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Abstract— This paper is concerned with the efficient simu-
lation of stochastic nonlinear dynamical systems. A technique
based on Polynomial Chaos Expansion (PCE) theory is used, in
order to estimate the time evolution of the stochastic properties
of the variables of interest. In PCE, each considered random
variable is approximated by a truncated series of orthogonal
polynomials, whose coefficients are identified by using the data
collected in a relatively low number of numerical simulations.
Then, the first and second order moments of the variables of
interest, as well as an estimate of their probability density
functions, can be efficiently recovered from the polynomial
expansions. A least-squares identification approach is used here
to identify the expansion’s coefficients, and, in the framework
of Set Membership identification theory, the issue of evaluating
the guaranteed accuracy of the obtained PCE is tackled. As an
example, the approach is tested on a nonlinear electric circuit.

I. INTRODUCTION

The need to efficiently simulate stochastic models is
common to many science and engineering problems. In these
models, uncertainty and disturbances are usually taken into
account by a vector of random variables κ ∈ Rnκ . The
typical technique employed to simulate a stochastic model is
the well-known Monte Carlo (MC) approach, which basically
consists in 1) drawing a large number M of samples of κ,
according to its distribution, 2) performing M simulations of
the model by using the extracted values of the input random
variables, 3) analyzing the statistics of the results. The MC
method is able to give reliable estimates of the statistics of
the variables of interest, v ∈ Rnv (t), provided that the value
of M is large enough. However, in some cases the use of
the MC approach can be computationally prohibitive. Poly-
nomial Chaos Expansions (PCEs) (see e.g. [1], [2], [3] [4])
can reduce significantly the computational effort required to
simulate a stochastic system, by conceptually replacing the
mapping between κ and v(t) with a function v̂(t,κ), in the
form of a truncated series of orthogonal polynomials. The
statistical moments of v̂(t,κ) can be easily computed from
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the expansion’s coefficients, and the evaluation time of PCEs
is typically orders of magnitude shorter than integrating
the system model, so that computational advantages can be
obtained by using a PCE, instead of the system model, in step
2) of the above-mentioned MC procedure. PCEs have been
used in a number of different areas and, more recently, also
in the field of systems and control (see [4] for an overview).
In one possible approach, the coefficients of the PCE are
identified from the data v(t, κ̃(r)) collected through a finite
number of initial simulations of the model, corresponding to
some values κ̃(r), r = 1, . . . , ν of κ.
In this paper, we study the use of Polynomial Chaos for the
simulation of general nonlinear, continuous time stochastic
models, and we use a least-squares approach to identify the
PCE’s coefficients. Then, we consider the issue of evaluating
a guaranteed worst-case error between the obtained PCE
expansion v̂(t,κ) and the actual random variable v(t,κ).
In order to tackle this problem, we derive a worst-case
bound on the approximation error between the obtained PCE
and the variable to be estimated, in the framework of Set
Membership (SM) function identification theory. The validity
of this bound is illustrated through an example related to a
nonlinear electric circuit.

II. PROBLEM SETTINGS

A. Notation and basic definitions

Let (Ω,F , P ) be a probability space, where Ω is the set
of elementary events, F is the σ−algebra of the events and
P is the probability measure. The expectation (or first-order
moment) of a given random variable κ : Ω → K ⊆ R is de-
noted as E [κ]

.
=
∫
Ω
κ(ω)dP (ω) =

∫
K κdFκ, where Fκ(k)

.
=

P{κ < k} is the probability distribution function of κ over
K. The related probability density function (p.d.f.) of κ, if
it exists, is given by dFκ/dk. The variance (or second-order
moment) of κ is indicated as Var(κ) .

