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Abstract— In this paper we present a new approach to state
estimation based on the Leave-out Sign-dominant Correlation
Regions (LSCR) principle from system identification. The
LSCR approach constructs a confidence set for the state which
has the property that, regardless of the value of the true state,
the constructed confidence set will contain it with a guaranteed
user chosen probability. This property makes the approach
potentially very useful in monitoring and detection applications.
The proposed approach is illustrated in simulation examples.

I. INTRODUCTION

We consider state estimation of a stable, linear discrete

time system

xt+1 = Fxt + Gvt, yt = Hxt + wt

where xt ∈ Rn and yt is a scalar. The noise processes

vt and wt are scalar mutually independent white Gaussian

noise sequences. F, G and H are matrices of appropriate

dimensions. If the variances σ2
v and σ2

w and the initial state

x0 are Gaussian, then the optimal minimum variance solution

is given by the Kalman filter (e.g. [1]). Here we consider

the case where σ2
v and σ2

w are unknown, and we show

that by using the backward representation of the process

xt ([8]) and the Karhunen-Loeve transformation (e.g. [9]),

this problem can be approached using the LSCR algorithm

from system identification ([2], [3]). The LSCR algorithm

delivers a confidence set which has a user chosen guaranteed

probability of containing the true state vector.

The nature of the statements about the true vector in our

results obtained using LSCR are different from the ones

for the Kalman filter. Using the Kalman filter one obtains

a Gaussian state estimate and a covariance matrix. Based on

the state estimate and the covariance matrix one can construct

a confidence ellipsoid and make a statement that the true state

belongs to this confidence ellipsoid with a given probability.

The LSCR result statement is different as it says, regardless

of what the true state is, the constructed confidence set will

contain the true state with a given probability. This type of

result is more relevant for monitoring applications, where we

are much more concerned about obtaining reliable confidence

sets when the state takes on particular values, e.g. when the

state is in or close to a dangerous operating region.
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The reason we can obtain this stronger statement is that

we condition with respect to the state to be estimated

such that it can be treated as a deterministic variable in

the LSCR framework. As the observed variables in the

LSCR framework needs to be conditionally independent, the

backward representation of xt is employed for the prediction

and filtering problem, and a combination of the backward and

forward representation is used for the smoothing problem.

A number of other approaches to filtering under un-

certainty can be found in the literature, e.g. [11], [13],

[5], [6], [4], [12], [10]. An often used problem setting is

that the system matrices and/or noise covariance matrices

belongs to certain bounded sets, and a filter which in some

sense minimises and upper bound on the estimation error is

derived.

The paper is organised as follows. In the next section

we introduce the backward representation of a state space

system. The prediction problem is treated in detail in Section

III, while the filtering and smoothing problems are briefly

discussed in Section IV. Simulation examples are given in

Section V followed by some concluding remarks.

II. BACKWARD AND FORWARD REPRESENTATION OF

LINEAR SYSTEMS.

A. Forward representation

Consider the standard (forward) model

xt+1 = F fxt + Gfvt (1)

yt = Hxt + wt (2)

where xt ∈ Rn, yt ∈ R, F f ∈ Rn×n and H ∈ R1×n. vt

and wt are scalar noise processes and hence Gf ∈ Rn×1.

We make the following assumptions

Assumptions

1) vt and wt are mutually independent sequences of

independent and identically distributed Gaussian ran-

dom variables with unknown variances σ2
v and σ2

w

respectively.

2) F f has all eigenvalues strictly inside the unit circle,

and xt is a stationary process.

