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Abstract— The constrained stabilization of the multivariable
nonlinear model of a continuous stirred tank reactor is ad-
dressed. In this control setting, the novel class of control
Lyapunov R-functions is proposed to design a smooth control
Lyapunov function having external level set in accordance
to the state constraints and non-homothetical inner level sets
arbitrarily close to the desired (optimal) ones. The flexibility in
shaping the composite control Lyapunov function is obtained
by introducing a novel composition rule. The simulation of
an exothermic chemical process shows the benefits of using a
control Lyapunov R-function together with a gradient-based
nonlinear controller, in fact a much larger controlled invariant
state space set is obtained, moreover better state convergence
and smoother control inputs are recovered.

I. INTRODUCTION

As modern-day chemical processes are continuously faced

with the requirements of becoming safer, more reliable,

and more economical in operation, the need for a rigorous,

yet practical, approach for the design of effective chemi-

cal process control systems that can meet these demands,

becomes increasingly apparent [1]. However, the control

design problem is highly non trivial because most chemical

processes are inherently Multi-Input Multi-Output (MIMO)

and nonlinear [2], and the use of controllers only designed

on the basis of the approximate linearized process can lead to

conservative, besides reduced, control performances. More-

over, the unavoidable presence of physical constraints on the

process variables and in the capacity of control actuators

not only limit the nominal performance of the controlled

system, but also can affect the stability of the overall system.

Therefore, the stabilization of nonlinear processes is one

of the most attractive research areas for the chemical and

control engineering community [2].

The Model Predictive Control (MPC), also known as

Receding Horizon Control (RHC) [3], is one of the few

control methods for handling state and control input con-

straints within an optimal control setting [4]. Recently, in

[4], an interesting Lyapunov-based MPC approach has been

proposed for the control of an exothermic chemical reaction,

taking place in a Continuous Stirred Tank Reactor (CSTR). In

particular, a Quadratic Control Lyapunov Function (QCLF) is

used together with an MPC strategy. However, an ellipsoidal

set can not accurately shape the polyhedral state constraints

describing the limits on the admissible concentration of the

chemical reactant and on the temperature in the reactor. In
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other words, a QCLF is actually not conclusive for a large

part of the controllable invariant set.

Mainly for this reason, Truncated Ellipsoid (TE) Control

Lyapunov Functions (CLFs) [5], [6], and smooth TE CLFs

[7], [8] have been proposed to enlarge the estimate of the

controlled invariant state space region, which is one of the

focuses of this paper.

This paper extends the results of [7] and [8] to the class

of constrained nonlinear control affine systems. The main

contribution is the definition of a novel composition rule in

the setting of Control Lyapunov R-Functions (CLRFs), that

allows the design of a smooth CLF in accordance to both the

state constraints and the optimal shape for the level sets. This

is a substantial novelty, because, unlike switching control

strategies [9], both constraints and optimality arguments

can be handled by a unique smooth CLF, together with a

continuous control.

The paper is organized as follows. Next section describes

the motivating case of study for the control of a chemical

reaction inside a CSTR. Sections III, IV present the main the-

oretical results. The simulation results are shown in Section

V, where the benefits of using the proposed CLRF approach

are pointed out. In last section we conclude the paper and

outline some interesting future lines of research.

A. Notation

In denotes the n× n identity matrix and diag(·) denotes

a diagonal matrix. The closed k-level set of a continuous

function V : X ⊆ R
n → R, i.e. {x ∈ X : V (x) ≤ k}, is

denoted by L[V, k]. A set S ⊆ R
n is called C-set if it is a

convex and compact set including the origin in its interior

[10]. Ir denotes {n ∈ Z
+ : n ≤ r}.

