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Abstract— Mission planning scenarios in robotics typically
involve one or more semi-autonomous agents and a human
operator. The high-level goal is to find an optimal allocation of
agents to tasks. Each individual task or collection of tasks may
have subgoals, such as search, localization, or information gath-
ering. Each of these lower-level goals are their own topics, and
the high-level goal of task accomplishment can be categorized as
a decision problem. The focus of this work is on solving decision
problems through reinforcement learning. Tasks are completely
parameterized by a minimal set of basis constraints—spatial,
temporal, and (agent-task) coupling—which produces a single
cost for each agent-task pairing. The cost completely captures
the ability of a specific agent to perform a specific task. A novel
state representation is presented that mitigates exponential
growth of the state space by scaling independently of the
spatial dimension. The decision problem is cast as an MDP
and an optimal policy is found using Q-learning. Simulation
results are presented for a two-agent two-task example, showing
convergence of the value function and improved learning over
time. To highlight the scalability of the learning algorithm,
additional simulations compare the learned policy to a hand-
coded greedy policy for varying number of tasks. The learned
policy is shown to reliably allocate agents to tasks with minimal
parameter tuning and is robust to low-level changes to agent
dynamics as well as random agent motion.

I. INTRODUCTION

A decision problem (DP) involves choosing between sev-
eral possible outcomes based on an input and objective. As
specific instantiation of a DP, task allocation (TA) mission
planning problems involve choosing an allocation of work to
work-performers so as to accomplish the mission. A popular
version of mission planning, know as the vehicle routing
problem, involves assigning agents to tasks in manner such
that work for all agents at the end of the mission is minimized
[1]. Humans routinely solve DPs in many settings, such as air
traffic control. However, automated solutions to such com-
plex spatiotemporal planning scenarios can offload tedious
and laborious work from human operators, and computed
solutions may in fact be more effective than human solutions.

The standard optimization approach to the TA problem
involves minimizing one cost function subject to explicitly
enumerated constraints on the state and actions. The so-
lution will only be useful to the degree that the objective
and constraints reflect reality. Solutions may be difficult to
compute, impossible to compute in real-time, and suboptimal
but usable solutions may not be available at all times.
Additionally, the optimization approach does not present a
clear pathway for incorporating high-level guidance, such as
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human feedback, other than encoding new constraints and
resolving.

The goal of this work is to cast a TA-like DP as a Markov
Decision Process (MDP) and solve using reinforcement
learning (RL). Domain knowledge in RL is encoded as a
reward signal, which propagates to a value function and
policy through the learning process. The claim is that the RL
framework is particularly well-suited for DPs, where com-
plex behaviors can be learned with relatively minimal, high-
level guidance provided by the reward signal and system
dynamics model.

This work splits the RL approach to solving mission
planning problems into three core areas. Section III addresses
mission representation, which is the problem of distilling the
entire state of a general DP down to a minimal representa-
tion. Section IV discusses the definition and modeling of
mission planning as an MDP, as well as a specific RL algo-
rithm for determining optimal policies. Section V addresses
methods for formally incorporating human feedback directly
into the learning algorithm for the purpose of encoding
the complex trade-offs that humans constantly make in TA
scenarios. Results from learning a policy in a multi-agent,
multi-task mission planning scenario are presented in Section
VI. Conclusions follow in Section VII.

II. PREVIOUS WORK

DPs in multi-agent systems can be broadly classified
as either continuous (ex. consensus, motion planning) or
discrete (ie. TA problems such as mission planning and
vehicle routing) [2]. The focus in this work is on the TA
problem.

A. Task Allocation

The problem of optimally allocating agents to tasks is
generally known as an assignment problem [3]. The specific
variant for routing mobile agents to tasks is known as the
vehicle routing problem [1], and was first proposed in 1959
as a routing problem for trucks carrying goods between a
terminal and service stations [4]. Assignment problems were
originally addressed in operations research and optimization
literature. Such approaches require an objective function and
explicit enumeration of constraints on the state and action
spaces.

B. Reinforcement Learning

While RL is a widely used technique in robotics [5] and
has had particular success in motion control [6], solving TA
problems with a learning scheme is not as common. The
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authors of [7] use a standard MDP model to represent a
world in which an agent learns a policy to bake a cake.
However, for real-world TA scenarios, the state space can
be intractably large as a result of exponential state-action
space scaling. As a result, much work has focused on state
space reduction for multiagent planning problems modeled
as MDPs [8] [9]. On the modeling front, some research has
focused on augmenting MDPs to incorporate temporal effects
such as stochastic action durations [10] [11]. In these cases,
it is difficult to consider more than the smallest problems, as
the state space must now include the time dimension.

