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Abstract— We address the problem of metastable Markov
chain simulation, a class of systems characterized by the
existence of two or more “pseudo-equilibrium” states and very
slow convergence towards global equilibrium [1]. For such
systems, approximation of the stationary distribution by direct
application of the Stochastic Simulation Algorithm (SSA) [2]
would be very inefficient. In this paper we propose a new
method for steady-state simulation of metastable chains that
is centered around the concept of stochastic complementation
[3]. The use of this mathematical device along with SSA results
in an algorithm with much better convergence properties, that
facilitates the analysis of rarely switching stochastic biochemical
systems.

I. INTRODUCTION

In this work we consider continuous-time Markov chains

with countable state space and assume they satisfy the

necessary and sufficient conditions for having a unique

invariant distribution. Except for special cases, the invariant

distribution of these chains cannot be calculated explicitly

and the main approximation technique used is state-space

truncation. Following this approach, one must verify that the

truncated chain “approaches” the original in some sense as

the truncation size grows, so that their invariant distributions

also approach each other. However, the necessary truncation

size is difficult to determine and the resulting truncations are

usually too big for the invariant distribution to be computed.

On the other extreme, stochastic simulation is always

possible and, given the ergodicity assumption, is guaranteed

to give correct results as the simulation length increases.

Often, however, the computation time is too long, as systems

may evolve slowly towards equilibrium. One cause for the

slow convergence is the coexistence of two or more different

timescales in the Markov chain transitions. The way out of

this situation is the use of quasi-steady-state approximation

simulation techniques that treat the two timescales separately

[2].

Not all slowly converging systems involve different

timescales, however. In some cases the Markov chain may

evolve quickly towards a state of “pseudo-equilibrium”

(which may be different depending on the initial condition),

in which it remains trapped for a large amount of time.

Viewed at a longer timescale, though, the system is not

globally in equilibrium because it makes rare transitions

from one pseudo-equilibrium to another. This behavior is

translated into the existence of two or more modes in the
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invariant distribution, separated by areas of very low proba-

bility. Such systems are called metastable [1], because they

spend a large amount of time around each mode, making rare

fluctuation-driven transitions between the mode regions. This

is the case of bistable switch-like systems, for example, that

are frequently encountered the systems biology literature.

Convergence to equilibrium of metastable systems can be

extremely slow, and rare event simulation techniques have

to be used for efficient simulation [4], [5], which require

much more effort and tuning than SSA to be implemented.

In this paper we propose a simpler method for calculating

stationary distributions of metastable systems, that involves

“off-line” computations (like the truncation techniques) as

well as use of SSA, and is based on the theory of stochastic

complement [3]. With this device, one can simulate the

Markov chain on a given subset of the state space, by

“masking out” transitions to states outside this set so that

the true invariant distribution over this subset is preserved.

Our main idea is to first divide the state space in different

parts, namely the metastable and the transition regions. Two

tasks have to be accomplished then: the approximation of

the invariant distribution of the chain, conditioned on it being

inside a certain region, and the processing of the results from

individual regions to obtain the full stationary distribution.

II. STOCHASTIC COMPLEMENT THEORY

Assumptions and notation: Consider an ergodic Markov

chain {Xt, t ≥ 0} with generator matrix Q over a countable

set S ⊆ Z
n
≥0, with a (unique) invariant distribution denoted

by π. All vectors are assumed to be row vectors (so that

πQ = 0 for example) and ei denotes the unit vector with 1

at the ith position. || · || denotes the norm of ℓ1(S). Finally,

vector 1 consists all of ones. The main references for this

Section are the seminal paper of Meyer [3], as well as books

[6], [7] and articles [8], [9].

Definition 2.1: Consider generator matrix Q with a k-

level partition:

Q =











Q11 Q12 . . . Q1k

Q21 Q22 . . . Q2k

...
...

. . .
...

