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Abstract— Using least-squares with an l1-norm penalty is
well-known to encourage sparse solutions. In this article,
we propose an algorithm that performs online least-squares
estimation of a time varying system with a l1-norm penalty on
the variations of the state estimate, leading to state estimates
that exhibit few “jumps” over time. The algorithm analytically
computes a path to update the state estimate as a new
observation becomes available. The algorithm performs compu-
tationally efficient and numerically robust state estimation for
time varying systems in which the dynamics are slow compared
to the sampling rate.

We use the algorithm for arterial traffic estimation with
streaming probe vehicle data provided by the Mobile Mil-
lennium system and show a significant improvement in the
estimation capabilities compared to a baseline model of traffic
estimation. The estimation framework filters out the inherent
noise of traffic dynamics and improves the interpretability and
accuracy of the results. Results from an implementation in San
Francisco on a network of more than 800 links using a fleet
of 500 taxis sending their location every minute illustrate the
possibility to use the algorithm to solve important practical
estimation problems.

I. PROBLEM STATEMENT AND RELATED WORK

L1-norm in least-squares regression has attracted a lot of
interest in the statistics [1], [2], signal processing [3], [4]
and machine learning [5], [6] communities, in particular
for estimation problems. Indeed, adding a l1-penalty on
the parameter vector leads to sparse solutions, which is a
desirable property in order to achieve model selection [7],
data compression [4], or for obtaining interpretable results.
In this article, we present a way to use l1-norm regularization
to perform estimation of a time varying system. We assume
that we receive sequential observations of the state of the
system. As we receive a new observation, we update the
estimate of the state online and we would like the variations
in the estimates to be sparse.

We are sequentially given a set of training examples or
observations (yi,ai) ∈ R×Rm, i = 1 . . .n. We wish to fit a
linear model to estimate the response yi as a function of the
state vector x ∈ Rm, yi = aT

i x+ νi, where νi represents the
noise in the observation.

Least square optimization with a penalty on the l1-norm
of the parameter is known as the Lasso algorithm [1] and
the resulting optimization problem is given by

x = arg min
x∈Rm

1
2

n

∑
i=1

(aT
i x− yi)

2 +µn||x||1 (1)

Ph.D. student, Electrical Engineering and Computer Science, UC Berke-
ley, CA (e-mail: aude@eecs.berkeley.edu). Corresponding author.

Professor, Electrical Engineering and Computer Science, UC Berkeley
Professor, Electrical Engineering and Computer Science and Civil and

Environmental Engineering, UC Berkeley

where µn is a regularization parameter. The solution of (1)
is typically sparse, i.e. the solution has few entries that are
non-zero, and therefore identifies which dimensions in ai
are useful to predict yi. In model selection for example, the
different elements of ai represent different features and the l1
regularization selects the most relevant features to estimate
yi. There is no analytic formula for the optimal solution to the
l1-regularized least square. It is convex but not differentiable
and requires specific algorithms to be solved efficiently at a
large scale. It can be formulated as a convex quadratic prob-
lem (QP) with linear equality constraints and solved using
standard interior-point methods which can handle medium-
size problems [8]. A specialized interior-point method for
large-scale problems was introduced in [9]. Other methods to
solve (1) include iterative thresholding algorithms [10], [11],
[12], feature-sign search [13], bound optimization meth-
ods [14] and gradient projection algorithms [15]. Homotopy
methods have also been applied to the Lasso to compute the
full regularization path when the regularizaion parameter µn
varies [16], [17], [18]. They are particularly efficient when
the solution is very sparse [19]. When the training examples
(yi,ai)i=1...n are obtained sequentially, Garrigues et al [20]
present a homotopy algorithm to compute the solution of
the Lasso problem after receiving n observations from the
solution of the Lasso after receiving n−1 observations. This
method is particularly efficient when the supports of the two
solutions are close. Note that to address the issue of the non-
smoothness of the l1 norm, most lasso algorithms optimize
the dual of (1). For these algorithms, the solution computed
with n−1 observations may not be used as a warm start to
compute the solution with n observations as it may no longer
be feasible as we add new observations.

