected reference 
point ( )r tx , and what is called the path control parameter 
(PCP) ( )tν . The PCP is what determines where the 
aggressor position is placed as 

( )a r p rν= + −x x x x       (6) 

The reference point is considered fixed over time but can 
be optimized, so the derivatives of the aggressor position, 
i.e., the “position” state, can be derived as 

( )a p r pν ν= − +  x x x x       (7) 

and 

( ) 2a p r p pν ν ν= − + +    x x x x x     (8) 

(P2) Through the steps described above, the system can 
now be rewritten as follows. For the regular VMC method, 
there exists a cost function 

( )
0

, ,... , ,...,
ft

f t
J t L t dtϕ ν ν ν ν = +        (9) 

that needs to be minimized (or maximized) through a set 
containing the PCPs, their derivatives, the reference point, 
and (if it is free) the final time ft . The system is subject to 
inequality constraints 

( ) 1, ,... 0, ptν ν ×≤ ∈ℜg g      (10) 

The dynamic equation equality constraints are already 
taken into account by representing srx  and u  in terms of 

px , rx , ν , and their derivatives. Boundary conditions, 
meanwhile, are also taken into account. Therefore, there are 
no explicit equality constraints. 

Remark 1: When the system of P1 was converted into P2, 
the search space is transferred from the full space into a 
search space that is defined by the prey motion. 

P2 can be solved through an NLP algorithm by 
discretizing the PCP history ( )tν  into 0,...,i N=  nodes. 
Several discretization schemes [18]-[22] are available to 
perform the step of discretization. This paper approximates 

the discretized PCP history using the Legendre interpolation 
polynomials [8] as 

( ) ( )
0

N

i i
i

t tν φ
=

≈ν       (11) 

where 0 0(2 ) / ( ) 1,1f ft t t t t t= − − − ∈ −    is the zeroes of NL , 
the derivative of the Legendre polynomial NL . The base 
functions ( )i tφ , 0,...,i N=  are the Lagrange interpolating 
polynomials of order N . 

Furthermore, the PCP derivatives can be found in terms of 
the PCP vector.  The equation 

( )0/ 2 /
k

k k k
fdt t t ∂ = − ν νD     (12) 

finds the thk order derivatives in the original time scale t . 
Here, D  is the differentiation matrix (Fahroo and Ross 
2001). 

(P3) The VMC framework in P2 can be rewritten in 
discretized form as follows. The cost function  

( ) ( )0

0

,
2

N
f

f k
k

t t
J t Lϕ ν ν ω

=

− 
= +  

 
     (13) 

needs to be minimized (or maximized) according to the PCP 
vector 0,1,...,[ ]k k Nν =ν =  and (if it is free) the final time ft . The 
variables kω are the weights for the thk  node. The system is 
subject to inequality constraints 

( ) 1, 0, ptν ×≤ ∈ℜg g       (14) 

III.B-SPLINE AUGMENTED VMC ALGORITHM 

A. Basics of B-spline [23] 

Polynomials have proven to be very useful in representing 
or approximating curves. Despite their ease of use, however, 
their main drawback is that they can be very inflexible on 
large intervals, which can generate wild oscillations 
especially for high order curves [23]. Spline functions 
remedy this by taking piecewise polynomials and connecting 
them together while maintaining some degree of global 
smoothness.  

For example, function ( )f t  is represented by a B-spline 

curve of degree d  as  

( ) ( ),
0

cpn

i d i
i

f t B t P
=

=      (15) 

where ( ), , 0,...,i d cpB t i n=  are the thd  degree basis functions, 

, 0,...,i cpP i n=  are the control points, and 1cpn +  is the number 

of control points. The curve is generated over a time span 

0, ft t t ∈   .  Defined on this same time span is what’s known 

as the knot vector, which is 

0 0 1 1

1 1

,..., , ,..., , ,...,d k d f f

d d

t t t tτ τ τ+ − −

+ +

  =  
  
 