II. A CONTINUOUS STIRRED TANK REACTOR AS

A MOTIVATING CASE OF STUDY

Let us consider a continuous stirred tank reactor where
an irreversible, exothermic first-order reaction of the form

A
k
→ B takes place. The inlet stream consists of pure A

at flow rate F , concentration CA0 and temperature TA0 [2].
The mathematical model of the process takes the form

ĊA =
F

V
(CA0 − CA)− k0 exp

(

−

E

RTR

)

CA

ṪR =
F

V
(TA0 − TR)−

∆H

ρcp
k0 exp

(

−

E

RTR

)

CA +
Q

ρcpV
,

(1)

where CA denotes the concentration of the species A, TR

denotes the temperature of the reactor, Q is the heat input

to the reactor, V is the volume of the reactor, k0, E, ∆H
are, respectively, the pre-exponential constant, the activation
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TABLE I

PROCESS PARAMETERS AND STEADY STATE VALUES

V 0.1 m3

R 8.314 kJ/(kmol ◦K)
CA0s 1 kmol/m3

TA0s 310 ◦K
Q 0 kJ/min
∆H −4.78 · 104 kJ/kmol
k0 72 · 109 1/min
E 8.314 · 104 kJ/kmol
cp 0.239 kJ/(kg ◦K)
ρ 1000 kg/m3

F 0.1 m3/min
TRs

395.3 ◦K
CAs

0.57 kmol/m3

energy and the enthalpy of the reaction, cp and ρ are,

respectively, the heat capacity and the fluid density in the

reactor. The numerical values of the process parameters,

taken from [4], are shown in Table I.

The nonlinear model (1) of the reactor has to be stabilized

at the unstable equilibrium point x̄ = [CAs
, TAs

]⊤ =
[0.57 kmol/m3, 395.3 ◦K]⊤, ū = 0, according to the state

constraints

|CA − CAs
| ≤ 0.16 kmol/m3, |TR − TRs

| ≤ 3 ◦K. (2)

The control variables u are the variation of the inlet

concentration of species A, u1 = ∆CA0 = CA0 − CA0s ,

and the heat input to the reactor u2 = Q. These manipulated

control inputs are constrained as follows:

|∆CA0| ≤ 1 kmol/m3, |Q| ≤ 1 kJ/h = 0.0167 kJ/min.
(3)

It is indeed desired to find a time-continuous constrained

control law u(t) that drives the state x(t) = [CA(t), TR(t)]
⊤

to x̄, in accordance to the state constraints. In fact, dis-

continuous and/or chattering control laws, such as the ones

usually obtained by switching controllers, are actually not

well implementable on real actuators.

A. Standard Lyapunov-based state feedback control

Since the state feedback stabilization of a nonlinear sys-

tem of the kind (1) is equivalent to the design of a CLF

[11], a typical control approach is based on the use of a

CLF, together with a static state feedback controller and/or

together with an MPC-like controller [3]. Moreover, a min-

imization objective is also considered in standard control

approaches for multivariable chemical processes [12], [13],

[4], where a (piecewise) QCLF is designed. This particular

choice is motivated by the fact that the gradient-based

control u (x(t)) = −R−1B⊤P ∗x(t), being P ∗ ≻ 0 the

solution of the Algebraic Riccati Equation (ARE) A⊤P +
PA + Q − PBR−1B⊤P = 0, asymptotically stabilizes

the unconstrained linearized system ˙̃x(t) = Ax̃(t) + Bũ(t),
where x̃ = x−x̄ and ũ = u−ū, by minimizing the quadratic

performance cost

J(x̃, ũ) =

∫ +∞

0

(

x̃(τ)⊤Qx̃(τ) + ũ(τ)⊤Rũ(τ)
)

dτ. (4)

In the case of constrained systems, the particular choice

of the CLF is a critical point in the control design, since

the largest (indeed non conservative) estimate for the con-

trollable state space set should be provided. Considering the

matrix parameters Q = I2, R = 4I2, a candidate QCLF is

x̃⊤P ∗x̃, with

P ∗ =

[

61.8634 3.9425
3.9425 0.3507

]

(5)

solution of the corresponding ARE for the linearized un-

constrained system. As shown in Figure 1, since a quadratic

function can not fit well the polyhedral state constraints, only

a shrunk QCLF can be used for the control design, in order

to guarantee the state constraints.
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Fig. 1. In solid line the 1-level set of the optimal QCLF and the polyhedral
state constraints. The controlled invariant set is geometrically obtained by
considering the set where the QCLF is inside the state constraints.