The covariance matrix Π of xt is given by the equation

Π = F fΠF fT + GfGfT σ2
v

= F f (F fΠF fT + GfGfT σ2
v)F fT + GfGfT σ2

v

= σ2
v(GfGfT + F fGfGfT F fT + F f2GfGfT F f2T + · · · )

= σ2
vΠ′

(3)

The expansion on the third line converges since F f has all

eigenvalues inside the unit circle, and Π′ is given by the

equation Π′ = F fΠ′F fT + GfGfT .
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B. Backward representation

The process xt can also be represented by a state equation

running backwards in time (see e.g. Lemma 5.4.4 in [8])

xt = F bxt+1 + vb
t (4)

yt = Hxt + wt (5)

where F b is a solution to the equation F bΠ = ΠF fT . For

simplicity we assume that Π is non-singular such that

F b = ΠF fT Π−1 = Π′F fT Π′−1 (6)

which does not depend on the value of σ2
v . Note that while

vt in (1) is scalar, vb
t in (4) is an independent and identically

distributed Gaussian vector-process with covariance matrix

Q independent of the process wt. Q is given by

Q = Π − F fΠF fT = σ2
v(Π′ − F fΠ′F fT ) = σ2

vQ′ (7)

where Q′ = Π′ − F fΠ′F fT , hence Q is known up to the

scalar factor σ2
v .

C. Combination of forward and backward representation

The forward and backward representations can be com-

bined such that the process xt is represented by the back-

ward representation up to time k − 1 and by the forward

representation from time k + 1 with the state xk acting as

the initial condition, i.e.

xt−1 = F bxt + vb
t−1, t = k, k − 1, . . . (8)

xt+1 = F fxt + Gfvt, t = k, k + 1, . . . (9)

yt = Hxt + wt (10)

We have the following results

Lemma 2.1: vt, . . . , vk, vb
k−1, . . . , v

b
1 and xk are mutually

independent Gaussian random variables.

Proof. See [8], Ch. 10.4. �

III. PREDICTION

Here the problem of estimating xt+1, given observations

y1, . . . , yt is considered. Using the backward representation

we have that

yt = Hxt + wt = HF bxt+1 + Hvb
t + wt

and

yt−1 = HF b2xt+1 + HF bvb
t + Hvb

t−1 + wt−1

Hence, by repeated substitution the observed data can be

expressed in terms of the state xt+1 and the noise processes

vb and w. Let

B =















H 0 0 · · · 0
HF b H 0 · · · 0
HF b2 HF b H · · · 0

...
...

...
. . .

HF b(t−1) HF b(t−2) HF b(t−3) · · · H















then we obtain the following set of equations














yt

yt−1

yt−2

...

y1















=















HF b

HF b2

HF b3

...

HF bt















xt+1 + B















vb
t

vb
t−1

vb
t−2
...

vb
1















+















wt

wt−1

wt−2

...

w1















(11)

The covariance matrix of the second term on the right

hand side of (11) is given by

Qvb = σ2
vB











Q′ 0 · · · 0
0 Q′ · · · 0

. . .

0 0 Q′











BT

= σ2
vQ′

vb = σ2
vUDUT (12)

where UDUT is the singular value decomposition of the

known matrix Q′
vb . By premultiplying (11) with UT the

following set of equations is obtained















st

st−1

st−2

...

s1















=















at

at−1

at−2

...

a1















xt+1 +















nt

nt−1

nt−2

...

n1















(13)

or more compactly s = Axt+1 + n̄ where

s =















st

st−1

st−2

...

s1















= UT















yt

yt−1

yt−2

...

y1















(14)

A =















at

at−1

at−2

...

a1















= UT















HF b

HF b2

HF b3

...

HF bt















(15)

and

n̄ =















nt

nt−1

nt−2

...

n1















= UT B















vb
t

vb
t−1

vb
t−2
...

vb
1















+ UT















wt

wt−1

wt−2

...

w1















Note that while the components sk and nk of s and n̄
are scalars, the components ak of A are 1 × n vectors. The

components of n̄ are independent of each other as shown in

the next Lemma.

Lemma 3.1: nt, nt−1, . . . , n1 are mutually independent

zero mean Gaussian random variables.

Proof. The covariance matrix of n̄ = [nt, . . . , n1]
T is

given by the diagonal matrix σ2
vD + σ2

wI . As both vb and

w are Gaussian processes with zero mean, nt, . . . n1 are
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mutually independent (but not identically distributed) zero

mean Gaussian variables. �

We are now in a position that we can construct a con-

fidence set for xt+1 using the LSCR algorithm ([2], [3]).