In this article, the vector xn is the state estimate of the
system after receiving the nth observation. We are interested
in sparse changes in the state vector as we receive new
observations. To achieve this property, we add a l1 penalty
on the variation of the state vector, which regularizes the
estimates when measurements are noisy and the dynamics of
the system are slow compared to the sampling rate. We would
like to re-solve the problem as we get a new observation
using the information already available and without having
to completely resolve the problem. This is akin to recursive
least-squares, but now we have to handle the l1-norm term
added to the objective function. The estimation problem of
xn is defined recursively as:

xn = arg min
x∈Rm

1
2

n

∑
i=1

(aT
i x− yi)

2 +µn||x− xn−1||1. (2)
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The algorithm is initialized assuming information xinit on the
state of the system (e.g. historical or previous estimate) and
we set x0 = xinit. When estimating xn, we want the vector
xn−xn−1 to be sparse. We call xn−1 the reference parameter
for the estimation of xn. After receiving a new observation
(yn+1,an+1), we define a homotopy algorithm to update the
estimate from xn to xn+1 and vary the reference parameter
from xn−1 to xn, before receiving the next data point.

In applications, it is useful to add additional regularization
to the optimization problem (2). In particular, if we call A the
matrix whose ith row is equal to aT

i , the matrix AT A should be
non singular for the solution of the least-squares estimation
problem to be unique. Moreover, the regularization term
µn||x− xn−1||1 is on the difference in successive parameters
but there is no regularization to maintain the state estimates
within given bounds (corresponding to physical characteris-
tics of the system for example) or close to an apriori estimate
of the state. We show how to leverage prior information x̂
on the value of the parameter x (from historical data for
example) by adding a l2 regularization term to problem (2),
with weighting parameter λ . We also propose an algorithm
that ensures that the estimates remain within given upper
and lower bounds x and x. The resulting estimation scheme
amounts to solving the following optimization problem:

minimize
x∈Rm

1
2

n

∑
i=1

(aT
i x− yi)

2 +µn||x− xn−1||1 +
λ

2
||x− x̂||22

s.t. x≤ x≤ x (3)

where the inequalities x ≤ x and x ≤ x refer to compo-
nentwise inequalities on the vectors. This article presents
an online estimation algorithm of a time varying system
with sparse changes on the state vector between successive
estimations. The algorithm is based on homotopy algorithms
for the variation of the regularization parameter µn [16],
[17], [18] and the addition of a new observation as it
becomes available [20]. The contribution of this article is
the presentation of a homotopy algorithm to produce sparse
variations in the state estimate and in particular, update the
reference parameter each time a new observation is received.
This algorithm is particularly efficient to solve large scale
online estimation problems, as demonstrated in this article.
We present the estimation algorithm with an additional l2-
regularization and bounds on the state vector, necessary to
regularize the state estimates and ensure that the results meet
physical requirements of the system.

This article is organized as follows. We review the
optimality conditions of the Lasso algorithm (Section II)
and present an algorithm to compute a homotopy on the
parameter vector x solving the optimization problem (3)
(Section III). We apply these results to traffic estimation on
an arterial network in San Francisco, CA (Section IV). We
estimate the mean travel time on each link of the network,
totalling more than 12.6 kilometers of roadway, from GPS
data sent by 500 probe vehicles sampled every minute
(Figure 1). The data is collected by the Mobile Millennium
system [21] which receives on the order of 500,000 points

Fig. 1. San Francisco taxi measurement locations, observed at a rate of
once per minute. Each black dot represents the measurement of the location
of a taxi, received between midnight and 7am, on March 29th, 2010. The
large red dots represent the location of taxis at 7am on that day.

daily in the San Francisco Bay Area. We discuss possible
extensions of this work in Section V.

