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Abstract— This paper is concerned with a recursive learning
algorithm for model reduction of Hidden Markov Models
(HMMs) with finite state space and finite observation space. The
state space is aggregated/partitioned to reduce the complexity of
the HMM. The optimal aggregation is obtained by minimizing
the Kullback-Leibler divergence rate between the laws of the
observation process. The optimal aggregated HMM is given as
a function of the partition function of the state space. The
optimal partition is obtained by using a recursive stochastic
approximation learning algorithm, which can be implemented
through a single sample path of the HMM. Convergence of the
algorithm is established using ergodicity of the filtering process
and standard stochastic approximation arguments.

I. INTRODUCTION

A fundamental problem for Hidden Markov Models

(HMMs) that arise in applications is the large size of the

underlying state space [1]. Aggregation of state space repre-

sents perhaps the most straightforward approach to the model

reduction. It can be justified using a singular perturbation

framework (see [2]) for nearly completely decomposable

Markov chains (NCDMC). Recently, we proposed to employ

the Kullback-Leibler divergence rate (K-L rate) for model

reduction of Markov chains via aggregation of the state

space [3]. By using the fact that the joint state and observa-

tion process of HMM is Markovian, we also extended this

aggregation framework for the model reduction of HMMs

based on the K-L rate between laws of the joint process [4],

[5].

The problem with an aggregation based on joint process

is that two HMMs may have very similar laws of the obser-

vation process, while the K-L rate of their joint laws might

be very large or even unbounded. In this paper, we propose

to use the K-L rate between laws of the observation process

as the “probability distance” to compare two HMMs. If this

distance is zero, then the two HMMs are equivalent in the

probability sense up to a permutation of the state space (see

Section II-A for more details). This K-L rate pseudo-metric

has been studied in statistics [6], speech recognition [7],

bioinformatics [8], and control theory [9], [10].
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The goal of this paper is to find a reduced model of

HMM via aggregation of the state space by minimizing

the K-L rate between original and reduced laws of the

observation process. There are two main ideas in this paper.

One, we use a optimal representation of the aggregated

HMM derived in our earlier work [4], [5] as a structured

model for optimization. We take advantage of the optimal

representation to overcome some of the complexity issues

in computing the K-L rate. The second idea is to generate

observations from the original HMM with large state space,

but to recursively evaluate the filter only for the aggregated

HMM with much smaller state space. The aggregated HMM

is represented in terms of parameters from the original HMM

and the partition function which needs to be optimized.

Since the partition function space is exponentially large

(MN for the M -partition of N -state space), we first parame-

terize the discrete partition function space into a smaller real

parameter space [4] and then convert the optimal partition

problem to an optimal estimation problem, in fact, the

Maximum Likelihood Estimation (MLE) problem of the

HMM [6], [11]. We employ a gradient-based simulation

algorithm to solve the MLE problem. The algorithm is

recursively updated based on the stochastic gradient of the

nonlinear filter evaluated using the aggregated HMM model.

The convergence of the algorithm is established based on

the stochastic approximation arguments as well as the the

ergodicity of the filtering process.

II. PRELIMINARIES AND NOTATIONS

A. Hidden Markov Model

In this paper we consider a discrete-time HMM

{Xn, Yn}n≥0 defined on a probability space (Ω,F ,P).
Without loss of generality, we assume that (Ω,F ,P) is

a canonical probability space and the {Xn, Yn}n≥0 is a

coordinate process taking values on the product space N×O,

where finite sets N = {1, . . . , N} and O = {1, . . . , O}
denote the state space and observation space, respectively.

The unobserved state process {Xn}n≥0 is a time-

homogeneous Markov chain with the initial distribution µ
and the transition matrix A. For any time n ≥ 0 and any

i, j ∈ N ,

P(X0 = i) = µi, P(Xn+1 = j|Xn = i) = Aij .

The n-step distribution of the chain is then given by P(Xn =
i) = (µAn)i.