B. Enlarging the controlled invariant state space region

A possible way to obtain a larger estimate of the control-

lable set is the use of a Truncated Ellipsoid (TE) [5] [6]

CLF, shown in Figure 2, whose shape actually takes into

account the presence of the state constraints. However, since

the standard TE CLF is not differentiable and thus (optimal)

nonlinear gradient-based controllers can not be used [14],

a smoothing technique has been proposed in [8] via the

framework of CLRFs.

Ideally, it should be designed a modified TE CLF with

external level sets in accordance to the maximal controllable

set and to the state constraints, and with internal level sets

close to the (quadratic) optimal ones, for instance the one

in Figure 3, together with a gradient-based (MPC) nonlinear

controller.

In the next section a novel composition rule within the

framework of R-function is introduced in order to obtain

such kind of smooth CLF having non-homothetic level sets

of the desired shape.

III. PRELIMINARIES ON LYAPUNOV

R-FUNCTIONS

The framework of R-functions has been introduced in [15]

for geometric applications of logic algebra. In the setting of

state feedback stabilization of control systems, the use of

R-functions has been firstly proposed in [7], [8]. Recalled

the basic notions on R-functions, a useful novel composition

rule is defined.
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Fig. 2. The truncated ellipsoid control Lyapunov function is obtained
by intersecting the optimal quadratic function and the polyhedral state
constraints.
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Fig. 3. The proposed control Lyapunov R-function has inner level sets
close to the quadratic optimal ones.

TABLE II

NOVEL R-COMPOSITION RULES

BOOLEAN R-COMPOSITION

NOT ¬ −r

AND
α
∧φ

φr1 + r2 −

√

(φr1)2 + r22 − 2αφr1r2

φ+ 1−

√

φ2 + 1− 2αφ

OR
α
∨φ

φr1 + r2 +
√

(φr1)2 + r22 − 2αφr1r2

φ+ 1 +
√

φ2 + 1− 2αφ

Definition 1: A function r : F
n ⊆ R

n → R is an R-

function if there exists a Boolean function R : Bn → B,

where B = {0, 1}, such that the following equality is

satisfied:

h (r (x1, x2, . . . , xn)) = R (h (x1) , h (x2) , . . . , h (xn)) ,
(6)

where h(·) is the standard Heaviside step function.

Informally, a real function r is an R-function if it can

change its sign only when some of its arguments change

their sign [8]. The parallelism between logic functions and

R-functions is shown in Table II, in view of classic Boolean

operators.

For instance, the interpretation of the AND composition is

that the composed function rα
∧φ

is positive when evaluated

in x if and only if both functions r1(x) and r2(x) are

positive in x. The result is obtained by exploiting the

triangle inequality and the law of cosines; it holds for all

values of the parameters α ∈ [0, 1] ⊂ R [16], and also

φ ∈ R
+. The terms at the denominator in Table II are

normalizing factors such that

r1(x)
α
∧φ r2(x) = rα

∧φ

(x) = 1 ⇔ {r1(x) = 1 ∧ r2(x) = 1}

and also

r1(x)
α
∨φ r2(x) = rα

∨φ

(x) = 1 ⇔ {r1(x) = 1 ∨ r2(x) = 1}.

Remark 1: In [7], [8] the standard R-composition
α
∧, actu-

ally with φ = 1, has been used. The additional parameter φ
preserves functions rα

∧φ

and rα
∨φ

to be suitable R-functions,

because sign (r1) = sign (φr1) ∀φ ∈ R
+.

Remark 2: Let α = 1. Then r1
1
∧φ r2 = min {φr1, r2}

and r1
1
∨φ r2 = max {φr1, r2}.

In the following, we consider only the AND composition

rule, since only 0-symmetric controlled C-sets are dealt with.