II. OPTIMALITY CONDITIONS FOR THE LASSO

The objective function in (1) is convex and non-smooth
since the l1-norm is not differentiable when there exists i such
that the ith element of x (denoted xi) equals zero. Hence there
is a global minimum at x if and only if the subdifferential
of the objective function at x contains the 0-vector. The
subdifferential of the l1-norm at x is the following set

∂‖x‖1 =

v ∈ Rm :

{
vi = sgn(xi) if |xi|> 0
vi ∈ [−1,1] if xi = 0

}

where sgn(·) is the sign function. Let A∈Rn×m be the matrix
whose ith row is equal to aT

i , and let y = (y1, . . . ,yn)
T be the

vector of response variables. The optimality conditions for
the Lasso problem (1) are given by AT (Ax− y) + λv = 0,
v ∈ ∂‖x‖1.

We define as the active set (resp. non active set), the
indices representing non-zero elements (resp. zero elements)
of x. The active and non-active sets are referenced by the
subscripts 1 and 2 respectively. For example A1 is the matrix
representing the columns of A in the active set. The vector
x1 represents the non-zero coordinates of x and x2 is the 0-
vector. The index 1i (resp. 2i) references the ith coordinate
of the active (resp. non active set). Since v ∈ ∂‖x‖1, the ith

coordinate of v1 is v1i = sgn(x1i), and the ith coordinate of
v2 is v2i ∈ [−1,1]. If the solution is unique, it can be shown
that AT

1 A1 is invertible, and we can rewrite the optimality
conditions as

x∗1 = (AT
1 A1)

−1(AT
1 y−µnv1)

−µnv2 = AT
2 (A1x∗1− y)

Note that if we know the active set and the signs of the
coefficients of the solution, thus the vector v1, we can
compute it in closed form. When solving the estimation
problem (2) or (3), we define a change of variable xr = ϕ(x)
such that if x is the solution of the estimation problem, xr
is typically sparse. We present an algorithm to update the
active set and the signs of the coefficients of the solution
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xr from previous solutions by computing a continuous path
between the successive state estimates.

III. HOMOTOPY ALGORITHM

Suppose that we have computed the solution xn to Equa-
tion (3) with n observations. The reference parameter is xn−1

since we would like the variations between xn−1 and xn to be
sparse. We receive an additional observation (yn+1,an+1) ∈
R×Rm and a new penalty coefficient µn+1. In general, µn
reflects the number of measurements. We also need to update
the reference parameter from xn−1 to xn. We introduce the
following optimization problem:

x(t,u,µ) = argmin

1
2

∥∥∥∥∥
(

A
taT

n+1

)
x−

(
y

tyn+1

)∥∥∥∥∥
2

2

+µ

∥∥∥x−
(
(1−u)xn−1 +uxn

)∥∥∥
1
+

λ

2
||x− x̂||22

}
.

where the minimum is taken over the set of x ∈ Rm such
that x≤ x≤ x and we assume that x̂ is within the bounds x
and x. We have x(0,0,µn) = xn and x(1,1,µn+1) = xn+1. We
propose an algorithm that computes a path from xn to xn+1

in three steps (Algorithm 1):

- Step 1: Add an observation (Section III-A): vary t from
0 to 1 with µ = µn and u = 0.

- Step 2: Vary the regularization (Section III-B): vary µ

from µn to µn+1 with t = 1 and u = 0.
- Step 3: Update the reference parameter from xn−1 to xn

(Section III-C): vary u from 0 to 1 with µ = µn+1
and t = 1.

A. Step 1: adding a new data point

We introduce a change of variables to formulate the
optimization problem as a Lasso problem and solve it using
an online Lasso algorithm [20]. We define xr = x−xn−1 and
solve the optimization problem for xr. The vector xr must
satisfy coordinate by coordinate inequalities xr ≤ xr ≤ xr,
with xr = x− xn−1 and xr = x− xn−1. If the ith element of
xr equals xr,i (resp. xr,i), we say that the upper (resp. lower)
bound i is an active constraint and reference the set of active
constraints by the subscript c. We reference the ith coordinate
of the active constraints by the index ci and define εci =−1
(resp. εci = 1) if the upper (resp. lower) bound is active. We
denote by Ec the diagonal matrix with ith diagonal element
equal to εci .