Let x denote a generic value of xt+1, and let ŝt(x) = atx
be a prediction of st. Furthermore, let the singular value

decomposition of the t × n matrix A be given by

UAΣV T
A = A (16)

where UA is a t × t matrix, Σ a t × n matrix and VA an

n × n matrix. Finally, let [ua,l,t, ua,l,t−1, . . . ua,l,1]
T denote

the lth column of UA. The confidence set of xt+1 can now

be constructed as follows

Construction of confidence sets. Given: Observations

y1, . . . , yt and system matrices F f , Gf and H as in (1)-(2).

1) Using the given data and the system matrices, compute

s, A and UA from equations (14), (15) and (16) using

(3), (6), (7) and (12).

2) Compute the prediction errors

ǫk(x) = sk − akx k = 1, . . . , t.

3) For l = 1, . . . , n and k = 1, . . . , t compute the

correlation

fk,l(x) = ǫk(x)ua,l,k = (sk − akx)ua,l,k.

4) Select an integer M and construct M binary ({0, 1}-

valued) stochastic strings of length t as follows: Let

h0,1, . . . , h0,t = 0, . . . , 0 be the string of all zeros.

Every element of the remaining strings takes the values

0 or 1 each with probability 0.5, and the elements are

independent of each other. Moreover, each string is

constructed independently of previous strings. How-

ever, if a string turns out to be equal to an already

constructed string, this string is removed and another

string to be used in its place is constructed according to

the same rule. Name the constructed non-zero strings

h1,1, . . . , h1,t; h2,1, . . . , h2,t;. . . ; hM−1,1, . . . , hM−1,t.

For l = 1, . . . , n and i = 0, . . . , M − 1 compute

gi,l(x) =

t
∑

k=1

hi,k · fk,l(x)

=

t
∑

k=1

hi,k · (sk − akx)ua,l,k.

Note that g0(x) ≡ 0.

5) Select an integer q in the interval [1, M/2n]. Let the

sets X̂l, l = 1, . . . , n contain those values of x such

that at least q of the gi,l(x) functions (i = 0, . . . , M −
1) are strictly larger than g0,l(x) ≡ 0 and at least q are

strictly smaller than g0,l(x) ≡ 0.

6) The confidence set is given by

X̂ = ∩n
l=1X̂l. (17)

The constructed confidence sets have the following prop-

erties.

Theorem 3.2: Consider the system given by (1)-(2) and

assume that assumptions 1 and 2 in Section II-A are satisfied.

Then, regardless of what the true value of xt+1 is, the sets

X̂l and X̂ constructed above have the properties

Pr{xt+1 ∈ X̂l} = 1 − 2q/M, (18)

Pr{xt+1 ∈ X̂} ≥ 1 − 2qn/M, (19)

where q and M are introduced in points 5 and 4 respectively.

Proof. See proof of Theorem 1 in [3]. �

Remark. Note that corresponding to x = xt+1 (the true

value), gi,l(xt+1) =
∑t

k=1 hi,kua,l,knk, i = 0, . . . , M −
1 is a sum of independent random variables symmetrically

distributed around 0. It is therefore unlikely that nearly all

of the M sums are positive or negative corresponding to

x = xt+1 and those values of x for which this happens are

excluded from the confidence set. �

Remark. A crucial point in the proof of Theorem 3.2 is

that ua,l,knk is a sequence of independent (but not necessar-

ily identically distributed) random variables symmetric about

0. This has been achieved via two important steps.

1) The premultiplication with UT in (13). UT has the

property that it diagonalises both the covariance ma-

trices Qvb and σ2
wI , that is UT QvbU = σ2

vD and

UT σ2
wIU = σ2

wI , and since the processes are Gaussian

this means that the corresponding random variables are

independent Gaussian. This diagonalisation is the same

as applying the Karhunen-Loeve decomposition for de-

correlation of a Gaussian stochastic process (e.g. [9]).