Proposition 1: Consider ǫ ∈ (0, 1) ⊂ R
+ and the set S =

{x ∈ R
n : r1(x) ≥ ǫ, r2(x) ≥ ǫ}. The composed function

rα
∧φ

converges pointwise to r2 (r1) as the shape parameter

φ approaches to infinity (zero).

lim
φ→+∞

rα
∧φ

(x) = r2(x) ∀α ∈ [0, 1], ∀x ∈ S (7)

lim
φ→0+

rα
∧φ

(x) = r1(x) ∀α ∈ [0, 1], ∀x ∈ S. (8)

Proof: For ease of notation, let r1 and r2 denote,
respectively r1(x) and r2(x). The assumption that r1 > 0
and r2 > 0 allows the division by r1 and/or r2.

lim
φ→+∞

rα
∧φ

(x) =

= lim
φ→+∞

(

φr1 + r2 −

√

(φr1)2 + r22 − 2αφr1r2

)

φ+ 1−

√

φ2 + 1− 2αφ
=

= lim
φ→+∞

2φr1r2(1+α)

φr1+r2+
√

(φr1)2+r2
2
−2αφr1r2

φ+ 1−

√

φ2 + 1− 2αφ
= r2(x). (9)

Analogously, limφ→0+ rα
∧φ

(x) = r1(x).

Considering the case of study of Section II, the optimal

QCLF for the unconstrained linearized system is described

by the matrix P ∗ (5), while the state constraints (2) can

be written in the form x̃ ∈ X =
{

x ∈ R
2 : ‖Fx‖∞ ≤ 1

}

,

where

F = diag

(

1

0.16
,
1

3

)

. (10)

To compose the polyhedral function (of the second or-

der [17]) V1(x) = max
{

x⊤F⊤
1 F1x, x⊤F⊤

2 F2x
}

, being

Fi the ith row of matrix F , and the quadratic function

V2(x) = x⊤P ∗x, respectively in their 1-level sets L [V1, 1]
and L [V2, 1], define functions R1(x) = 1 − V1(x) and

R2(x) = 1 − V2(x). Without loss of generality, these

functions are normalized so that their maximum value is 1.

Then compute the R-intersection (AND rule
α
∧φ)

Rα
∧φ

= R1

α
∧φ R2, according to the equation of Table II,

for arbitrary values of α ∈ [0, 1], φ ∈ R
+. The composed

function Rα
∧φ

is the (smoothed) intersection between the
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polyhedral function and the quadratic one in the sense that

Rα
∧φ

is positive inside the geometric intersection region

L [V1, 1]∩L [V2, 1], it is zero on the boundary, negative out-

side, and its maximum value is 1 at the origin. The positive

definite function associated to Rα
∧φ

is Vα
∧φ

= 1−Rα
∧φ

.

The sublevel sets of the function Vα
∧1

are shown in Figure

2, for the case of α = 1, φ = 1 (truncated ellipsoid [5], [6]),

while in Figure 3 parameters α = 0, φ = 20 are used.

Remark 3: The intersection of a polyhedral region with

an ellipsoid has been used as a candidate LF in [6]. The

framework of R-functions generalizes TEs that are recovered

as a special case (α = 1, φ = 1, see Figure 2).

Parameter α affects the smoothness of the inner sublevel

sets of the composed function, while parameter φ can make

the shape of the sublevel sets of the composed function closer

to one of the two generating functions. The external shape

of the overall region L[Vα
∧φ

, 1] is not affected by the choice

of the parameters α, φ. In particular, for α ∈ [0, 1) such

smoothing technique yields non-homothetic sublevel sets and

a differentiable function in the interior of the set L[Vα
∧φ

, 1].

The choice of α = 0 yields the smoothest sublevel sets,

usually providing the best control performances when an R-

composed function is used as CLF [7], [8]. For this reason,

in the rest of paper the smoothing is performed fixing α = 0,

with notation ∧φ in place of
0
∧φ.

R-functions can be used to compose general functions and

not just polyhedral or quadratic ones. Some examples of

different control applications can be found in [16], [18].