Qk1 Qk2 . . . Qkk











For a given index i, let Qi denote the principal block

submatrix of Q obtained by deleting the i-th row and i-th
column of blocks, and let

Qi∗ =
(

Qi1 Qi2 . . . Qi,i−1 Qi,i+1 . . . Qi,k

)

and

Q∗i =
(

QT
1i QT

2i . . . QT
i−1,i QT

i+1,i . . . QT
k,i

)T
.
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The stochastic complement of Qii in Q is then defined as

[3], [8], [6]

Rii = Qii − Qi∗Q
−1
i Q∗i. (1)

The partition of Q naturally induces a partition of S into

k disjoint subsets {Bi, i = 1, . . . , k}, such that ∪k
i=1Bi = S.

Furthermore, each Rii is itself a generator matrix of a

reduced Markov chain on Bi, and is irreducible if Q is

[3]. One can also easily see that the reduced chain on B i

is derived by observing the full chain on S only when it is

in Bi. This means that transitions from Bi to Bc
i are “masked

out” and a path b1
i → b2

i in Bi can correspond either to a

direct path b1
i → b2

i or a detour b1
i → Bc

i → b2
i in the full

chain.

The next two very important facts about stochastic com-

plements from [3] form the basis of our approach:

Theorem 2.1: Let π denote the (unique) stationary dis-

tribution of the full Markov chain and write π =
(π(1) π(2) . . . π(k)), according to the state space k-level

partition. Then the vector

νi =
π(i)

π(i) · 1T
(2)

is the unique stationary distribution of the reduced chain on

Bi (i.e. νiRii = 0).

Theorem 2.2: The stationary distribution of Q is given by

π =
(

ξ1ν1 ξ2ν2 . . . ξkνk

)

, (3)

where the vector ξ =
(

ξ1 ξ2 . . . ξk

)

is the invariant

distribution of the k × k generator matrix C with entries

given by

cij = νiQij1
T . (4)

Theorem 2.1 says that νi assigns to each state bi in Bi a

mass equal to the probability that the full chain is at b i,

conditioned on the fact that it is in Bi. The result is of

great practical importance, since it states that the invariant

distributions of the stochastic complements, ν1, . . . νk, are

scaled versions of the corresponding blocks of π. The

scaling constants are called coupling factors and are given

by Theorem 2.2.

III. SIMULATION ALGORITHM

The following is a key observation from (1): if each state in

S leads to finitely many states and Bc
i is finite (which implies

that Bi infinite), then Rii will be obtained by modifying Qii

at finitely many points. This means that we can practically

calculate Rii and use it for simulation purposes. Based on

this fact, we will next present our simulation algorithm for

the simple case of a Markov chain with two metastable

sets. Generalization to more than two sets will then be

straightforward.

A. Set-up

Consider a metastable Markov chain with two finite and

disjoint metastable sets, B1 and B2. Let also B3 = (B1∪B2)
c

and assume that no transition from B1 to B2 is possible in

one step. By appropriately enumerating the states of S, the

generator of this Markov chain can then be written as:

Q =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 =





Q11 0 Q13

0 Q22 Q23

Q31 Q32 Q33



 ,

and the stochastic complement R33 is then given by (1):

R33 = Q33 −
[

Q31 Q32

]

[

Q−1
11 0
0 Q−1

22

] [

Q13

Q23

]

= Q33 − Q31Q
−1
11 Q13 − Q32Q

−1
22 Q23 (5)

We also introduce a few more subsets of S: Let B3→1
3 (B3→2

3 )

denote the subset B3 from which a transition to B1 (B2) is

possible. We also consider B3→1
1 ⊂ B1 and B3→2

2 ⊂ B2,

the sets of points that are accessible from B3 as well as

B1→3
1 ⊂ B1 and B2→3

2 ⊂ B2, the subsets from which B3 can

be accessed.

B. First step

The structure of R33 suggests a simple way to simulate

a Markov chain with generator R33: The reduced Markov

chain on B3 evolves exactly like the full Markov chain in B3\
(B3→1

3

⋃

B3→2
3 ), until it reaches B3→1

3 or B3→2
3 . Since it is

not allowed to exit the set, the transition rates for these states

are modified according to the second or the third term in (5),

depending on the current state of the chain. Note that after

a transition out of such a state, the reduced Markov chain

might take a “leap” into a state that the system dynamics

would not normally allow. This happens because every time

an exiting state is hit, the full chain can exit B3 with a certain

probability and return to it through another state.

This jump in space observed in the reduced space, is actu-

ally caused by an underlying jump in time, which is exactly

the benefit gained from using the stochastic complement.