= E
[
(κ− E[κ])2

]
=

σ2
κ, where σκ is the standard deviation of κ. The Lp norm

of κ, 0 < p < ∞, is defined as ∥κ∥p
.
= E [|κ(ω)|p]1/p

and the L∞ norm is ∥κ∥∞
.
= ess sup

Ω
|κ(ω)|, where | · |

denotes the absolute value. The Hilbert space L2(Ω,F , P )
is the space of all random variables κ such that ∥κ∥2 < ∞,
and K ⊂ L2(Ω,F , P ) is a subspace that contains only
centered random variables (i.e. E [κ] = 0). The covariance of
two random variables κ1, κ2 is indicated as Cov(κ1, κ2)

.
=

E [(κ1 − E [κ1])(κ2 − E [κ2])], and it defines an inner prod-
uct ⟨κ1, κ2⟩

.
= Cov(κ1, κ2) over K, with ∥κ∥22 = ⟨κ, κ⟩. A

vector of nκ random variables κi, i = 1, . . . , nκ is indicated
as κ = [κ1, . . . , κnκ ]

T , where T is the vector transpose oper-
ation. The nκ-dimensional multi-index of order l, αl

nκ
, is the
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set of all possible vectors of integers αnκ = [α1, . . . , αnκ ]

defined as αl
nκ

.
=

{
αnκ :

nκ∑
i=1

αi = l

}
. Given a basis of

mono-variate polynomials Φ(q)(κ) of degree q = 0, . . . ,∞,
a vector κ of random variables and a vector of indices
αnκ ∈ αl

nκ
, the corresponding multi-variate polynomial

Φαnκ
is defined as Φαnκ

.
=

nκ∏
i=1

Φ(αi)(κi).

B. Polynomial chaos expansions and probabilistic colloca-
tion

Consider a time-invariant system in state-space form:

ẋ(t) = f (x(t), u(t), w(t), θ)
v(t) = h (x(t), u(t), w(t), θ)

(1)

where t ∈ R is the time variable, x(t) ∈ Rnx is the system
state, u(t) ∈ Rnu is a known input, w(t) ∈ Rnw is an
unknown external input, θ ∈ Rnθ is an unknown parameter
vector, finally v(t) ∈ Rnv is a variable of interest. w(t) and
θ are assumed to have stochastic nature, in a sense that will
be better detailed afterwards. The aim of this paper is to
devise a computationally efficient technique to approximate
the first and second order moments and the p.d.f. of v(t) at
a finite number N + 1 of time instants ti, i = 0, . . . , N in
the interval between an initial time t0 = 0 and a finite time
tN = T , starting from (possibly random) initial conditions
x(t0, θ), by using the model (1). We consider the following
assumptions:

Assumption 1: (Stochastic model and input random vari-
ables) The parameter θ and the unknown input w(t), t ∈
[t0, tN ] in (1) can be expressed as functions of a nκ-
dimensional vector κ ∈ Knκ of independent random vari-
ables κi such that κi ∈ K ⊂ L2(Ω,F , P ), i = 1, . . . , nκ, all
with the same probability distribution Fκ, which is known.
The variables κ are named “input random variables”. �

Assumption 2: (Existence and computation of the solu-
tions) It is assumed that functions f : Rnx × Rnu × Rnw ×
Rnθ → Rnx , h : Rnx×Rnu×Rnw×Rnθ → Rnv , the random
variables θ(κ), w(t,κ), t ∈ [t0, tN ] and the time interval
[t0, tN ] are such that a solution of the dynamical equations
(1) exists, it is finite and unique for any admissible value of
κ, and it can be numerically or analytically computed. �

Clearly, under Assumptions 1-2, at each time instant
ti, i = 0, . . . , N , each one of the variables of interest
vj(ti), j = 1, . . . , nv is a random variable vj(ti,κ). We
consider also the following assumption:

Assumption 3: (Finiteness of variance of v(ti,κ)) The
model equations (1) are such that, for all of the considered
time instants t0, . . . , tN , each one of the variables of interest
has finite variance:

vj(ti,κ) ∈ L2(Ω,F , P ), ∀j = 1, . . . , nv, ∀i = 0, . . . , N (2)

�

Assumptions 1-3 are typically satisfied in practical applica-
tions.
The problem of simulating a stochastic system may be
very complex and the main technique employed so far in
engineering applications is the well-known Monte Carlo
(MC) approach. MC simulations are used for many problems,
however the required computational times may be prohibitive
in some cases, e.g. when the system’s model is complex and
its simulation requires a significant amount of time. Poly-
nomial Chaos Expansion techniques (see e.g. [1],[2],[3],[5])
are able to significantly reduce such a computational load,
by replacing the simulation of the dynamical model with the
evaluation of a static function. For a given random variable
κ ∈ K ⊂ L2(Ω,F , P ), with probability distribution Fκ,
consider a set of multi-variate polynomials Φαnκ