IV. ON THE USE OF CONTROL LYAPUNOV

R-FUNCTIONS FOR CONSTRAINED

STABILIZATION

A. Stability analysis of nonlinear systems via R-composed

Lyapunov functions

In this subsection, the intersection function V∧φ
is used

as candidate Lyapunov function for the stability analysis of

nonlinear dynamical systems

ẋ(t) = f (x(t)) : x(t) ∈ X ⊆ R
n, f : X → X continuous

(11)

Consider the R-composition of two LFs V1, V2 for the

system (11) in the C-set L [V1, 1] ∩ L [V2, 1]. The exter-

nal level set of the composed candidate LF V∧φ
is not

differentiable, in fact {x ∈ X : V∧φ
(x) = 1} =

{x ∈ X : maxi{Vi(x)} = 1}. Therefore the lack of dif-

ferentiability can be avoided by considering the C-set

L
[

V∧φ
, 1− ǫ

]

, for any ǫ ∈ (0, 1) ⊂ R
+.

Theorem 1 (from [19]): Assume that functions Vi :
L [Vi, 1] ⊆ X → R, i = 1, 2, are two Lyapunov func-

tions with time derivatives along the system trajectory (11)

V̇i (x(t)) ≤ −ηVi (x(t)), i = 1, 2, in the 0-symmetric C-

set L [V1, 1] ∩ L [V2, 1]. Then the R-composed function V∧φ

is a Lyapunov function with decreasing rate η ∈ R
+ for

(11) in the intersection set L
[

V∧φ
, 1− ǫ

]

= L [V1, 1− ǫ] ∩
L [V2, 1− ǫ], ∀φ ∈ R

+, for any ǫ ∈ (0, 1) ⊂ R
+.

Proof: Define the functions Ri(x) = 1−Vi(x), i = 1, 2

and the R-composition R∧φ
, according to the AND rule

0
∧φ

of Table II:

R∧φ
(x) =

φR1(x) +R2(x)−
√

(φR1(x))2 +R2(x)2

φ+ 1−
√

φ2 + 1
.

The candidate LF V∧φ
is positive definite in the set

L
[

V∧φ
, 1
]

= L [V1, 1] ∩ L [V2, 1] because R∧φ
(x) = 1 ⇔

R1(x) = R2(x) = 1 ⇔ x = 0. Moreover, V∧φ
is

everywhere differentiable in the set L
[

V∧φ
, 1− ǫ

]

, for any

ǫ ∈ (0, 1) ⊂ R
+. The assumption on the decreasing rate

is equivalent to Ṙi (x(t)) ≥ η (1−Ri (x(t))) , i = 1, 2,
therefore, considering the time derivative

Ṙ∧φ
(x(t)) =

1

φ+ 1−

√

φ2 + 1
·






φṘ1






1 +

−φR1
√

(φR1)2 +R2
2






+ Ṙ2






1 +

−R2
√

(φR1)2 +R2
2













(12)

the following inequality for the R-intersection holds:

Ṙ∧φ
(x(t)) ≥

≥
η

φ + 1 −
√

φ2 + 1
·






φ(1 − R1)






1 +

−φR1
√

(φR1)2 + R2
2






+

+(1 − R2)






1 +

−R2
√

(φR1)2 + R2
2












=

=
η

φ + 1 −
√

φ2 + 1













−φ2R1 − R2
√

(φR1)2 + R2
2

+ φ + 1






+

+

φR1

(

φR1 −
√

(φR1)2 + R2
2

)

√

(φR1)2 + R2
2

+

R2

(

R2 −
√

(φR1)2 + R2
2

)

√

(φR1)2 + R2
2









= η







1

φ + 1 −
√

φ2 + 1







−φ2R1 − R2
√

(φR1)2 + R2
2

+ φ + 1






− R∧φ






. (13)

Finally, ∀φ ∈ R
+,

1

φ + 1 −
√

φ2 + 1







−φ2R1 − R2
√

(φR1)2 + R2
2

+ φ + 1






≥ 1 ⇔

φ2R1 + R2
√

(φR1)2 + R2
2

≤
√

φ2 + 1 ⇔ 0 ≤ (R1 − R2)
2
.