Since the full chain spends most of its time in a metastable

set, by “fast-forwarding” its transitions to the moment it

returns to B3, we can make large leaps forward in time.

Moreover, we know that ν3, differs from π(3) only by a (yet

unknown) factor.

Thus, the first step of our simulation algorithm simply

requires the offline calculation of the stochastic complement

R33 and the simulation of the reduced Markov chain to

sample its stationary distribution. This chain will in general

converge much faster than the full chain.

C. Second step

The second step is the approximation of ν1 and ν2.

This can be accomplished in two ways: by simulation or

computation.

1) Simulation method: From the previous step, every state

in B3 has a weight proportional to its invariant mass. This

gives information about the probability flux entering B 1 and

B2 at stationarity, namely f31 = π(3)Q31 and f32 = π(3)Q32,

which are known up to a constant multiple. These vectors

assign a positive weight to each state in B3→1
1 and B3→2

2 . We

can now estimate νi, i = 1, 2 by picking an initial state in

B3→i
i according to the incoming flux distribution f3i/||f3i||
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and simulating a path of the full chain until it exits B i. Since

the trajectory segments in Bi, i = 1, 2 are started according

to the stationary flux distribution, they are parts of stationary

trajectories that cross Bi. Thus, we can easily approximate

νi, i = 1, 2 by collecting statistics over the generated paths.

2) Computational method: The method suggested above

may fail due to the extremely stable behavior of the chain in

some Bi, i.e. it is possible that the exit time from a metastable

set is too long. In principle, this is not detrimental for the

approximation of ν1 or ν2, since a single long trajectory

would be enough in this case. However, not all probabilities

are calculated with the same accuracy. This means that, while

the masses of high-probability states in B1 and B2 may be

very well approximated, the states in B1→3
1 or B2→3

2 may

be very badly sampled and their estimated masses (albeit

very small) may be completely off their real values. In turn,

this may have a detrimental effect in the next step of the

algorithm, as we shall see below.

In this case it is more effective to consider the very stable

set Bi to be practically closed and modify the matrix Q ii

so that it becomes a generator matrix (i.e. it has row sum

equal to zero). We thus have to make a redistribution of the

exit rate from Bi to the states within Bi. This leads to a new

matrix Qcl
i , from which we can compute an approximation

to νi by singular value decomposition, or any other method.

D. Third step

The last step consists of the coupling factors calculation,

which will weigh the distributions computed in Steps 1 and

2 correctly against each other, to produce the unconditional

stationary distribution over the whole space. Again, there are

two ways to carry out this computation:

1) Using the coupling factors definition: Equation (4)

suggests that the coupling matrix can be calculated from the

data obtained so far. The condition ξC = 0 in Theorem

2.2 is nothing more than a systematic way of writing the

equilibrium condition: the probability flux into each of the

three sets is equal to the probability flux leaving them. In our

case, the unknowns in these equations are the constants that

multiply the νi and make the condition hold, i.e. precisely

the coupling factors.

We also observe that by its definition (4), C involves only

the states in each Bi from which a transition to Bj can be

made. This justifies our claim in the previous subsection,

that a wrong approximation of their masses could severely

throw off the present calculation. However, as the examples

will show, this method works and is quite robust against

approximation errors.

2) Approximating the coupling factors: Combination of

(3) with (2) shows that ξi = π(i)
1

T , which is proportional

to the fraction of time the chain spends in B i. Thus, we could

arrive at the coupling factors if we could tell how much time

the full chain spent in each of the three sets over the course

of a simulation run. Since we are simulating the reduced

chain, we cannot get this answer directly.

To proceed with this approach, we need to define B ′
3 =

B3 ∪ B3→1
1 ∪ B3→2

2 and compute R′
33. We are also going to

use the fact that −Q−1
ii (m, n) is equal to the average time

the chain spends at state bn
i ∈ Bi, starting from state bm

i ∈ Bi

before hitting Bc
i [7]. Thus, the average total time spent in

Bi before hitting its complement, starting from state bm
i , is

−emQ−1
ii 1

T .