   (16) 

with length 1k + . The knots τ  are the time points (or 
breakpoints) on time span t  where the piecewise 
polynomials are linked together to form the B-spline curve. 
Naturally, the knots must be non-decreasing, i.e., 1i iτ τ +≤ . 
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There are a few types of knot vectors available; the vector 
shown in Eq. (16) and used in this paper is called the non-
periodic knot vector.  Here, the initial knot 0 0tτ =  and final 

knot k ftτ =  are repeated with multiplicity 1d + , and a B-

spline curve will generally only interpolate through a control 
point for this type of knot vector. In this case, the curve’s 
two endpoints will interpolate through the initial and final 
control points. 

The B-spline basis functions are calculated recursively for 
each time t . First, the zero-degree functions are calculated 
as 

( ) 1
,0

1

0
i i

i

if t
B t

otherwise

τ τ +≤ <
= 


    (17) 

Then the remaining basis functions are calculated as 

( ) ( ) ( )1
, , 1 1, 1

1 1

i i d
i m i m i m

i d i i d i

t t
B t B t B t

τ τ
τ τ τ τ

+ +
− + −

+ + + +

− −= +
− −

, 

 1,...,m d= (18) 

up to the thd  degree basis functions, which are used in Eq. 
(15). The thj  derivative of the thd -degree basis functions 
can be found recursively using 

( ) ( )
( ) ( )1 1
, 1 1, 1

,
1 1

j j
j i d i d

i d
i d i i d i

B B
B t d

τ τ τ τ

− −
− + −

+ + + +

 
 = −
 − − 

  (19) 

The number of control points is related to the degree of the 
spline and the number of knots as 

1cpn k d= − −      (20) 

It is worth noting that the B-spline curve is used for each 
of the prey motion components, and the description in this 
section just represents one of them. 

B. Modified Necessary Boundary Conditions 

When B-spline curves are used to define the prey motion, 
the boundary conditions derived here can be used to solve 
for certain control points or control point components. Here 
the necessary conditions are derived for one set of boundary 
conditions called BC1: Fixed initial and final ax . 

Lemma 1. When the initial and final “position” states are 
known, the first and the last control points for thi  
component, 1,... ai n= , must satisfy the equations 

( ) ( ) ( )
1

,0 0, 0 , , 0 , ,0 , , 0
1

, 1,...
cp

cp cp

n

i d i n n d a i i k k d a
k

P B t P B t x P B t i n
−

=

+ = − = (21) 

and 

( ) ( ) ( )
1

,0 0, , , , , , ,
1

, 1,...,
cp

cp cp

n

i d f i n n d f a i N i k k d f a
k

P B t P B t x P B t i n
−

=

+ = − = (22) 

In this Lemma, ,i kP  is the thk  control point for the  thi  
direction of the prey motion. 

Proof. The initial and final positions of the prey motion 
are selected to equal to, respectively, the initial and final 
aggressor positions by selecting 0 1Nv v= = .  This gives us 
the necessary conditions ,0 ,0p a=x x  and , ,p N a N=x x . Since 
the prey motion is represented by the B-spline curve in Eq. 
(15), this obtains the equations 

( )

( )

, , 0 , ,0
0

, , , ,
0

cp

cp

n

i k k d a i
k

n

i k k d f a i N
k

P B t x

P B t x

=

=

=

=




, 1,..., ai n=    (23) 

In Eq. (23), the initial and final control points, ,0iP  and 
, , 1,...,i N aP i n= , are calculated instead of optimized. 

Rearranging the equations gives us Eqs. (21-22).                 □ 
Remark 2: When using a non-periodic knot vector, as in 

Eq. (16), ( ), 0 0, 1,...,k d cpB t k n= =  and 
( ), 0, 0,..., 1k d f cpB t k n= = − .  Therefore, ,0 , ,0i a iP x=  and 

, , ,cpi n a i NP x= . 
Remark 3: For BC1, the following parameters are 

calculated: , 0,kv k N= , and , , 0, , [1,..., ]j k cp aP k n j n= ∈ ; and the 
following parameters are optimized: rx ,  , 1,.., 1kv k N= − , 
and , , 1,..., 1, [1,..., ]j k cp aP k n j n= − ∈ . 