The matrix A and the vector y represent n+1 observations
of the state. Given the set of active constraints c, we define
yr = y−Axn−1−Acxr,c. We define b j = AT

j yr +λ [x̂− xn−1] j,
where j represents the set of indices 1 or 2 (active and
non-active). We define bc = AT

c yr +λ [x̂− xn−1]c−λxr,c and
K = (AT

1 A1 + λ I)−1. We note aT
n+1 the last row of A and

yr,n+1 the last element of yr, which correspond to the last
observation received. Let x∗r (t) be the solution of the follow-
ing optimization problem:

min·
xr∈Rm

1
2 ||Axr− yr−Acxr,c||22 +

λ

2 ||xr− (x̂− xn−1)||22

+ 1−t2

2 ||a
T
n+1xr− yr,n+1−aT

n+1,cxr,c||22 +µn||xr||1
s.t. xr ≤ xr ≤ xr

We write the optimality conditions for each set of indices
(active indices, active constraints, non active indices):

(AT
1 A1+λ I)x∗r,1(t)−b1+(t2−1)an+1,1(aT

n+1,1x∗r,1(t)−yr,n+1)+µv1 = 0

Ec

(
AT

c A1x∗r,1(t)−bc+(t2−1)an+1,c(aT
n+1,1x∗r,1(t)−yr,n+1)+µvc

)
≥ 0

AT
2 A1x∗r,1(t)−b2+(t2−1)an+1,2(aT

n+1,1x∗r,1(t)−yr,n+1)+µw2(t) = 0

With this change of variable, the derivation of x∗r,1(t) is
similar to the calculation performed in [20]. We use the
Sherman-Morrison formula and solve for x∗r,1(t):

x∗r,1(t) = x̃r,1−
(t2−1)ē

1+α(t2−1)
q

with x̃r,1 = K (b1−µv1), ē = aT
n+1,1x̃r,1−yr,n+1, q = Kan+1,1

and α = aT
n+1,1Kan+1,1. We denote by t1i , the value of t that

sets the ith coordinate of x∗r,1(t) to zero.

t1i =

1+

(
ēqi

x̃r,1i

−α

)−1
1/2

We denote by tci (resp. tci ) , the value of t that sets the
parameter x∗r,1i

to xr,1i (resp. xr,1i
).

tci =

1+

(
ēqi

x̃r,1i − xr,1i

−α

)−1
1/2

and have a same expression for tci , replacing xr by xr. We
notice that aT

n+1,1x∗r,1(t)− yr,n+1 = ē
1+α(t2−1)

A1x∗r,1(t)− yr = ẽ− (t2−1)ē
1+α(t2−1)A1q

where ẽ = A1x̃r,1− yr. We replace these expressions in the
optimality conditions for the active constraint indices c and
the non active indices 2. Let tci be the value of t such that
the ith element of xr,c leaves the set of active constraints c, as
the partial derivative of the objective function equals zero:

AT
ci

ẽ+µvci +λ (xci − [x̂−xn−1]ci )+
t2
ci
−1

1+α(t2
ci
−1)

(
an+1,ci −AT

ci
A1q
)

e = 0,

so tci =

1+

(
e(an+1,ci −AT

ci
A1q)

−µvci −λ (xr,ci − [x̂− xn−1]ci)−AT
ci

ẽ
−α

)−1
1/2

.

Let t+2i
(resp. t−2i

) be the value such that w2i(t
+
2i
) = 1 (resp.

w2i(t
−
2i
) =−1). We have

t+2i
=

1+

(
−α +

ē(an+1,2 j −AT
2i

A1q)

−µ +λ (x̂− xn−1)2i −AT
2i

ẽ

)−1
1/2

t2− j =

1+

(
−α +

ē(an+1,2 j −AT
2i

A1q)

+µ +λ (x̂− xn−1)2i −AT
2i

ẽ

)−1
1/2
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These derivations allow the computation of a continuous
update of the state as a new observation is received.