To approximate the coupling factors, we start by initializ-

ing two counters t1 and t2 to 0 and simulating a trajectory

of length T in B ′
3. We then trace back this trajectory and

locate transitions B3 → B3→1
1 and B3 → B3→2

2 . For each

B3 → B3→i
i (i = 1, 2) transition we locate the target state

-say bm
i -, increment ti by −emQ−1

ii 1
T and substract the time

spent at bm
i from T .

Note that the actual distribution of the hitting time whose

average we consider here, is very hard (or impossible) to

compute in general, but the use of averages gives very precise

results, provided we record many transitions over the course

of the simulation.

The above calculations give us t1, t2 and t3 (the total time

spent in B3) and the coupling factors can now be computed

as ξi = ti/(t1 + t2 + t3).
At first glance, the second method seems less efficient

than the first from a computational cost viewpoint, since it

involves the post-processing of the generated trajectory. Its

advantage, however, is that it does not demand any specific

accuracy in the calculation of ν1 and ν2, since their values

are not used anywhere. On the other hand, when matrix

inversions are computationally expensive (i.e. B i are big

sets), the second method may not be applicable.

IV. EXAMPLES

To demonstrate its effectiveness, we present the applica-

tion of our algorithm to two different bistable systems. Both

are 2-dimensional, in order to facilitate visual representation

of the results, and are based on the genetic toggle switch

model of Gardner [10]. Both consist of two mutually repress-

ing genes, X and Y, producing proteins x and y respectively.

The chemical reactions and their corresponding propensities

are given below:

R1 : ∅ → x, λ1 =
k1

1 + yn1

R2 : x → ∅, λ2 = x

R3 : ∅ → y, λ3 =
k2

1 + xn2

R4 : y → ∅, λ4 = y

Based on these equations, we define two models with the

following characteristics:

Model 1: k1 = 50, k2 = 16, n1 = 2.5, n2 = 1

Model 2: k1 = 60, k2 = 30, n1 = 3, n2 = 2

Despite its small dimension, Model 1 is already quite hard

to simulate to stationarity with SSA, as we shall show below.

On the other hand, the parameters of Model 2 were picked

in a way that the system switches extremely rarely and is

almost impossible to simulate to stationarity.
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A. Simulation of Model 1

This system fluctuates most of the time around two

metastable regions of the x − y space, which we shall call

B1 and B2. In B1, x is much higher than y (i.e. gene X is

on and Y is off), while in B2 the opposite holds. Random

fluctuations can drive the system from one region to the other,

but the switching is not frequent, as the sample trajectory in

Figure 1 suggests:
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Fig. 1. A sample trajectory of the first toggle switch. After 15000 seconds
the system has made only a dozen transitions

Starting from this generated trajectory, we can now locate

the boundaries of the two regions. Our goal is to isolate the

regions in which most of the simulation time is spent, but of

course there is no clear distinction between the metastable

and transition regions. For our subsequent calculations we

used the following:

B1 = {x, y : 0 ≤ x ≤ 2 and 6 ≤ y ≤ 30}

B2 = {x, y : 4 ≤ x ≤ 70 and 0 ≤ y ≤ 2}

To assess the accuracy of our results, we also calculated

a good approximation to the invariant distribution of the

system using a large truncation of the state space (130×130

molecules). We arrived at this truncation size starting from

a smaller truncated state space and gradually increasing

its size, until the resulting invariant distributions ceased to

change. Excursions of the system outside this truncation box

are extremely rare, so we can safely assume that the invariant

distribution we calculated is, for all practical purposes, the

true one (Fig. 2). Our simulation approximations will be

compared to this distribution.

SSA simulation: As mentioned above, Model 1 is still

tractable by SSA. Table I contains the approximation error

and computation time needed to simulate a trajectory of

length T . The numbers reported are the means obtained from

5 runs of the algorithm for each value of T .

T (sec) ||π − π̂|| comp.time (sec)

1000 0.3916 16.2

10000 0.1306 2097

50000 0.0665 47620 (13.2h)

80000 0.0491 116800 (32.4h)

TABLE I

APPROXIMATION RESULTS FROM SSA SIMULATION

We next performed two numerical tests, with the following

settings:

y molecules
x molecules

(a)

10
1

y molecules

x
 m

o
le

cu
le

s

10
1

-18

-16

-14

-12

-10

-8

-6

-4

-2

10
0

10
0

10
1

(b)

Fig. 2. (a): invariant distribution of the system computed from a large
finite truncation. (b): log10 of the same distribution shown in contour plot
in logarithmic scale. The blue region of the plot contains very small elements
of the invariant distribution, that reach all the way to the accuracy of Matlab.