2) The use of the backward representation. Using the

backward representation allows us to condition on

xt+1, since both the noise sequences vb
t , . . . , v

b
1 and

wt, . . . , w1 are conditionally independent of xt+1.

Note that in the forward representation the noise se-

quence v1, . . . , vt is not an iid sequence given xt+1.

Moreover, it is the conditioning with respect to xt+1

that leads to the conclusion that the true state is in

the confidence set with a certain probability regardless

of the value of the true state as discussed in the next

subsection.

�

Remark. An alternative to using the stochastic strings in

point 4 in the algorithm above is to use the following con-

struction based upon groups under the symmetric difference

operation

4a. Let I = {1, . . . , t} and consider a collection G of

subsets Ii ⊆ I , i = 1, . . . , M , with I0 = ∅ forming

a group under the symmetric difference operation (i.e.

(Ii ∪ Ij) − (Ii ∩ Ij) ∈ G, if Ii, Ij ∈ G). Compute

gi,l(x) =
∑

k∈Ii

(sk − akx)ua,l,k, i = 1, . . . , M ;

with g0,l(x) ≡ 0.

Theorem 3.2 holds unaltered with this construction (see

[2]). This construction can be an advantage when there are

few data points. Well suited groups for the construction of

confidence sets are given in [7]. �
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A. Interpretation

Note that the theorem statement above is conceptually

different from what a Kalman filter would deliver. At time

t the above theorem states that : ”Whatever the next value

xt+1 is, the set X̂ will contain it with probability at least

1 − 2qn/M”. Using a Kalman filter based on (1)-(2) and

assuming the noise variances σ2
v and σ2

w are known, one

would obtain an a-priori estimate x̂t+1|t with a Gaussian

distribution and a covariance matrix given by the Riccati

equation. From the a-priori estimate and the covariance ma-

trix one can construct a confidence ellipsoid X̂KF which has

the interpretation ”the next value xt+1 is in the confidence

ellipsoid X̂KF with probability 1 − p”.

For certain problems the statement in Theorem 3.2 is more

relevant. One example is a monitoring problem. Say that the

state should not enter a critical region and that the probability

for the state to enter the region is very low. In principle

whenever the state enters the region the confidence ellipsoid

generated by the Kalman filter may never contain it as it

would be one of those events with probability p for which

the confidence ellipsoids do not contain the true value. The

statement in Theorem 3.2 is stronger as it says, whatever the

true value is, it will be contained in the generated confidence

set with a certain probability, and hence even if the state is

in the undesired region the confidence set generated by the

LSCR algorithm will contain it with the given probability.

Note that if the variances σ2
v and σ2

w where known, the

covariance matrix of n̄ in (13) would be known and the best

linear unbiased estimate (BLUE) (also called minimum vari-

ance unbiased estimate) (e.g. [8]) of xt+1 could be computed

together with its covariance matrix and the corresponding

confidence ellipsoid. Like the result in Theorem 3.2, the

BLUE confidence ellipsoid will contain the true xt+1 with

a certain probability regardless of its value.

Note that in order for the confidence set X̂ to be

bounded and the BLUE to be unique, the matrix A in

(15) must have full column rank, which is equivalent to

[(HF b)T , (HF b2)T , . . . , (HF bt)T ]T has full column rank.

Assuming t ≥ n (the dimension of xt), this is guaranteed if

F b is non-singular and the system is observable.

IV. FILTERING AND SMOOTHING

A. Filtering

In filtering one wants to estimate xt based on measure-

ments y1, . . . , yt. It is treated in the same way as prediction.

The only difference is that equation (11) takes the form














yt

yt−1

yt−2

...

y1















=















H
HF b

HF b2

...

HF b(t−1)















xt+B′















vb
t−1

vb
t−2

vb
t−3
...

vb
1















+















wt

wt−1

wt−2

...

w1















(20)

where the first row of B′ is all 0s and the other rows are

rows of B (as a (t − 1) × (t − 1)) matrix shifted one row

down. The rest of the development follows as for prediction.