Therefore Ṙ∧φ
(x(t)) ≥ η(1−R∧φ

(x(t))) and

V̇∧φ
(x(t)) ≤ −ηV∧φ

(x(t)) ∀x(t) ∈ L
[

V∧φ
, 1− ǫ

]

. (14)

B. Control Lyapunov R-functions

Consider the constrained stabilization of nonlinear control

affine systems

ẋ(t) = f(x(t)) + g(x(t))u(t), (15)

where f, g are continuous functions of x ∈ R
n, with state

and input constraints of the kind

x ∈ X = {x ∈ R
n : ‖Lx‖∞ ≤ 1} ,

u ∈ U = {u ∈ R
m : ‖u‖∞ ≤ 1} ,

(16)
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being L ∈ R
s×n full column rank.

A candidate CLRF V∧φ
, corresponding to the smoothed

intersection of a PCLF maxi∈Is

{

x⊤F⊤
i Fix

}

and a QCLF

(for the unconstrained system) x⊤Px can be designed by

defining functions

R1(x) = 1−maxi∈Is

{

x⊤F⊤
i Fix

}

,
R2(x) = 1− x⊤Px,

(17)

and the R-intersection

R∧φ
= R1 ∧φ R2. (18)

As previously remarked, R∧φ
(x) ≥ 0 ∀x ∈ L

[

V∧φ
, 1
]

and max
x

{R∧φ
(x)} = R∧φ

(0) = 1, therefore the candidate

(positive definite) CLRF is

V∧φ
(x) = 1−R∧φ

(x). (19)

If a smoother composed function is desired, in

(17) the polyhedral function of the second order

maxi∈Is

{

x⊤F⊤
i Fix

}

can be substituted by the

corresponding everywhere differentiable 2p-norm [10]

(of the second order) ‖Fx‖
2
2p. Using the above candidate

CLRF (19), the result of Theorem 1 can be further exploited

for the control design problem.

Corollary 1: Consider two control Lyapunov functions

Vi : L[Vi, 1] ⊆ X → R, i = 1, 2, for the constrained

nonlinear control affine system (15). Assume there exist a

common continuous state feedback control law K(x) and

a decreasing rate η ∈ R
+ such that, along the controlled

trajectory,

V̇i(x(t)) = ∇Vi(x(t)) (f(x(t)) + g(x(t))K(x(t))) ≤

≤ −ηVi(x(t)) ∀i ∈ I2. (20)

Then the R-composed function V∧φ
(19) is a control Lya-

punov function with decreasing rate η in the set L[V∧φ
, 1] =

L[V1, 1]∩L[V2, 1] for the constrained system (15), ∀φ ∈ R
+.

Proof: Consider the closed-loop system ẋ(t) =
f̄(x(t)) = f(x(t)) + g(x(t))K(x(t)). Since both V1 and V2

are two LFs with decreasing rate η, according to Theorem

1, also V∧φ
is a suitable LF for the closed-loop system,

∀φ ∈ R
+. Therefore in the set L[V∧φ

, 1] = L[V1, 1]∩L[V2, 1]
there exists an admissible continuous controller, at least

K(x), that makes V∧φ
a valid CLF with decreasing rate η.

Remark 4: The problem of piecing together two CLFs has

been recently addressed for unconstrained nonlinear control

affine systems in [20], where, as in Corollary 1, the existence

of a common continuous state feedback stabilizing control

has been assumed. The benefit of using the CLRF approach

is that also state and control input constraints are considered,

and a unique CLF is designed. Moreover, by tuning the

parameter φ, the inner sublevel sets of the CLRF can be

shaped like the optimal ones, as shown in Figure 3.

Alternatively to the search of a common controller,

to prove that the composed CLRF is a suitable CLF, a

Petersen-like [14] condition has been derived in [8] for

bounded controllers of the kind (16). Considering the con-

trol that minimize V̇∧φ
(x(t)) pointwise, i.e. u(x(t)) =

−sign
(

g(x(t))⊤∇V∧φ
(x(t))⊤

)

, the time derivative of

V̇∧φ
(x(t)) is

∇V∧φ
(x(t))f(x(t))−

m
∑

i=1

|
(

∇V∧φ
(x(t))g(x(t))

)

i
|,

where
(

∇V∧φ
(x(t))g(x(t))

)

i
denotes the ith component of

the row vector ∇V∧φ
(x(t))g(x(t)) ∈ R

1×m.