B. Step 2: varying the regularization parameter

We use the change of variables from Section III-A and
solve the Lasso problem where we vary the penalization
parameter [16], [17], [18]. With a slight abuse of notation
on arguments (but for notational simplicity), we denote by
x∗r (µ) the solution of the optimization problem

min·
xr∈Rm

1
2
||Axr− yr−Acxr,c||22 +µ||xr||1 +

λ

2
||xr− (x̂− xn−1)||22.

s.t. xr ≤ xr ≤ xr

The information on the active set and the signs of the
parameters in the active set is available at µ = µn (Step 1).
The active set, active constraints and signs remain constant
for µ in an interval [µn,µ

∗) where the solution x∗r (µ) is affine
in µ . As we reach the “transition point” µ∗, we update the
active set, active constraints and signs which remain valid
until the next transition point. The optimality conditions read:

(AT
1 A1 +λ I)x∗r,1(µ)−b1 +µv1 = 0

Ec

(
AT

c A1x∗r,1(µ)−bc +µvc

)
� 0

AT
2 A1x∗r,1(µ)−b2 +µw2(µ) = 0

Solving for x∗r,1(µ), we have x∗r,1(µ) = K (b1−µv1). De-
noting by µ1i , the value of µ that sets the ith coordinate of
x∗r,1 to zero, we read µ1i = [Kb1]i / [Kv1]i.
The upper bound (resp. lower bound) becomes active as
x∗r,1i

(µ) equals xr,1i (resp. xr,1i
), when µ equals µci (resp.

µci ), i.e. µci = [Kb1− xr]i / [Kv1]i.
Let µci be the value of µ such that the ith component of xr,c

is no longer an active constraint. Let µ
+
2i

(resp. µ
−
2i

) be the
value of µ such that w2i(µ) = 1 (resp. w2i(µ) =−1). From
the expression of x∗r,1(µ) and the optimality conditions, we
see that the partial derivatives of the objective function for
coordinates in c and the function µ 7→ w2(µ) are affine in
µ . We derive the expressions of µci , µ

+
2i

and µ
−
2i

as

µci = (bci −AT
ci

A1Kb1)/(vc−AT
ci

A1Kv1)

µ
+
2i

= (b2i −AT
2i

A1Kb1)/(1−AT
2i

A1Kv1)

µ
−
2i

= (b2i −AT
2i

A1Kb1)/(−1−AT
2i

A1Kv1)

C. Step 3: Updating the reference parameter

After adding the new observation and varying the reg-
ularization parameter, the algorithm updates the reference
parameter from xn−1 to xn. We define ∆x = xn−xn−1 and the
change of variable xr(u) = x− [(1−u)xn−1 +uxn], which is
the vector that we impose sparsity on. The constraints on this
variable are xr(u) = x− [(1−u)xn−1+uxn] and xr(u) (defined
similarly from x). Given a value of u and a set of active con-
straints c, we define x0

r,c = xr,c(u)+u(∆x)c and notice that this
vector no longer depends on u. The ith element of this vector
is equal to xci

− xn−1
ci

(resp. xci − xn−1
ci

) if the lower (resp.
upper) bound is active. We define yr = y−Axn−1−Acx0

r,c. We

Algorithm 1 Homotopy algorithm for online state estimation
of time varying systems with sparse temporal changes.
1. Add the latest observation (an+1,yn+1): Compute the path

from xn = x(0,0,µn) to x(1,0,µn). Refer to the derivations
of this article and to [16], [17], [18] for the details of the
algorithm.

2. Vary the regularization parameter: Compute the path
from x(1,0,µn) to x(1,0,µn+1). Refer to the derivations
of the article and to [20] for the details of the algorithm.

3. Initialize the active set to the non-zero coefficients of
xr(0) = x(1,0,µn+1)− xn−1. Initialize v1 = sgn(x∗r,1(0)),
u∗ = 0 and K = (AT

1 A1 +λ I)−1.
4. Compute the next transition point u∗. If it is smaller

than the previous transition point or greater than 1, go
to Step 6. Otherwise:
a. The ith component of x∗r,1(u

∗) goes to zero: remove i
from the active set.

b. The ith component of x∗r,1(u
∗) reaches xr(u) or xr(u):

remove i from the active set and add it to the active
constraints.

c. The ith component of w2(u∗) reaches one in absolute
value: add i to the active set. If the component reaches
1 (resp. -1), then set vi = 1 (resp. vi =−1).

d. The ith optimality condition of the active constraints
reaches zero: add i to the active set.