The observation process {Yn}n≥0 are mutually indepen-

dent conditioned on the state process of the Markov chain,
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i.e., for any time n ≥ 0, any i0, . . . , in ∈ N , and any

r0, . . . , rn ∈ O,

P(Yn = rn, . . . , Y0 = r0|Xn = in, . . . , X0 = i0)

=

n∏

k=0

P(Yk = rk|Xk = ik).

The conditional distribution of Yn only depends on Xn,

which can be described by the transition matrix C. For any

time n ≥ 0, any i ∈ N , and any r ∈ O,

P(Yn = r|Xn = i) = Cir .

For any r ∈ O, denote the diagonal matrix B(r) :=
diag(bi(r)), where the vector b(r) = [C1r, C2r, . . . , CNr]

T .

The complete statistics of the HMM {Xn, Yn}n≥0 are

fully characterized by a model, denoted by ξ = (µ,A,C).
For an HMM with the parameter set ξ, we denote the

probability measure and associated expectation as Pξ and

Eξ, respectively. We make following two assumptions:

Assumption 1 (Ergodicity) All Markov chains are assumed

to be irreducible and aperiodic.

Under Assumption 1, there exists a unique invariant distribu-

tion π such that π = πA. In fact, the chain is geometrically

ergodic, i.e., the n-step distribution of the chain converges

geometrically fast to the invariant distribution π in total

variation sense [1].

Assumption 2 (Nondegeneracy) The transition matrix C is

strictly positive, i.e., Cir > 0 for any i ∈ N and r ∈ O.

Under Assumption 2, the unobserved state process {Xn}n≥0

can be statistically inferred from any sample path of obser-

vations of the observed process {Yn}n≥0.

B. Filter recursion and its stability

For an HMM, an important problem is to compute the

prediction filter: For any time n ≥ 0 and any i ∈ N ,

pn(i) := P(Xn = i|Yn−1, . . . , Y0)

where we take p0 = µ. The prediction filter is used to obtain

the predictive distribution of the observations: For any n ≥ 0,

P(Yn|Yn−1, . . . , Y0) = bT (Yn)pn. (1)

The solution to the HMM filtering problem is recursive in

nature. For any time n ≥ 0,

pn+1 =
ATB(Yn)pn
bT (Yn)pn

. (2)

The recursive nature of the filter is inherited from the

Markovian nature of the state process, and is computationally

very convenient for on-line estimation.

The recursive filter defined in (2) is exponentially stable

for general HMMs [1], [12] under egodicity and nondegener-

acy assumptions. Here we state the results of [1] for HMMs

defined on finite state and observation spaces.

Proposition 1 Suppose Assumption 1 and Assumption 2

hold. Then, for any two distributions µ and ν, there exists

constants 0 < C1 < ∞, 0 < C2 < ∞, and 0 < ρ < 1 such

that

(i) For any n ≥ 0,

‖pµn+1 − pνn+1‖TV ≤ C1(1− ρ)n‖µ− ν‖TV

where pµn+1 and pνn+1 denote two filter recursions defined in

(2) starting with initial distributions µ and ν, respectively.

(ii) For any 0 ≤ k ≤ n,

‖Pµ(Xn+1|Y
n
0 )− P

µ(Xn+1|Y
n
k )‖TV ≤ C2(1− ρ)n−k

where P
µ denotes the probability measure with the initial

distribution µ.

The stability of the filter implies that the extended Markov

chain {Xn, Yn, pn}n≥0 is geometrically ergodic [12]. Thus

the initial distributions are forgotten exponentially fast and

are hence asymptotically not important in the analysis of the

filtering process.

C. Probability distance between HMMs

In this section, we define the probability distance between

two HMMs using the Kullback-Leibler divergence rate. For

two HMMs ξ = (µ,A,C) and ξ̄ = (µ̄, Ā, C̄) defined on the

same observation space O (but not necessarily on the same

state space), we consider the K-L rate between laws of the

observations [7]:

R(ξ‖ξ̄) := lim
n→∞

1

n
D

(
Pξ(Y

n
0 )‖Pξ̄(Y

n
0 )

)

= lim
n→∞

1

n
Eξ

[
log

Pξ(Y
n
0 )

Pξ̄(Y
n
0 )

]
.