C. Human-Robot Interaction
HRI literature relevant for TA includes topics of human

trust of autonomous systems, adjustable autonomy, and the
importance of explicitly accounting for the human in the loop
[12]. The standard TA problem does not inherently support
online human assessment or modification of plans. In the
RL literature, the authors of [7] address real-time human
interaction with a learning agent in their MDP example.
Other work focuses on large scale problems in which robots
learn a human model for the purpose of determining online
when to query a human operator [13] [14]. HRI topics
particularly germane to the TA setting—How many robots
are required for a particular mission? How autonomous
should they be, assuming autonomy can be adjusted? When
should the autonomy level change?—are open questions and
highly application specific [15].

III. MISSION REPRESENTATION

We would like to consider the specific branch of discrete
DPs known as TA problems. In a TA mission planning
scenario one or more human operators define several ab-
stract goals (tasks) for agents to accomplish. Section III-A
describes the scope of missions considered here and Section
III-B addresses task representation.

A. Mission Scope
Consider the high-level mission shown in Figure 1. In this

scenario, a human operator would like to gather information
about an event. Several information streams are available to
the operator: direct observation of the event, sensor data from
a robotic agent, observations from an informant, and observa-
tions relayed through another informant. All data streams are
susceptible to error. The human operator must perform the
following functions to intelligently allocate agents to tasks:
• Data Fusion: The operator must combine several

streams of low-level (eg. agent positions) and high-
level (eg. priorities) data while taking into account data
reliability. Data reliability can mean trust, in the case
of information from an informant, or estimated sensor
noise in the case of an electronic sensor.

• Analysis: Given the data, weighted by its information
content or likelihood, the human operator must deter-
mine the state of the mission.

• Action: Based on the perceived state, the operator must
choose an action to achieve the objective, which is
information gain in the depicted scenario.
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Fig. 1. High-level depiction of a mission planning scenario. One human
operator must aggregate data from multiple sources of variable reliability
to assess the situation and choose a course of action.

The depicted scenario could be posed as a Distributed
Information Gathering (DIG) problem, where the objective
is to position sensors so as to maximize the information
gain about the environment [16]. However, the DIG problem
requires the information content in the world to be repre-
sented as a probability density function. While a probabilistic
representation of the state has advantages, particularly for
data fusion, it limits the scope of missions that can be
considered. For example, if the operator wants to consider
higher-level objectives than information gain—visiting spe-
cific areas for alloted amounts of time, satisfying deadlines,
and condition-based tasks—a broader decision problem and
correspondingly broad representation must be considered.

Consider the system structure shown in Figure 2. The top
loop describes the scenario shown in Figure 1. The fusion
center on the left aggregates information into the abstract
world state, which contains all pertinent information for the
operator. The operator produces a plan, which is executed by
the system and may contain both human and robotic agents.
The outcome is then fed back through the same sensory
pathway, closing the loop. The bottom loop in Figure 2
shows a standard observer structure [17]. The same world
state passed to the operator is fed into an operator model.
The operator model produces estimated plans and a system
model produces estimated outcomes. These outcomes are
compared to actual outcomes to generate an error signal. This
abstract error signal encodes the difference between what
was predicted by the model and what actually happened,
which can be viewed as a measure of model mismatch. That
mismatch can then be weighted (“K” block) and fed back into
the operator model, closing the loop with the error signal.

The observer perspective presented here has several con-
sequences for the decision making problem.
• The original decision problem reduces to a problem of

designing the operator model and system model.
• Assuming an operator model can be realized, the result-

ing plan estimates are precisely the allocations we seek
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Fig. 2. Observer model for mission planning problems. The top of the
model shows the “aggregate-assess-act” flow for a human operator. In
parallel, the bottom half of the diagram is an observer, consisting of a
human model and system model. By comparing the output of the top and
the bottom, an error signal is defined, which can be incorporated back into
the model in a learning process.

to compute in the TA problem.
• Assuming a system model for a TA system can be

realized, predicted outcomes can be computed and used
to update the operator model.

• This perspective lends itself well to a reinforcement
learning solution, in which the operator model is a
policy that maps world states to plans.

• In the reinforcement learning context, the policy and
corresponding value function can be used to produce
warnings, state assessments, and other higher-level rea-
soning about the relative value between different states.