5. Update v1 and A1 according to the updated active set and
sign of the parameters. Update K = (AT

1 A1)
−1, (rank 1

update). Go to Step 4.
6. Compute the final value of x∗r (1).

keep the notation b j = AT
j yr +λ [x̂− xn−1] j, j ∈ {1,2}, and

define bc = AT
c yr + λ [x̂− xn−1]c− λx0

r,c. With this notation,
x∗r (u) is the minimizer of the optimization problem

min·
xr∈Rm

1
2
||Axr− yr +uA∆x−Acx0

r,c||22 +µn+1||xr||1

+
λ

2
||xr− (x̂− xn−1)+u∆x||22

s.t. xr(u)≤ xr ≤ xr(u)

The solution at u = 0 is x(1,0,µn+1), computed by Step 2.
The optimality conditions read

(AT
1 A1 +λ I)x∗r,1(u)−b1 +µv1 +u

(
AT

1 (A∆x−Ac(∆x)c)+λ (∆x)1

)
= 0

Ec

(
AT

c A1x∗r,1(u)−bc +µvc +u
(

AT
c (A∆x−Ac(∆x)c)

))
≥ 0

AT
2 A1x∗r,1(u)−b2 +µw2(u)+u

(
AT

2 (A∆x−Ac(∆x)c)+λ (∆x)2

)
= 0

The solution x∗r,1(u) is affine in u: x∗r,1(u) = ξ +uχ , with ξ =

K(b1−µv1) and χ =−K
(
AT

1 (A∆x−Ac(∆x)c)+λ (∆x)1
)
.

We solve for u1i that sets the ith component of x∗r,1 to
zero, and have u1i = −ξi/χi. The ith component of the
active set reaches the lower bound xr,1i

(u) for u = uci . Note
that xr,1i

(u) = xr,1i
(0)−u(∆x)1i , so uci = (xr,1i

(0)−ξi)/(χi +
(∆x)1i), and we derive a similar expression for uci .

We also solve for uci such that the ith coefficient of
xr,c(u) is no longer an active constraint, and thus the partial
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Fig. 2. Subnetwork of San Francisco used for arterial traffic estimation.

derivative of the objective function equals zero:

AT
ci

A1ξ −bci +µvci +uci

(
AT

ci
(A1χ +A∆x−Ac(∆x)c)

)
= 0,

from which we read the expression of uci .
We solve for u+2i

(resp. u−2i
), where u+2i

(resp. u−2i
) is the

value of u for which the ith component of xr,2 enters the
active set and becomes positive (resp. negative). They are
given by:

u+2i
=−

AT
2i

A1ξ −b2i +µ

AT
2i
(A1χ +A∆x−Ac(∆x)c)+λ (∆x)2i

u−2i
=−

AT
2i

A1ξ −b2i −µ

AT
2i
(A1χ +A∆x−Ac(∆x)c)+λ (∆x)2i

IV. EXPERIMENTAL RESULTS

We apply the algorithm to arterial traffic estimation on a
subnetwork of San Francisco, CA consisting in 815 links
(Figure 2). Arterial traffic is modeled as a time varying
system and we seek to estimate travel times on each link
of the network, as they vary over time. Traffic data on
arterial networks is mainly provided from probes sending
their location at a given sampling frequency (common sam-
pling frequencies are around 1 minute). The proportion
of sampled vehicles (penetration rate) remains limited and
rarely exceeds a few percent of the vehicles traveling on the
network. Moreover, traffic signals cause important variation
on the travel time experienced on a link of the network
within very short periods of time (depending on whether
the vehicle stopped at the signal or not), while the actual
changes in traffic conditions have slower dynamics. Given
the penetration rate of probe vehicles, we seek to estimate
trends in traffic conditions rather than fluctuations around
a mean value. For these reasons, arterial traffic estimation
is a good application for the algorithm. The parameter xn

represents the average travel time on each link after receiving
the nth observation and we impose sparsity on its temporal
evolution.