As shown in [9], [11], the following asymptotic results

can be established under Assumption 1 and Assumption 2:

There exist finite constants H(ξ, ξ) and H(ξ, ξ̄) such that

the following limits exist in Pξ-a.s. sense:

lim
n→∞

1

n
logPξ(Y

n
0 ) = lim

n→∞

1

n
Eξ [logPξ(Y

n
0 )] = H(ξ, ξ)

(3)

lim
n→∞

1

n
logPξ̄(Y

n
0 ) = lim

n→∞

1

n
Eξ

[
logPξ̄(Y

n
0 )

]
= H(ξ, ξ̄).

(4)

The convergence of (3) follows directly from the Shannon-

McMillan-Breiman theorem for finite-valued stationary er-

godic process [9] and the limit H(ξ, ξ) is equal to the entropy

rate of the observation process {Yn}n≥0. The convergence

of (4) was first established in [13] for finite-valued stationary

ergodic HMMs.

Thus, the probability distance between two HMMs is

well-defined through the K-L rate between laws of the

observations:

R(ξ‖ξ̄) = H(ξ, ξ)−H(ξ, ξ̄). (5)

In general, we do not have an explicit expression for R(ξ‖ξ̄)
in terms of parameters of HMMs ξ and ξ̄. The prediction

filter is usually employed to approximate the K-L rate given

a sufficient number of observations [6], [11].
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III. MODEL REDUCTION OF HMM

A. Reduction via aggregation of state space

Consider the HMM ξ = (µ,A,C) defined on the state

space N and the observation space O. We want to find

another HMM ξ̄ = (µ̄, Ā, C̄) defined on the state space

M = {1, . . . ,M} with cardinality M ≤ N and the obser-

vation space O such that the probability distance R(ξ‖ξ̄) is

minimized. Additionally, we want the reduced HMM ξ̄ to be

obtained by aggregating the state space of the HMM ξ. The

relationship between N and M is described by a partition

function φ.

Definition 1 Let N = {1, 2, . . . , n} and M =
{1, 2, . . . ,m} be two finite state spaces with m ≤ n. A

partition function φ : N 7→ M is a surjective function from

N onto M, and φ−1(k) denotes the kth group in N .

Let Φ denote all M -partition functions from N to M.

As shown in our prior work [4], [5], an optimal represen-

tation of the aggregated HMM, (6)–(8) below, is obtained

by minimizing the K-L rate between joint laws of the states

and observations together. Given the focus vision to K-L

rate between laws of the observations, it would have been

ideal to construct an optimal model based on the observations

alone. This however is a difficult problem. Instead, we use

the representation (6)–(8) for the aggregated HMM. The

problem of optimal partition selection is based on the K-L

rate between laws of the observations.

For any fixed partition function φ ∈ Φ, the aggregated

HMM ξ̄(φ) = (µ̄(φ), Ā(φ), C̄(φ)) is represented as a func-

tion of φ (see e.g. Theorem 2 of [4]).

µ̄k(φ) =
∑

i∈φ−1(k)

µi, k ∈ M (6)

Ākl(φ) =

∑
i∈φ−1(k) πi

∑
j∈φ−1(l) Aij∑

i∈φ−1(k) πi

, k, l ∈ M (7)

C̄kr(φ) =

∑
i∈φ−1(k) πiCir∑

i∈φ−1(k) πi

, k ∈ M, r ∈ O. (8)

For any fixed φ ∈ Φ, we observe that the aggregated HMM

ξ̄(φ) satisfies both Assumption 1 and Assumption 2, i.e.,

the underlying aggregated Markov chain with the transition

matrix Ā(φ) is ergodic and the transition matrix C̄(φ) is

non-degenerate. Thus the probability distance R(ξ‖ξ̄(φ)) is

well-defined for any φ ∈ Φ. We also observe that:

µ̄k(φ) = P
µ
ξ (X0 ∈ φ−1(k))

Ākl(φ) = P
π
ξ (Xn+1 ∈ φ−1(l)|Xn ∈ φ−1(k))

C̄kr(φ) = P
π
ξ (Yn = r|Xn ∈ φ−1(k))

where P
µ
ξ and P

π
ξ denote probability measures with initial

distributions µ and π, respectively. This result is consistent

with the optimal prediction theory from the statistical me-

chanics [14].