B. Smoothing

Here we want to estimate xi, 1 ≤ i < t based upon

y1, . . . , yt. Let

B1 =















HG HF fG · · · HF f(t−1−i)G

0 HG · · · HF f(t−2−i)G
. . .

...

HG
0 0 · · · 0















B2 =











H 0 · · · 0
HF b H

...
...

. . .

HF b(i−2) HF b(i−3) · · · H











B′′ =

[

B1 0
0 B2

]

Making use of both the forward and backward representation

[yt, yt−1, . . . , yi+1, yi, yi−1, yi−2, . . . , y1]
T can be expressed

as

































HF f(t−i)

HF f(t−1−i)

...

HF f

H
HF b

HF b2

...

HF b(i−1)

































xi + B′′





























vt−1

vt−2

...

vi

vb
i−1

vb
i−2
...

vb
1





























+

































wt

wt−1

...

wi+1

wi

wi−1

wi−2

...

w1

































(21)

Recalling Lemma 2.1, vt−1, . . . vi, v
b
i−1, . . . , v

b
1 and xi

are mutually independent, and we can proceed as in the

prediction case.

V. SIMULATION EXAMPLES

A. Second order system

Here we illustrate the LSCR approach by applying it

to a prediction and a smoothing problem and comparing

the obtained confidence sets to the confidence ellipsoids

obtained using the BLUE estimator. Consider a cascade of

two first order systems driven by white noise with state space

representation

xt+1 =

[

0.5 0
1 0.7

]

xt +

[

1
0

]

vt, yt = [0 1]xt + wt

vt and wt are mutually independent white Gaussian se-

quences with unknown variances σ2
v and σ2

w.

The backward representation is given by

xt =

[

0.2450 0.3315
−0.3500 0.9550

]

xt+1 + vb
t

where vb
t is white Gaussian with covariance matrix

Q = σ2
v

[

0.4900 −0.7000
−0.7000 1.0000

]
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Fig. 1. Confidence set for x31

We observe t = 30 data points y1, . . . , y30 and we would

like to predict the state x31 and to estimate the state x15.

1) Prediction: The data are first transformed using (14)

and (15). In order to construct a 90% confidence set for x31

we generated M = 80 stochastic strings as in point 4 of the

algorithm in Section III. Next the correlation functions

gi,1(x) =
30
∑

k=1

hi,k(sk − akx)ua,1,k, i = 0, . . . , 79

gi,2(x) =

30
∑

k=1

hi,k(sk − akx)ua,2,k, i = 0, . . . , 79

were computed. The values of x for which 0 were among

the q = 4 largest or smallest value of the two functions were

excluded. The areas where 0 were among the 4 smallest or

largest values of gi,1 are marked with x in Fig. 1, and the

corresponding areas for gi,2 are marked with +. The obtained

confidence region is the blank region in Fig. 1 and it is

guaranteed to contain the true state x31 with probability at

least 1 − 2 · 2 · 2/80 = 0.9 regardless of the value of x31.

The true value is marked with a ⋄. Note that no knowledge

about the noise variances were required nor used in the above

procedure.

If the noise variances were known the BLUE estimate

could have been computed. In this simulation σ2
v = σ2

w =
0.005, and the BLUE estimate is marked with a ⋆ and

the corresponding 90% confidence ellipsoid is plotted. The

confidence region obtained using the LSCR algorithm in

Section III is similarly shaped to the confidence ellipsoid

obtained from BLUE, but as expected it is larger since no

knowledge of noise variances is assumed.

2) Smoothing: Transforming the data using equation (21)

as a starting point, a 90% confidence set for the state x15

is obtained as above by computing 80 correlation functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Smoothing

x
1

x
2

Fig. 2. Confidence set for x15

using subsamples and discarding those values of the state

vector for which zero were among the 4 smallest or largest

values. The results are shown in Figure 2 together with

the BLUE estimate and the corresponding 90% confidence

ellipsoid. Not surprisingly these confidence sets are smaller

than in the case of prediction. As for prediction the confi-

dence region obtained using the LSCR algorithm is similarly

shaped to the confidence ellipsoid obtained from BLUE, but

larger since no knowledge of noise variances is assumed nor

utilised.