 (P4) Through the steps mentioned in Section II and the 
steps above, P1 is converted into the following dimension 
reduced NLP. The cost function 

( ) ( )0

0

, , , , , ,
2

N
f

r f r f k
k

t t
J t L tϕ ν ν ω

=

− 
= +  

 
P x P x  (24) 

is minimized by varying the components of the PCP vector 
ν  and the control points P  that are optimized (instead of 
calculated), as well as the reference point rx  and (if it is 
free) the final time ft . The parameters to be optimized for 
BC1 can be found in Remark 3. The optimization is subject 
to inequality constraints 

( ), , , 0r tν ≤g P x       (25) 

C. B-spline Augmented VMC Algorithm 

For the B-spline augmented VMC algorithm, all variables 
to be optimized are grouped into Set gS . This set contains 
the parameters for each respective set of boundary 
conditions. The following algorithm below lists the detailed 
steps of the B-spline augmented VMC algorithm. 

Algorithm 1. B-spline Augmented VMC Algorithm
Steps in the 
Initialization 

Step 0: Provide initial guesses for the
parameters in Set gS  depending 
on the boundary condition.

 
Steps inside 
the NLP 
Iterations 

Step 1: Calculate the remaining PCPs and 
control points. 

Step 2: Evaluate the performance index 
using Eq. (24). 

Step 3: Evaluate the constraints using Eq. 
(25). 

Step 4: If the convergence criterion is not 
satisfied and the maximum 
number of iterations hasn’t 
reached, generate parameters in 
Set gS  for the next NLP iteration, 
and go back to Step 1.  Otherwise, 
the optimization is a success and 
terminated. 

D. Dimension Analysis 

The first method is a “baseline” approach.  In the 
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“baseline” approach, the nonlinear constrained trajectory 
design problem described in Section II is formulated as an 
NLP via a pseudo-spectral based collocation method such as 
the LGL method [8]. The states and control vectors are 
discretized into 0,1,..., N  nodes, and the state and control 
parameters at those collocation nodes are then optimized. 
Therefore, the dimension of the parameters is on the order of 

( )n m NΟ +   . 
The second method, the VMC approach [29], in which the 

prey motion is represented by a polynomial, optimizes the 
discretized PCP vector (and possibly the final time and the 
reference point).  In this approach, the parameter dimension 
is on the order of ( )NΟ . 

The third method is the B-spline augmented VMC 
algorithm proposed in this paper.  In addition to the PCPs 
and possibly the reference point and final time, this 
augmented VMC approach needs to optimize some of the 
control points of the B-spline which is used to represent the 
prey motion. Therefore, the number of parameters to be 
optimized is on the order of ( )a cpN n nΟ + , where an  is the 
number of “position” states and cpn  is the number of control 
points. Normally cpn  is much less than the number of 
collocation nodes N .  

IV. SIMULATION EXAMPLE 

To demonstrate the enhanced capabilities of the B-spline 
augmented VMC approach, a two-wheel robot minimum 
time trajectory planning example is presented here. 

A. Problem Definition 

The kinematic model of the two-wheel mobile robot [26] 
is given by 

cos ; sin ;x y wυ θ υ θ θ= = =      (26) 
where the two wheels’ midpoint ,

T

a x y=   x  and the 
direction of the vehicle srx θ=  are regarded as the state 
variables. Two control variables are involved as the speed v  
and the angular speed w , and they are respectively 
constrained by maxv v≤  (e.g. max 0.1 /v m s= ) and maxw w≤  
(e.g. max 135 /w s= ° ). The mission objective is to start at a 

position of [1,1]  with an initial direction of 0 45θ = °  and 
move to a position of [9,9]  in the minimum possible time 
while avoiding all obstacles. In the discretized form, the 
minimum time cost function is ( )0

0

0.5
N

f i
i

J t t ω
=

= −  .  
Through differential flatness, the state rate can be computed 
as ( )1tan /y xθ −=   , while the control variables can be 
computed as ( )/ cosv x θ=   (or ( )/ sinv y θ=   if ( )cos 0θ = ) 
and ( ) ( )2 2/w yx xy x y= − +     (if ( )2 2 0x y+ ≠  ). 