B. Maximum likelihood estimation formulation

For a fixed partition function φ ∈ Φ, the aggregated HMM

is represented as ξ̄(φ) = (µ̄(φ), Ā(φ), C̄(φ)). The problem

then is to find the optimal φ∗ such that

φ∗ ∈ argmin
φ∈Φ

R(ξ‖ξ̄(φ))

which, after using (5), is equivalent to the following maxi-

mization problem:

φ∗ ∈ argmax
φ∈Φ

H(ξ, ξ̄(φ)). (9)

Due to the almost sure convergence of log-likelihood

function to the limit H(ξ, ξ̄(φ)) (see (4)), we instead consider

the following stochastic counterpart of (9):

φ̂n ∈ argmax
φ∈Φ

ln(φ) (10)

where the log-likelihood rate is defined as

ln(φ) :=
1

n
logPξ̄(φ)(y

n
0 ) (11)

with observations {y0, . . . , yn} generated from the HMM ξ.

The optimization problem (10) is the maximum likelihood

estimation in statistics: In effect, we select the partition

function which gives the highest probability of the observa-

tions generated from the true model. Note that the objective

function (10) converges to the objective function of (9) in

Pξ-a.s. sense. One may wonder whether φ̂n → φ∗
Pξ-a.s. as

n → ∞. The answer to this question is affirmative due to

the fact that the partition function space Φ is a finite set.

Proposition 2 Let Φ denote a finite partition function space

and consider an equivalent class in Φ

Φe := {φ ∈ Φ : Pξ̄(φ) = Pξ̄(φ∗) for almost all {Yn}n≥0}.

Then Pξ-a.s.,

(i) For any φ ∈ Φ, we have H(ξ, ξ̄(φ)) ≤ H(ξ, ξ̄(φ∗))
where the equality holds if and only if φ ∈ Φe.

(ii) Maximum likelihood estimation is consistent: φ̂n → φe

as n → ∞ for some φe ∈ Φe.

C. Hypothesis testing-based approach for optimal partition

selection

Since the partition function space Φ is a finite set, the

optimization problem (10) can in practice be approached

through the hypothesis testing: We are given |Φ| different

hypotheses (or |Φ| different aggregated HMMs), and our

goal is to decide on the basis of observations alone which

of the hypotheses holds true (or which of the aggregated

HMM is with the maximum log-likelihood rate). If the set

Φ is of moderate size, then the maximum log-likelihood

rate hypothesis can be found efficiently. All we need to

do is to compute |Φ| different filters, one for each partition

function. For any fixed-length observations {y0, y1, . . . , yn},

we choose the n-step hypothesis φ̂n as the one with the

largest log-likelihood rate. Then φ̂n asymptotically converges

to the global maximum φ∗ as n → ∞ (see Proposition 2).
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IV. RECURSIVE LEARNING ALGORITHM

In general, the optimization problem (10) is intractable

because of the curse of dimensionality. The curse here arises

due to the large size of the partition function space, e.g.,

L = |Φ| = MN for the M -partition of the N -state space. To

confront this complexity issue, a parametric representation

is used to represent the partition function in terms of a

small number of parameters. A recursive learning algorithm

is described to adaptively update the parameters based on a

sample path of the HMM.

A. Parameterization of the partition function space via ran-

domization

The randomization of the partition function gives us

greater flexibility to solve the optimization problem (10). A

randomized partition policy is defined as a mapping,

η : N → [0, 1]L

with the component ηφ(i) such that
∑

φ∈Φ ηφ(i) = 1 for

every i ∈ N . Under a policy η, the partition function φ is

assigned to the state i with the probability ηφ(i), independent

of everything else.

The policy is said to be deterministic if for every state i,
there is a single partition function φ(i) such that ηφ(i)(i) = 1.