1) Simulation of ν1 and ν2, calculation of the coupling

factors from ξ · C = 0
2) Simulation of ν1 and ν2, approximation of the coupling

factors

All calculations were done using Matlab running on a 2.66

GHz CPU with 4GB of RAM.

1st test: We first varied the length of the trajectory in

B3 (denoted by t3), keeping the number of trajectories for

estimating ν1 and ν2 (N1,2) fixed at the (relatively large)

value of 10000. Next, we kept the trajectory in B 3 fixed and

examined the influence of the number of iterations performed

for the approximation of ν1 and ν2.

The results are listed in Table II. Total computation time

(TC) is reported as the sum of the B3 trajectory generation

time and the time for computation of N1,2 trajectories

in each of B1 and B2 (mean values from 3-5 runs). π
represents the truncation-derived stationary distribution and

π̂ the simulation-based approximation.

The results of Table II imply that a B3 trajectory 10000

seconds long and 2500 trajectories in each metastable set

are enough to give an approximation accuracy comparable

to that of our longest SSA runs (the user is of course free to

choose the iterations in each metastable set independently,

but we kept them equal in this test for simplicity). Indeed,

as we verified by simulating with these parameters, the

approximation error in this case was ||π − π̂|| = 0.0380 for

a total simulation time of 180 + 57 = 237sec. Including the

inverse matrix and stochastic complements calculation does

not increase the computation time by more than a couple
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1st test

t3 (sec) N1,2 ||π − π̂|| TC (sec)

2500 10000 0.1287 9+240=249

5000 10000 0.0392 40+240=280

10000 10000 0.0159 180+240=420

20000 10000 0.0195 600+240=840

30000 10000 0.0160 1600+240=1840

40000 10000 0.0173 3000+240=3240

2nd test

t3 (sec) N1,2 ||π − π̂|| TC (sec)

30000 600 0.0802 1600+14=1614

30000 1200 0.0410 1600+27=1627

30000 2500 0.0128 1600+57=1657

30000 5000 0.0198 1600+120=1720

30000 10000 0.0160 1600+240=1840

TABLE II

SIMULATION PARAMETERS AND RESULTS FOR THE FIRST TEST

of seconds in this example. Figure 3 shows a comparison

of the resulting approximation with the calculated invariant

distribution.
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Fig. 3. (a): invariant distribution approximation (log10(π̂)). (b): calculated
invariant distribution (log10(π)). The values of π̂ on the yellow/green/blue
region of π are zero, hence the abrupt transition in (a). The invariant mass
of those points is so small that it would be computationally impossible to
estimate it in a reasonable amount of time. However, the metastable and
transition regions, where the bulk of the invariant mass lies, are very well
approximated

2nd test: For this test we used the second approach

outlined in Section III-D to estimate the average amount of

time spent each metastable set. The distributions ν1 and ν2

were simulated just like in the first test. Table III shows the

accuracy of the results obtained with a few combinations of

t3 and N1,2, as well as the average time (t1 and t2) that the

full process spent in each metastable set over the course of

the B3 simulation.

t3 (sec) N1,2 t1 (sec) t2 (sec) ||π − π̂|| TC (sec)

5000 2500 180800 65200 0.0447 40+57=97

10000 2500 335600 139200 0.0175 180+57=237

10000 5000 335600 139200 0.0144 180+120=300

20000 2500 686500 279000 0.0124 600+57=657

20000 5000 686500 279000 0.0087 600+120=720

TABLE III

SIMULATION PARAMETERS AND RESULTS FOR THE SECOND TEST.

The achievable accuracy with this method is better than

that of the first test and we were able the use smaller t3

and N1,2 to obtain good results, which implies a decrease

in computation time. Moreover, there seems to be more

space for improvement than in the first test, where the

approximation error seemed to saturate (most probably due

to the sensitivity issues we described in Section III-D).