B. Task Representation

A task is defined as an atomic unit of work, completable
by one or several agents, which returns a cost when queried
by an agent. Tasks considered here can be completely pa-
rameterized by three constraint sets: spatial, temporal, and
coupling. In TA problems, tasks typically have a spatial
element, visiting a waypoint, line segment, or area for exam-
ple. Temporal constraints can include a time windows and
deadlines. Coupling constraints refer to agent-task pairing
specifications, such as minimum or maximum numbers of
agents per task, and penalties for certain agents performing
certain tasks. Other costs, such as task priority, can also be
incorporated as task-specific costs.

The cost for a particular task is decomposable into two
components, one associated with the cost for a specific agent
to perform the task, and one associated with an intrinsic task
cost, regardless of agent.

Jmn(x) = jmn(x) + jm(x) where x ∈ X (1)

Equation 1 defines the cost for agent n to perform task
m the task state is completely contained in the abstract
world state x. Spatial and temporal constraints, s and t, will
only affect the intrinsic task cost, jm(x), and the coupling
constraints, c, will only effect jmn(x). Therefore Equation 1
can be rewritten as Equation 2.

Jmn(s, t, c) = jmn(c)+jm(s, t) where {s, t, c} ∈ X (2)

The semantics of J are such that agents minimize cost:
an agent n allocated to task m will drive Jmn to zero as
spatial, temporal, and coupling constraints are satisfied.

IV. MODELING AND LEARNING

In order to learn an optimal policy, the TA problem must
be posed as a RL problem where the operator model in
Figure 2 is learned. The model must be able to capture
several key features:
• Agents allocating and deallocating from tasks, as well

as loitering (neither allocated or deallocated)
• Interrupting and resuming partially completed tasks
• A terminal state (eg. all tasks completed) and possibly

intermediate goals (eg. individual task completion)

A. Modeling

A Markov Decision Process (MDP) model is chosen here
to represent the reinforcement learning problem. An MDP is
defined by the tuple < S,A, P (., .), R(., ., .) > [5]. MDPs
are beneficial in this setting primarily because TA problems
are inherently discrete [2] (ie. agents must be either allocated
or unallocated). We adopt the reasonable assumptions that
the state is fully observable, state transitions are stochastic,
and we can write a reward function that captures the goals
of the problem.

Defining the state S presents several challenges. The state
certainly must include the condition of the agents (allocated,
unallocated) and tasks, as well as task cost. Additionally, the
state must capture agent and task location, both of which
may vary with time. With three state variables—n agents, m
tasks, and c levels of cost discretization—the state space is
of dimension cmn(m + 1)n in the most complex scenario.
It is possible to further limit the size of the state space with
problem-specific assumptions.

The state S is a reduced state in that it contains features
of the larger world state, X . There is a 1 : 1 mapping
between S and X , though many world states X can produce
the same reduced state S. The state at each timestep is
formally defined as follows in Table I.

TABLE I
STATE DEFINITION

n = number of agents

m = number of tasks

c = number of cost levels (ie. cost grid resolution)

S =
{
A1, A2...An, J1

1 , J
1
2 , ..., J

1
m, J

2
1 , ..., J

2
m, ...J

n
m

}
⇒ global state

A ∈ {0...m} where Ai = j ⇒ agent i allocated to task j

J ∈ {0...c} where Ji
j = k ⇒ task j costs k from the perspective of agent i

Several features of this state representation should be
noted.
• The state definition is highly generalized: any problem

representable as agents, tasks, and costs can be captured
here.
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• The state space may be reduced by considering subsets;
scenarios where each task can only have one allocated
agent, for example.

• The representation does not explicitly depend on a
spatial dimension, and therefore the size of the state
space is invariant with the size of the world.

As a direct consequence of the avoiding space in the state, the
proposed representation can be applied to DPs that may not
have a clear spatial element, such as scheduling problems.

B. Learning

In order to learn a policy that maps states to actions,
we must define define both a transition model and reward
function. The specific reward function will be discussed in
the Section VI, but a simple first pass is to define the goal
state as all the tasks being completed and agents deallocated.
Other reward functions can have intermediate goals for
completing each task [18].

As a consequence of moving away from a classic “grid-
world” spatial representation, a spatial transition model no
longer makes sense. Even in the cost-based representation,
intuitive state trajectories must still evolve: agents allocated
to tasks should tend to stay allocated to tasks, reducing
their cost (ie. drive a task towards completion). However,
enumerating transition probabilities for even small state
spaces would be laborious. Indeed, the purpose of posing
the DP as a RL problem was to avoid pre-specifying explicit
rules regarding agent-task allocation, but rather to have those
behaviors emerge through learning.