Fig. 3. Paths of three probe vehicles on a network with eleven links.
The path of a probe is represented as a vector ai ∈ [0,1]11 where the jth

coordinate of ai represent the fraction of link j traveled by the probe.
The path represented with a solid line is represented with a sparse vector
with non zero coordinates 1, 6 and 9, respectively equal to 0.4, 0.7 and 1
considering that the probe traveled 40% of link 1 and 70% of link 6. The
vector representing the dashed path has non zero coordinates 2, 3, 8 and 11,
respectively equal to 0.3, 1, 0.8 and 1 considering that the probe traveled
30% of link 2 and 80% of link 8.

Experimental setup: Beginning in March of 2009, data
has been collected from probe vehicles in the San Francisco
Bay Area by the Mobile Millennium system [21]. A fleet
of over 500 taxis report their location every minute, along
with an identifier and a status (carrying a passenger or
not) [22] allowing filtering of the taxi stops to load or unload
passengers. The duration between two successive location
reports z1 and z2 represents an observation of the travel
time yi of the vehicle on its path from z1 to z2. We use an
algorithm [23] that combines models of GPS measurements
and drivers’ behavior into a conditional random field to
provide trajectory reconstructions between z1 and z2. The
latency in the communication of the location data to our
servers is generally less than a few minutes.

Each trajectory (path) is converted in a vector ai ∈ [0, 1]m,
where m is the number of links in the arterial network. The
kth coordinate of ai, ai,k is the fraction of the link traveled by
the probe vehicle, computed as the distance traveled on the
link divided by the length of the link. In particular, ai,k = 0 if
the vehicle did not travel on link k and ai,k = 1 if the vehicle
fully traversed the link k (see Figure 3). Note that on arterial
links the mean travel time on a fraction of the link does not
vary proportionally with the distance traveled. Vehicles are
more likely to experience delays close to the downstream
intersection because of the presence of traffic signals [24],
[25], and thus the coefficients ai,k should take into account
the locations where the vehicles started and ended their travel
on link k. However, these considerations are not taken into
account in this article.

Numerical experiments: We learn the parameter x,
solving equation (3), which represents the mean travel time
on each link of the network. We initialize the algorithm
using a previous estimate of the mean travel times given
by least-squares regression and use historical mean travel
times for the l2 regularization x̂. Each time we receive a
new travel time observation, we add the new observation
(yn+1,an+1) ∈ R×Rm (Section III-A), increase the regular-
ization parameter from nµ to (n+ 1)µ (Section III-B) and
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Fig. 4. Variation of the error metrics depending on the regularization. Both the l1 and l2 regularizations improve the estimation accuracy and the
regularization parameters can be chosen optimally. The three top figures represent the effect of the l1 regularization for the estimation accuracy. The three
bottom figures show the importance of the additional l2 regularization introduced in Section III for the robustness of the estimation.
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Fig. 5. Qualitative evolution of the travel time estimates on different links of the network. The l1 regularization provides more stable estimates that
represent the dynamics of traffic more accurately and increase the physical interpretation. The left figure shows that the estimation with l2 regularization
leads to estimates that are not physically possible (negative travel times), while the estimate with l1 regularization remains within feasible bounds. On all
figures, the l2 estimate is noisy while the additional l1 regularization remains constant between each temporal transitions in traffic conditions.

update the reference parameter (Section III-C). As we are
interested in the estimation of the current state of the system,
observations of the state may only be relevant for a limited
period of time. We consider that each observation remain
relevant for a time T after being received in the system.
When an observation (y j,a j) ∈ R×Rm becomes obsolete,
we (1) remove the old observation (y j,a j) ∈ R×Rm by
decreasing t from 1 to 0, (2) decrease the regularization
parameter from (n+ 1)µ to nµ , where we assume that n
represents the number of observations currently considered
relevant for the estimation and (3) update the reference
parameter.