The obstacle used in this problem is defined as: (C1) 
( ) ( )2 2

5 5 4x y− + − = . For each simulation node case, the 
reference point is considered as a parameter to be optimized, 
and an initial guess of [130, 120]−  is used. Also, an initial 
guess of a straight line connecting the endpoints is used for 
the control points. 

B. Simulation Results and Discussion 

Table 1 shows the results using the baseline approach, the 
regular VMC approach, and the B-spline augmented VMC 
approach. The “NURBS” used in the B-spline augmented 
VMC approach has a degree of three and four control points. 

Several observations are apparent in these results. First, all 
of the VMC methods generate results that fall within 1.8% 
of the baseline’s results. The difference percentage between 
the baseline’s and the VMC methods’ results gets smaller as 
the number of nodes increases. Second, compared to the 
baseline approach, all of the VMC methods have 
significantly smaller CPU runtimes. The baseline method’s 
runtime increases noticeably as the number of nodes 
increases (from 3.65 to 24.06 seconds), while the VMC 
methods have a much smaller increase as the number of 
nodes increases. The regular VMC method ranges from 1.07 
to 1.57, and the augmented method point ranges from 2.30 to 
5.72. Third, there are noticeable differences in the results 
between the regular VMC and B-spline augmented VMC 
methods. The augmented VMC method obtains results that 
are much closer to the baseline solutions, while the regular 
VMC method achieves its results with faster runtimes. This 
is because the augmented VMC method optimizes more 
variables compared to the regular VMC method 

Table 1 Simulation results of the robot minimum time collision avoidance problem (1 obstacle) 
Algorithm Performance 10-node 15-node 20-node 25-node

“baseline” approach 
Index (s) 120.8123 120.2759 120.3392 120.3258
CPU Time (s) 3.6499 14.2157 31.7255 24.0594

VMC methods

VMC 
Index (s) 122.4358 121.9288 121.1358 121.0189
Difference % 1.7536 1.3322 0.6732 0.5760
CPU Time (s) 1.0727 1.1632 1.3078 1.5735

Augmented VMC 
w/ optimized ref. pt. 

Index (s) 120.7515 121.5823 120.8751 120.7515
Difference % 0.7870 1.0860 0.4450 0.3540
CPU Time (s) 2.2962 2.3382 4.3058 5.7203

Figure 1 displays the results for the 1-obstacle 25-node. 
Here, a straight line prey motion is used for the regular 
VMC while the B-spline prey motion is used for the 
augmented VMC.  Both VMC methods follow the path of 
the baseline approach very well but the augmented VMC is 
closer to the baseline one than the regular VMC approach. 
The figure also illustrates how much the prey motion 

changes in the augmented VMC approach to improve the 
performance index, as compared with the fixed straight line 
used in the regular VMC approach.  
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Fig. 1 One obstacle optimal trajectory 

V. CONCLUSION 

In this paper, the virtual motion camouflage method has 
been significantly enhanced by including a B-spline as the 
prey motion in solving nonlinear constrained trajectory 
optimal control type problems. The main advantage of the 
VMC method has been maintained, i.e., the problem 
dimension is dramatically reduced, which in practice will 
reduce the computational time significantly compared with 
baseline method. The solution searching space constructed 
by the prey motion is more flexible and the solution’s 
optimality is improved significantly. The necessary 
conditions, as well as the dimension and optimality analyses 
are provided. The simulation results demonstrate the 
effectiveness and advantages of the new algorithm. 
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