The well-studied temporal difference algorithm, Q-
learning, is employed here. It does not rely on a transition
model, but rather estimates the optimal state action value
function, Q∗, by forward simulation [19]. The central Q-
learning equation is given below in Equation 3:

Q(s, a) ← (1− α)Q(s, a) + α
[
r + γ max

{
Q(s

′
, a)
}]

ε = (εmin − εmax) / (T − 1) (t− 1) + εmax

α = αd/ (αd + t)
r = R(s′, a, s) (3)

The choice of the learning rate α, exploration probability ε,
and reward function r is, as is typical, problem specific, and
largely tuned. The learning rate α is parameterized here by
a positive decay time constant, αd, and decays exponentially
over the time horizon, resulting in more learning initially.
The parameter ε determines the probability with which
the optimal policy is followed. Similar in intuition to the
choice of α, the learning agent explores more initially, and
follows the policy more in later stages. Early exploration
ensures higher state coverage and generally discourages over-
learning.

V. HUMAN ROBOT INTERACTION (HRI)

Work in HRI by the authors of [7] demonstrated that
human input can simply and intuitively be incorporated
into DPs. The learned policy not only reflects the optimal

decisions in each state, but also incorporates an implicit
human model, in that the human intent is directly encoded
in the reward function. Reward functions can additionally be
modified to include heuristics, and the learned policy can
still be guaranteed to be optimal under certain assumptions
[18]. This result from the RL community has meaningful
implications for HRI. A human guided reward function could
be used in mission planning scenarios to give the human
operator a well-defined input path for influencing the learned
policy. Section VII will discuss possible extensions through
HRI techniques to learn policies that reflect the intent of
human operators.

VI. SIMULATION RESULTS

Several simulations have been designed to learn policies
for a a variety of configurations, including varying numbers
of tasks and agents. In all cases, the learned policy is
specific to the particular number of tasks and agents, but
general to all locations of tasks and agents. To demonstrate
generality, learned policies are tested for a variety of agent-
task configurations. Several parameters used during learning
are listed in table II.

TABLE II
Q-LEARNING PARAMETERS

m number of agents 2
n number of tasks 2
c cost grid resolution 5
[εmin, εmax] ε-greedy range [0.1, 0.5]
αd learning rate decay constant 500
γ discount factor 0.99
T horizon 20,000

The reward function for the simulations gives a positive
reward for reaching the goal state a slightly negative reward
everywhere else so as to discourage loitering. A negative
reward is also given for dual allocations—two or more agents
allocated to the same task. More complex reward functions
are possible, but a simple reward function is used here to
illustrate learning an intuitive policy given minimal infor-
mation. The performance of the learning algorithm can be
discussed in terms of the Bellman error, defined in Equation
4, and the learning curve, which describes performance of
the learned policy as a function of learning time horizon, T .

e = max
{
abs

[
Q

′
(s, a)−Q(s, a)

]}
(4)

The results of an example learning run with parameters
given in Table II are shown in Figure 3. In this example,
a policy is learned that allocates two agents to two tasks,
regardless of the starting positions of the tasks and agents.
A purely distance-based cost function is used for simplicity.
The Bellman error, shown in Figure 3(b), decays to zero,
indicating that Q is approaching a stationary value. The
learning curve shows that over the learning time horizon,
the number of steps to episode completion decreases. In this
example, 2,025 episodes were completed in the 20,000 step
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learning horizon and the average episode completion time
decreased from 13 steps to 8 steps.

Several advantageous features of the RL approach to
solving DPs are apparent in this simple simulation. Since
the learned policy maps high-level agent state to high-
level actions, it is robust to low level changes, such as
changing individual agent dynamics. Agent speed can be
varied, for example, and the same policy will guide the
agents to complete the tasks. Additionally, although cost
in this example is purely a function of distance, adding
temporal and coupling constraints as described in Section
III-B is simply a matter of encoding those constraints as a
cost. For the simple reward function and distance-based cost
used here, agents have learned to minimize cost, decoupled
from absolute agent/task positions, and regardless of low-
level agent dynamics.
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Fig. 3. Two agent, two task simulation results: (a) The simulation
environment shows the locations of the tasks and agents, as well as agent
state (both agents are in the “unallocated” state here), and task costs. (b)
The Bellman error as given in Equation 4 is shown to decay over time.
(c) The learning curve shows that over the learning horizon, the average
episode completion time decreases.