If the function φ(i) is the same for all i then the policy η
yields a consistent partition of the space N . If η(·) is a

degenerate probability distribution (i.e., a dirac delta in the

probability simplex of Φ), then a partition function can be

uniquely obtained from η(·). In practice, a numerical method

will in general only lead to a partition function with high

probability determined by η(·).
The combinatorial optimization problem (10) involves

a very large partition space Φ. Following the considera-

tion of [4], we consider the randomized policies η(·; θ)
which are described in terms of a parameter vector θ =
(θ(1), . . . , θ(K))T , where the dimension K is chosen much

smaller than L, the dimension of Φ.

The following assumption is made for the ease of the

optimization over the parameter θ:

Assumption 3 The parameter space Θ is a compact subset

of a K-dimensional real vector space R
K . For any i ∈ N ,

the randomized and parameterized policy η(i; θ) is twice

differentiable with respect to θ, and has bounded first and

second derivatives for all θ ∈ Θ.

B. Parametric representation of the MLE problem

For any θ ∈ Θ, we consider a randomized partition policy

η(·; θ) such that for every i ∈ N , η(i; θ) depends smoothly

on θ, ηφ(i; θ) ≥ 0, and
∑

φ∈Φ ηφ(i; θ) = 1. We associate

a probability measure Pη(·;θ) and the corresponding expec-

tation Eη(·;θ) with the policy η(·; θ). For any measurable

function f(φ), we define

Eη(·;θ)[f(φ)] :=
∑

φ∈Φ

ηφ(·; θ)f(φ).

The parameterized one-step log-likelihood can also be

defined: For any n ≥ 0,

gn(θ) := Eη(Xn;θ)

[
log

(
Pξ̄(φ)(Yn|Y

n−1
0 )

)]

where Xn is the hidden state associated with the observation

Yn generated from the HMM ξ.

The parameterized maximization problem is defined as

θ∗ ∈ argmax
θ∈Θ

H̃(θ) (12)

where the parameterized average cost is given by

H̃(θ) = lim
n→∞

1

n
Eξ

[
n∑

k=0

gk(θ)

]
.

The parameterized maximum likelihood estimation (MLE) is

the stochastic counterpart of (12):

θ̂n ∈ argmax
θ∈Θ

l̃n(θ) (13)

where the parameterized log-likelihood rate is defined as

l̃n(θ) =
1

n

n∑

k=0

gk(θ).

C. Recursive learning algorithm and its convergence

Under Assumption 1–3, one can show that the MLE θ̂n
converge to θ∗ Pξ-a.s as n → ∞. However, the maximum

of (12) or (13) with respect to θ is typically very difficult to

compute. Instead, we describe a recursive learning algorithm

that searches for a maximum along the gradient-ascent

direction of the log-likelihood rate l̃n(θ).
In order to compute the gradient of l̃n(θ), we employ the

simulation to produce a sample-based estimate ∇hn(θ) of

∇l̃n(θ) (we denote ∇ := ∇θ for short). At every time step

n, the estimate hn is computed using the current observation

as well as finite length of past observations: For any time

n ≥ 0,

hn(θ) :=
1

⌊mn⌋+ 1




n∑

k=n−⌊mn⌋

g̃k(θ)


 (14)

where the finite-length log-likelihood

g̃k(θ) := Eη(Xk;θ)

[
log

(
Pξ̄(φ)(Yk|Y

k−1
n−⌊mn⌋

)
)]

,

and the averaging sequence {mn}n≥0 satisfies the following

assumption:

Assumption 4 For any n ≥ 0,

0 ≤ m0 ≤ m1 ≤ . . . ≤ mn−1 ≤ mn ≤ n,

and as n → ∞, mn → ∞.

Given any partition function φ and the observations

{Yn−⌊mn⌋, . . . , Yn}, the estimate hn can be

computed through the filter recursion (2) of

{Pξ̄(φ)(Yn−⌊mn⌋), . . . ,Pξ̄(φ)(Yn|Y
n−1
n−⌊mn⌋)}. Due to the

ergodicity of the filter (see Proposition 1 (ii)), the recursion

can be started with an arbitrary initial distribution µ̄ on M.
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The estimate ∇hn(θ) asymptotically converges to ∇l̃n(θ)
as n → ∞ and the convergence is geometrically fast due

to the ergodicity of the filter. By choosing the sequence

{mn}n≥0 alternatively, we compute hn(θ) efficiently: e.g.,

one can take mn = nα where selecting α ∈ (0, 1] allows

one to tradeoff between the computation efficiency and the

estimation performance.