B. Difference between LSCR prediction and Kalman filter

prediction

Consider a first order moving average process

yt = vt + vt−1

where vt is white Gaussian noise with variance σ2
v . This

system has the state space representation

xt =

[

0 0
1 0

]

xt−1 +

[

1
1

]

vt, yt = [0 1]xt (22)

Here

F f =

[

0 0
1 0

]

, Gf =

[

1
1

]

, H = [0 1]

There is no measurement noise so σ2
w = 0. Given observation

up to time t we want to predict xt+1. The Kalman filter is

given by

Kt = F fΣtH
T (HΣtH

T )−1

Σt = F fΣt−1F
fT + GfGfT σ2

v −

F fΣt−1H
T (HΣt−1H

T )−1HΣt−1F
fT

x̂t|t−1 = F f x̂t−1|t−2 + Kt(yt − Hx̂t−1|t−2)
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with initial conditions

x̂1|0 =

[

0
0

]

, Σ1 =

[

1 1
1 2

]

σ2
v

Kt is the Kalman gain and Σt is the error covariance matrix

Σt = E[(xt − x̂t|t−1)(xt − x̂t|t−1)
T |yt−1, . . . , y1].

Substituting the above values we find that

Kt =

[

0
t

t+1

]

, Σt =

[

1 1
1 t+1

t

]

σ2
v

The two elements of the state estimates are given by

x̂t|t−1,1 = 0 and x̂t|t−1,2 = ((t − 1)yt−1 − (t − 2)yt−2 +
(t − 3)yt−3 − · · · + (−1)ty1)/t.

The backward representation of the system (22) is

xt =

[

−1 1
−1 1

]

xt+1 + vb
t , yt = [0 1]xt (23)

where vb
t = [0 vt−1]. Here F b is singular. The first state

is a white Gaussian noise process, and the Kalman filter

estimate of it is zero and the variance is σ2
v regardless of the

observations. This means that whenever x1,t is larger than a

certain value it will not be in the confidence ellipsoid gen-

erated by the Kalman filter. In the backward representation

the matrix F b is singular which means that whenever x is

in the confidence set generated by the LSCR algorithm so

is x + c[1, 1]T for any real c, so it still holds true that the

confidence set contains the true value of x1,t regardless of

its value with a certain probability. In fact, irrespectively of

the method used to construct the confidence set, since the

first state is a white Gaussian noise process, the only way

we can guarantee it is in the confidence set regardless of

its value, is to have an unbounded confidence sets. In Fig.

3 the 90% confidence regions for x21 for the two methods

are plotted together with the true value (diamond) and the

Kalman filter estimate x̂21|20 (star). We note that the LSCR

region (the blank area) is unbonded while the Kalman filter

region is always centered at x1,t = 0 and will not contain

the true value of x1,t for large values of x1,t. Also note

that the Kalman filter requires knowledge of σ2
v = 0.1 and

σ2
w = 0 while no such knowledge is required nor used

in the LSCR approach. Moreover, unlike the Kalman filter

the LSCR method is not a Bayesian approach since the

conditioning with respect to the state to be estimated allows

us to treat it as a deterministic variable.

VI. CONCLUSIONS

In this paper we have proposed a new approach to state

estimation. By using the backward representation and the

Karhunen-Loeve decomposition, the original system was

transformed such that the LSCR algorithm from system

identification could be applied. Using the LSCR algorithm,

a confidence set was constructed which had the property

that it contains the true state, regardless of its value, with a

guaranteed user chosen probability. Moreover, no knowledge

of the noise variances was required in order to construct the

confidence set. The approach and how it differs from the

Kalman filter were illustrated in simulation examples.
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Fig. 3. Confidence sets for x20. Blank region - LSCR. Ellipse - Kalman
filter
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