We want to assess the performance of the model and
quantify the effect of the regularization parameters λ and
µ . The first parameter penalizes solutions which are far (in
the l2-norm sense) from the historical estimate of travel
times x̂. The second parameter imposes sparsity on the
variation of the state. The choice of these parameters leads
to a compromise between (1) fitting the data, with risks of
overfitting and lack of physical interpretation and (2) putting
too much weight on the regularization and not estimating
accurately the current state of the system.

In this case study, we estimate traffic conditions using taxi
data collected on September 3, 2010 from 5:00pm to 7:00pm
in a subnetwork of San Francisco. This subnetwork contains
815 links (where a link is defined as the road between two
signals) totalling more than 12.6 kilometers of roadway.

We use cross-validation to assess the performance of our
model, randomly splitting the observations sent by the probe
vehicles between a training set and a validation set. After
learning the travel time estimates on the training set, we use
the validation set to compare our estimates to the travel time
observations. We compare the performance of our model
with a baseline model, which uses the historical value of the
link travel times x̂ as the estimate of the state. We consider
three validation metrics which, even though closely related,
give different information on the quality of the estimation:
the root mean squared error (RMSE), the mean absolute
error (MAE) and the mean percentage error (MPE)1. The
algorithm minimizes the l2 norm of the residual between
the estimate and the observation. The RMSE indicates the
goodness of fit with validation data. Note that the variability
of arterial travel times (due to traffic signals, pedestians, etc.)
leads to important fluctuations of travel times. This inherent
variability in the state of the system makes our estimation
model robust with sparse variations, but is also responsible
for relatively high values of the error metrics. For example,
the RMSE is greater than the standard deviation of travel
times [24].

The results indicate that both the l1 and the l2 regular-
ization (Figure 4) are important to improve the estimation
capabilities. For a wide range of parameters, the results are

1RMSE =

√
∑

0
o=1(yo−ŷo)2

O MAE =
∑

0
o=1 |yo−ŷo |

O MPE = 1
O ∑

0
o=1

|yo−ŷo |
yo
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significantly better than the baseline model. The results also
underline the importance of the additional l2 regularization to
improve the robustness of the algorithm. Figure 5 illustrates
that in addition to improving the estimation capabilities, the
algorithm produces results that are easier to interpret. Arterial
traffic is highly variable and the variability often prevents the
interpretation of the results. With this model, we are able to
deal with this variability in order to estimate the trends in
travel times on the links of the network.

V. CONCLUSION AND POSSIBLE EXTENSIONS

This article derives an algorithm for an online least-
squares estimation of the state x of a time varying system
from successive observations (yi,ai) ∈ R×Rm. We use l1-
norm regularization to limit the variations in the estimate of
the state to capture the trends in the dynamics rather than the
fluctuations. We add l2-norm regularization to increase the
robustness of the estimator and limit numerical issues when
the matrix AT A is singular (or ill-conditioned), where A is
the matrix with line i equal to aT

i . Constraints ensure that
the state estimates remain within feasible bounds.

The homotopy algorithm is particularly efficient when the
variations between the estimates are sparse, leading to few
transition points. The algorithm computes a continuous path,
which is in general not possible for other lasso algorithms
which solve the dual problem. Moreover, the computational
costs are limited as all matrix inverses are computed with
rank 1 updates. The number of transition points and active
indices varies with the parameter µ . As µ increases, the
number of transition points and active indices decreases,
improving the computational efficiency of the algorithm. For
small values of µ , the algorithm may not be as efficient, as
the number of transitions is bounded by 3m.

The model provides a significant improvement in the
estimation capabilities, compared to a baseline model of
arterial traffic estimation with probe data. We achieve sparse
variations in the parameter and estimate the global trends in
traffic conditions by filtering out the noise due to fluctuation.
The number of transition points and active indices remain
small throughout the algorithm (inferior to ten for a network
with 815 links). This algorithm could be developed further to
study change detection in time varying systems. We are also
investigating generalization of this algorithm to more general
forms of l1-norm regularizations. For example, we could be
interested in sparse spatial variations of the estimates.
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