(κ), which
are orthogonal with respect to the inner product in K, i.e.
for any two vectors of indices αnκ,k, αnκ,j it holds:

⟨Φαnκ,k
,Φαnκ,j ⟩ = E

[
Φ2

αnκ,k

]
δkj , (3)

where δkj = 1 if k = j and 0 in any other case. For a given
vector of indices αnκ,k

.
= [αk,1, . . . αk,nκ ]

T , the correspond-
ing orthogonal multi-variate polynomial Φαnκ,k

(κ) can be
constructed, as recalled in Section II-A, by starting from a
basis of mono-variate polynomials Φ(q)(κ), Φ(q) : R → R
of degree q = 0, . . . ,∞. Now, let Assumptions 1-3 hold, and
consider a random variable vj(ti,κ) ∈ R, which is a function
of the underlying vector κ of input random variables. Then,
we have that [2]:

vj(ti,κ) =

∞∑
k=0

aj,i,kΦαnκ,k
(κ). (4)

In (4), all of the multi-variate polynomials computed by
considering ∀αnκ ∈ αl

nκ
, ∀l ∈ N are used. The series (4)

has been shown to converge exponentially as the order l of
the polynomial basis increases [3]. For practical reasons, the
series is truncated by tolerating some approximation error:

v̂j(ti,κ)
.
=

L−1∑
k=0

aj,i,kΦαnκ,k
(κ) = aT

j,iΦ(κ), (5)

where aj,i = [aj,i,0, . . . , aj,i,L−1]
T and Φ(κ) =

[Φαnκ,0(κ), . . . ,Φαnκ,L−1(κ)]
T are, respectively, the vec-

tors of the PCE’s coefficients and of the bases computed at κ.
The function v̂j(ti,κ) ≈ vj(ti,κ) is the PCE of the variable
vj(ti,κ). For given number nκ of input random variables
and given maximal order l of the multi-variate polynomials,
the total number L of terms is computed as:

L =
(nκ + l)!

nκ! l!
(6)

An example of the multi-variate polynomials corresponding
to l = 2, nκ = 3 is shown in Table I. It can be clearly
noted that the number of terms in the series (5) grows
rapidly with nκ and l. The term polynomial chaos for the
expansion (4) was introduced in [1], where κ was assumed
to be Gaussian and the corresponding polynomials are the
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TABLE I
EXAMPLE OF MULTI-VARIATE POLYNOMIALS USED IN POLYNOMIAL

CHAOS, CORRESPONDING TO l = 2, nκ = 3.

Order Multi-index Multi-variate Polynomial
0 αnκ,0 = [0, 0, 0] Φαnκ,0 (κ) = 1

1 αnκ,1 = [1, 0, 0] Φαnκ,1 (κ) = Φ(1)(κ1)

1 αnκ,2 = [0, 1, 0] Φαnκ,2 (κ) = Φ(1)(κ2)

1 αnκ,3 = [0, 0, 1] Φαnκ,3 (κ) = Φ(1)(κ3)

2 αnκ,4 = [2, 0, 0] Φαnκ,4 (κ) = Φ(2)(κ1)

2 αnκ,5 = [0, 2, 0] Φαnκ,5 (κ) = Φ(2)(κ2)

2 αnκ,6 = [0, 0, 2] Φαnκ,6 (κ) = Φ(2)(κ3)

2 αnκ,7 = [1, 1, 0] Φαnκ,7 (κ) = Φ(1)(κ1)Φ(1)(κ2)

2 αnκ,8 = [1, 0, 1] Φαnκ,8 (κ) = Φ(1)(κ1)Φ(1)(κ3)

2 αnκ,9 = [0, 1, 1] Φαnκ,9 (κ) = Φ(1)(κ2)Φ(1)(κ3)

Hermite ones. Generalization to other types of continuous
and discrete distributions can be achieved via the Askey
scheme [5], leading to the so-called generalized polynomial
chaos. Table II shows the suitable orthogonal polynomials
for different kinds of input random variables. By applying

TABLE II
ORTHOGONAL POLYNOMIALS FOR DIFFERENT KINDS OF PROBABILITY

MEASURE.