B. Simulation of Model 2

Despite its slow convergence, the system of the previous

example could be treated with the SSA, given enough

computer time. The toggle switch variant presented in this

example is most probably impossible to simulate with SSA,

since it switches extremely rarely. Its only difference from

the previous one is that the transition rates involve much

steeper Hill functions.
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Fig. 4. A sample trajectory of the second toggle switch. After 15000
seconds, no switching has occured yet. The simulation time for this
trajectory was 22000 sec.

Based on trajectories started from different points in the

state space, we could identify the two metastable regions:

B1 = {x, y : 0 ≤ x ≤ 2 and 5 ≤ y ≤ 60}

B2 = {x, y : 14 ≤ x ≤ 105 and 0 ≤ y ≤ 2}

The only way to look at the invariant distribution of this

system is by state space truncation (since SSA is out of the

question). The result of our calculation is displayed in Figure

5

Since this chain can be considered Nearly Completely

Decomposable [3], we chose to calculate ν1 and ν2 as

outlined in Section III-D and performed the following two

tests:

1) Calculation of the coupling factors from ξ · C = 0
2) Approximation of the coupling factors
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Fig. 5. (a): invariant distribution of the system computed from a large
finite truncation. (b): log10 of the same distribution shown in contour plot
in logarithmic scale (log10), to bring out the details in the metastable
and transition regions. Clearly, the transition states carry several orders of
magnitude less mass compared to the previous example, which implies that
transitions between the metastable regions are extremely rare. The transition
region is also much narrower in this example

t3 (sec) ||π − π̂|| TC (sec)

2500 0.0673 23

5000 0.0568 95

10000 0.0215 290

20000 0.0346 1400

TABLE IV

MODEL 2: SIMULATION RESULTS

1st test: In this experiment we varied the length of

simulation in B3. The results are displayed on Table IV:

Since the distributions ν1 and ν2 are obtained from calcu-

lation in this example, a total computation time of around

290 seconds is enough to provide a good approximation

to the invariant distribution of a system that is practically

impossible to simulate with SSA.

2nd test: The main reason we performed this test was

to calculate, based on the approach of Section III-D, the

average amount of time spent each metastable set by the full

chain. This gives us a rough estimate of the stability of each

metastable region, which is indicative of the difficulty to ob-

tain a good SSA approximation of the stationary distribution

of the system. The results are displayed in the next table:

t3 (sec) t1 (sec) t2 (sec) ||π − π̂|| TC (sec)

2500 1.609 × 108 1.429 × 108 0.0921 23

5000 3.100 × 108 3.000 × 108 0.0688 95

10000 5.633 × 108 6.203 × 108 0.0064 290

20000 1.096 × 109 1.244 × 109 0.0088 1400

As expected, the accuracy of the coupling factors estimates

improves as the B3 trajectory gets longer. It seems that

less than 5000 seconds are not enough to obtain the right

estimate, but the accuracy improves significantly beyond

10000 seconds. The times t1 and t2 also demonstrate the

extreme stability of this system.

V. DISCUSSION

The variants of the simulation algorithm for metastable

Markov chains presented above are based on the theory

of stochastic complements and absorbing Markov chains.

Its main characteristic is the ability to make large “leaps”

in time, using the observed Markov chain on the set of

transition states. With this divide-and-conquer approach, a

hard simulation task is broken up into a few much easier

steps, which take much less time to complete.

This could in turn facilitate the study of multistable

biological systems in several ways: for example, stochas-

tic bifurcation analysis can be carried out more efficiently

having a fast simulation method. Also, one can calculate the

rates of switching among the metastable sets, which is the

subject of our future work.

Our methodology can find applications to various other

simulation problems as well. One obvious use of it could be

rare event simulation. In this case, one just needs to “mask

out” transitions in the set where the bulk of the invariant mass

of the system lies and concentrate on sampling the rest of

the state space. This would require far less computation time

than using SSA on the full Markov chain. Moreover, the def-

initions of coupling factors and the aggregated Markov chain

(Theorem 2.2) suggest ways of approximate aggregation of

the state space, which have to be explored.

Finally, we should note that the steady-state analysis of

metastable systems can be seen as a complement to the

transient analysis via the Finite State Projection method [11].
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