Therefore function V∧φ
is a suitable CLF if and only if

max
x∈S\0

{

∇V∧φ
(x)f(x)−

m
∑

i=1

|
(

∇V∧φ
(x)g(x)

)

i
|

}

< 0,

S =
{

x ∈ R
n : ‖Fx‖∞ ≤ 1, x⊤Px ≤ 1

}

.
(21)

C. Lyapunov-based control

A nonlinear gradient-based control can be associated to a

smooth candidate CLRF V∧φ
:

u(x) = argmin
υ∈U

{V̇∧φ
(x) + J̇(x, υ)} sub. to

V̇∧φ
(x) ≤ −ηV∧φ

(x), (22)

where J(x, u) (4) is the performance cost to be minimized.

Control (22) follows from a minimal selection control [11,

Section 2.4] and therefore it is continuous [11, Section 4.2].

In the above control, the state constraints are guaranteed

because V∧φ
is a CLF. Moreover, for large values of the

shape parameter φ, the level sets of V∧φ
can be made close

to the optimal ones. For instance, considering the linearized

system in a neighbor of the origin, the level sets of the

optimal QCLF x⊤P ∗x can be obtained. With this choice,

the control (22) actually converges to the optimal one, i.e.

the control u such that

min
u

{2x⊤P ∗ (Ax+Bu) + x⊤Qx+ u⊤Ru} = 0.

V. SIMULATIONS

The constrained nonlinear model (1)-(3) of the CSTR,

see Section II, is simulated together with the nonlinear

controller (22). The CLRF V∧φ
actually is the smoothed

intersection between the optimal quadratic x̃⊤P ∗x̃ (5) (for

the unconstrained linearized system) and the polyhedral func-

tion of the second order max{x̃⊤F⊤
1 F1x̃, x̃⊤F⊤

2 F2x̃} (10)

that describes the state constraints (2). In the simulations,

parameters α = 0, φ = 20 are chosen for the CLRF V∧φ
.

In this particular case, the Petersen-like condition (21) is

checked to prove that the candidate CLRF V∧φ
(17)-(19) is

a suitable CLF ∀φ ∈ R
+.

A direct comparison can be performed with respect to the

Lyapunov-based receding horizon MPC controller proposed

in [4], where the simulation corresponding to the initial

condition x0 = [0.702 kmol/m3, 392.6 ◦K]⊤ is shown.

The proposed control strategy successfully stabilizes the
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nonlinear system in accordance to both state and control

constraints.

First note that the controlled invariant set is enlarged, as it

is shown in Figures 1, 3. Secondly, the control performances

are improved, as the state x definitively converges faster

than [4] and the control signals u, see Figure 5, are much

smoother. In fact, the chattering behavior of control u1 =
∆CA0 (and partially also of u2 = Q) in [4] is totally absent

here.
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Fig. 4. Controlled state trajectory.
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Fig. 5. Control inputs obtained by the control law (22) together with the
proposed control Lyapunov R-function.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the constrained stabilization of a nonlinear

control affine system, describing a chemical reaction taking

place in a continuous stirred tank reactor, is addressed.

The novelty of the proposed approach stands in the use of

the class of composite control Lyapunov R-functions. The

definition of a novel composition rule allows the design

of a control Lyapunov function with external level set in

accordance to the state constraints and inner sublevel sets

as desired, for instance the optimal ones. This approach is

very convenient because, unlike standard switching control

strategies, both constraints and optimality arguments can be

handled by a unique smooth control Lyapunov function,

together with a gradient-based time-continuous controller.

For these reasons, the use of control Lyapunov R-functions is

particularly effective for the feedback control of multi-input

multi-output chemical processes.

In the opinion of the authors, the novel composition rule

could be further exploited to remove the assumption of

existence of a common controller and also in handling model

uncertainties and disturbances.
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