The next set of simulations illustrates the scaling and
generalization properties of the proposed learning method to
variable numbers of tasks and agents. Policies were learned
for two-agent and one to four task scenarios. Due to the
generality of the learning scheme, a simple scalar parameter
(m, number of tasks) was changed, while all other learning
parameters were kept constant (given in Table II). Larger
state spaces (more tasks) did benefit from a longer learning
horizon, T , although increasing T was not necessary to

obtain acceptable performance. The learned policies were
then simulated each 1000 times for random initial task and
agent position. The resulting number of steps to episode
completion are compared against the the number of steps
to completion for a hand-coded greedy policy in Figure 4.
The step size (essentially agent velocity) is part of the agent
dynamics simulator and is a fixed parameter for both learned
and greedy policies and all configurations. In the unallocated
state, agents move randomly with the same step size. Both
the learned policy and the greedy policy do not allow dual
allocation, and the greedy policy allocates the closest agent
to the closest task, breaking ties arbitrarily. Numeric results
are summarized in Table III.
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Fig. 4. Results for two-agent, variable task simulations. In each simulation
all learning and simulation parameters are held constant, except for those in
the table. The number of steps per episodes is averaged over 1000 random
simulations for each policy.

TABLE III
MULTI-AGENT MULTI-TASK SIMULATION RESULTS

tasks agents # states # actions # learned steps # greedy steps
1 2 36 4 2.6 2.6
2 2 729 9 5.7 4.5
3 2 11664 16 9.5 6.5
4 2 164025 25 10.8 8.0

Figure 4 shows that episode duration increases with load
to the system, in the form of increased number of tasks
for a constant number of agents. In the one-task scenario,
the greedy policy ties the learned policy, indicating that the
system learned at a minimum the greedy solution: allocate
the closest agent to the closest task. In all other scenarios,
the greedy policy outperforms the learned policy. It should
be noted that the greedy solution is the optimum solution for
one-task and two-task scenarios for two agents, and becomes
less optimal as the number of tasks increases. The difference
in average episode duration between greedy and learned
solutions should decrease for more complex scenarios, as
the myopic (greedy) course of action become less likely
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to be effective. Additionally, over the course of simulating
1000 episodes, several live-lock scenarios did arise for the
learned solution, resulting in arbitrarily bad performance
(episodes taking longer than a 3σ bound were discarded).
Poor performance for the learned solution can be mitigated
by longer learning time or more intelligent choice of reward
function that takes into account sub-task accomplishment.

Table III shows that the state space grows exponentially
with increasing number of tasks, though is still tractable up
to two agents and four tasks. Future work will focus on
state space size reduction through function approximation
and more intelligent choice of states. Through more explicit
choice of reward function, longer learning, and more concise
state space definition, the learned policy may exceed the
myopic greedy solution, particularly for large state spaces.

VII. CONCLUSION AND FUTURE WORK

This work takes a reinforcement learning approach to
solving decision problems such as those that arise in mission
planning. A novel state representation was introduced that
is both minimal in the sense that it only represents certain
features of the global state, and non-spatial, in that the state
space does not scale with the physical space. An MDP was
chosen to model the system, and Q-learning was used to learn
an optimal policy in the absence of a transition model and
with a minimal reward function. The learned policy, though
given very little guidance in the form of reward or system
model, consistently chooses intuitive courses of action for
multi-agent multi-task scenarios. Further, as a direct result
of the high-level state representation, the low-level agent
dynamics can be perturbed without change to the behavior.

The learned result is benchmarked against a simple greedy
policy that allocates each agent to its nearest task. The two
policies perform comparably, indicating that a solution close
to greedy was learned with minimal guidance. Additionally,
the learning scheme was general enough to generate policies
for a variety of agent-task configurations without changing
any of the learning parameters. Increased performance can be
expected through more intelligent choice of reward function
and longer learning times for larger state spaces.

Future work will focus on developing a richer MDP model
and applying the learned policy to real mission scenarios.
Expanding the MDP model to include time varying actions
and stochastic action durations as proposed in [11] would
allow for temporally constrained tasks, such as tasks with
deadlines. Additionally, the current policy is dependent on
a specific state space (number of agents and tasks). Future
work will focus on parameterizing the state space further so
that policies learned for one particular configuration would
be applicable to others. Incorporating human feedback in the
form of a human-guided reward signal will generate more
meaningful policies for real mission planning scenarios and
human operators. More realistic task-types, faster learning,
and incorporating human feedback in the learning loop
will enable applying the learned policies to real-world task
allocation systems [20].
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