A recursive learning algorithm is employed to approach

the optimization problem (12). Let {xn, yn}n≥0 denote a

sample path generated from the HMM ξ. The recursive

learning algorithm for updating the parameter vector is given

by: For any n ≥ 0,

θ̄n+1 = θ̄n + γn∇hn(θ̄n) (15)

where θ̄0 is taken to be an arbitrary point in Θ, the value

θ̄n is assumed to be available from the previous iteration,

and hn(θ) is computed using (14). In addition, another

adaptive algorithm for updating the log-likelihood rate is run

in parallel

l̄n+1 = l̄n + γn(hn(θ̄n)− l̄n) (16)

where l̄n is the estimated log-likelihood rate and parameter

θ̄n comes from (15). The diminishing stepsize γn satisfies

the standard stochastic approximation conditions:

Assumption 5 The stepsize values {γn}n≥0 are non-

negative and satisfy

∞∑

n=0

γn = ∞,
∞∑

n=0

γ2
n < ∞.

The convergence of the simulation-based algorithm is

established using the ODE method and ergodicity of the

filtering process:

Proposition 3 Suppose,

(i) The sample path {xn, yn}n≥0 are generated from the

HMM ξ, which satisfies Assumption 1 and Assumption 2.

(ii) The randomized and parameterized policy η(·; θ) sat-

isfies Assumption 3.

(iii) The averaging sequence {mn}n≥0 and the stepsize

sequence {γn}n≥0 satisfy Assumption 4 and Assumption 5,

respectively.

(iv) The parameter vector sequence {θ̄n}n≥0 and the log-

likelihood rate sequence {l̄n}n≥0 are updated according to

the recursive learning algorithm (15) and (16), respectively.

Then, as n → ∞, the sequence l̃n(θ̄n) converges to a

non-positive limit,

∇l̃n(θ̄n) → 0 and l̄n → l̃n(θ̄n),

all in Pξ-a.s. sense.

D. A simple bi-partition parameterization

Let M = {1, 2} denote the reduced aggregated state

space with two superstates. For the bi-partition problem, a

partition function φ takes only two values, either φ(i) = 1 or

φ(i) = 2 for any state i ∈ N . Let Θ be a sufficiently large

compact subset of RN . We consider a real-valued parameter

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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−0.63

 

 

log−likelihood rate l
*

n

log−likelihood rate l
n
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Fig. 1. The original log-likelihood rate l∗n is compared with the 8 different
aggregated log-likelihood rates ln(φ).

vector θ := (θ(1), . . . , θ(N))T ∈ Θ, where θ(i) decides

the group assignment for the state i ∈ N . In particular, we

use ζ(θ(i)) := 1
1+exp(Mθ(i)) to reflect the probability that

φ(i) = 1, where M > 0 is some positive constant.

At time n, we only need to consider the randomized and

parameterized partition policy for the state Xn. Suppose the

current stat is Xn = i ∈ N , and partition function at time

n− 1 is φ̃. The policy is defined for all φ ∈ Φ:

• If φ(j) = φ̃(j) for every j ∈ N/{i}, then

ηφ(i; θ) = ζ(θ(i))1l{φ(i)=1} + (1− ζ(θ(i))1l{φ(i)=2}.

• Otherwise, ηφ(i; θ) = 0.

One can easily verify that the policy satisfies the Assump-

tion 3. At each time step, the policy only affects or changes

the probability of the group assignment for the state Xn and

keep others unchanged. Thus this policy can save a lot of

computations at each time-step, which makes it more suitable

for on-line estimation.

V. SIMULATION AND DISCUSSION

In this section, we use a simple HMM ξ to illustrate the

theoretical results and algorithms described in this paper. The

HMM ξ = (µ,A,C) has 4 states and 2 observations. The

transition matrices

A =




0.500 0.200 0.225 0.075
0.200 0.500 0.135 0.165
0.030 0.270 0.500 0.200
0.150 0.165 0.185 0.500


 , C =




0.15 0.85
0.05 0.95
0.89 0.11
0.88 0.12




with the initial distribution µ = π, the invariant distribution

of A.

We consider the bi-partition problem of the HMM ξ here,

i.e., the state space N = {1, 2, 3, 4} is aggregated into the

state space M = {1, 2}.

A. Hypothesis testing approach for a simple HMM

Note that the partition function space Φ is of a moderate

size (|Φ| = 24 = 16). Thus the hypothesis testing method

is employed in this subsection to find the optimal partition

function as described in Section III-C.

First, a sample path of n = 2000 observations

{y0, . . . , yn} is generated according to the HMM ξ. The
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Fig. 2. Plots of (a) the estimated parameter vector θ̄n, (b) probabilities of the states being in the first group ηφ=[1,1,1,1](·; θ̄n), and (c) the estimated

log-likelihood rate l̄n for the HMM ξ with the recursive learning algorithm (15) and (16).

original log-likelihood rate l∗n = n−1 logPξ(y
n
0 ) is computed

based on the recursive filer of the HMM ξ (see Section II-B

for more details).

Second, for any fixed φ ∈ Φ, the aggregated HMM ξ̄(φ) is

obtained using the representation (6)–(8). Then we compute

the aggregated log-likelihood rate ln(φ) = n−1 logPξ̄(φ)(y
n
0 )

(11) for every aggregated HMM ξ̄(φ) based on the recursive

filter of ξ̄(φ). Note that if the partition functions φ1 and φ2

are symmetric (e.g., φ1 = [1, 2, 2, 2] and φ2 = [2, 1, 1, 1]
are symmetric), then the probability laws Pξ̄(φ1) = Pξ̄(φ2)

for almost all observations. Based on the symmetry of the

problem, we only need to consider 8 partition functions for

the hypothesis testing. In Fig. 1, we depict the original log-

likelihood rate l∗n as well as 8 different aggregated log-

likelihood rates ln(φ) (two symmetric partition functions

correspond to the same log-likelihood rate).

Finally, we choose the optimal partition function corre-

sponding to the largest log-likelihood rate. For this example,

the optimal partition functions is φ∗ = [1, 1, 2, 2] or φ∗ =
[2, 2, 1, 1]. The two corresponding aggregated HMMs are

equivalent up to the permutation of the state space. We also

note that for this special example the optimal aggregated

log-likelihood rate is almost the same as the original one.

B. Recursive learning approach

From the hypothesis testing of all partition functions, we

know that φ = [1, 1, 2, 2] is the optimal bi-partition of the

HMM ξ. In this subsection, we apply the recursive learning

algorithm (15) and (16) to find the optimal partition function

based on a single sample-path {xn, yn}n≥0 of the HMM ξ.

The randomized and parameterized bi-partition policy,

with the constant M = 15, is chosen for the recursive learn-

ing algorithm as described in Section IV-D. The averaging

sequence is taken as mn = n0.8 and the stepsize sequence

is taken as γn = 1
n+1 for n ≥ 0. The parameter space Θ is

a sufficiently large compact subset of RN and the algorithm

is initialized with the parameter vector θ̄0 = [0, 0, 0, 0].
In Fig. 2, we depict a typical run of the recursive

learning algorithm for the 1000 iterations. After n =
1000 iterations, the estimated parameter vector θ̄n =
[−0.3802,−0.4643, 0.4117, 0.4154], and the probabilities of

states being in the first group are ηφ=[1,1,1,1](·; θ̄n) =
[0.9948, 0.9984, 0.0034, 0.0032]. From this, the optimal par-

tition function φ = [1, 1, 2, 2] can be determined with high

probability. The corresponding estimated log-likelihood rate

is equal to l̄n = −0.6605, which is close to maximum log-

likelihood rate depicted in Fig. 1. The recursive learning

algorithm thus recovers the optimal partition function for

this example.
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