Random variable Polynomial basis
Gaussian Hermite
Uniform Legendre
Gamma Laguerre
Beta Jacobi

the orthogonality property (3), it is easy to show that the first
and second order moments of the random variable v̂j(ti,κ)
can be computed directly from the coefficients of its PCE,
as follows:

E [v̂j(ti,κ)] = aj,i,0 (7)

Var (v̂j(ti,κ)) =
L−1∑
k=1

a2j,i,kE
[
Φαnκ,k

(κ)2
]

(8)

where aj,i,0 is the coefficient of the polynomial of order
l = 0 (i.e. Φαnκ,0

= 1) in the PCE. Indeed, if the
approximation error vj(ti,κ)− v̂j(ti,κ) is small, equations
(7)-(8) provide an estimate of the first and second order
moments of vj(ti,κ) with small error, too. Moreover, a
Monte Carlo approach can be used to estimate the p.d.f. of
v̂j(ti,κ) (and, hence, of vj(ti,κ)) once the coefficients of
its PCE are known, according to the following algorithm:

Algorithm 1: (Polynomial Chaos Monte Carlo simula-
tions)

1) extract M samples κ̃(r), r = 1, . . . ,M of κ;
2) for each sample, compute the corresponding values

of v̂j(ti,κ(r)), i = 0, . . . , N, j = 1, . . . , nv, r =
1, . . . ,M by evaluating the PCEs (5);

3) analyze the statistics of the collected data.
�

A critical point in the use of PCE for the simulation
of stochastic systems is the computation of the expansion’s

coefficients. A possible approach is known as Probabilistic
Collocation Method (PCM, see e.g. [4]) and it basically
relies on the identification of the PCEs’ coefficients from a
finite number of simulation data. In this paper, we consider
the PCM for the computation of the PCEs’ coefficients,
since it appears to be a viable approach for large-scale,
complex dynamical systems, and we focus our attention on
the particular issue of the evaluation of the accuracy of the
PCEs v̂j(ti,κ) (5) with respect to the actual (unknown)
functions vj(ti,κ). In the next Section, in order to cope
with this problem, we consider a least-square approach to
identify the PCEs’ parameters, and we present a procedure
to derive a guaranteed worst case bound on the error between
each one of functions vj(ti,κ) and the corresponding PCE.
Such an accuracy bound is derived in the framework of Set
Membership function identification theory.

III. A BOUND ON THE GUARANTEED ACCURACY OF
POLYNOMIAL CHAOS EXPANSIONS

A. Identification algorithm

The algorithm we consider to identify the PCEs’
coefficients is:

Algorithm 2: (PCE identification via least-squares)
1) select a finite number ν of values of the input random

variables κ̃(r), r = 1, . . . , ν;
2) carry out ν simulations of the system (1), each one

corresponding to one of the selected samples κ̃(r);
3) collect the obtained values of the variables of in-

terest, indicated as vj(ti, κ̃(r)), j = 1, . . . , nv, i =
0, . . . , N, r = 1, . . . , ν;

4) for each one of the variables of interest vj(ti,κ),
select a (high) maximal order l for the respective PCE
v̂j(ti,κ) (5) and compute the corresponding values of
Φ(κ̃(r)), r = 1, . . . , ν. Then, solve the following least-
squares problem to compute the coefficients a∗

j,i of
v̂j(ti,κ): (

a∗
j,i, µ

∗
j,i

)
= arg min

a∈RL, µ∈R
µ (9a)

subject to(
ν∑

r=1

∣∣vj(ti, κ̃(r))− aTΦ(κ̃(r))
∣∣2)− µ ≤ 0 (9b)

�
We denote with v̂∗j (ti,κ) the PCE obtained by using the
optimal coefficients a∗

j,i computed at step 4) of Algorithm
2.

Remark 1: The choice of the values κ̃(r) in step 1) of
Algorithm 2 is an important aspect. Typically, the value
κ = E[κ] should be included among the chosen values of
κ̃(r). As regards the other ν − 1 values, good choices are
a uniform gridding in a bounded subset of the support of
κ̃, in which κ lies with reasonably high probability (e.g.
the interval ±3σ in the case of centered Gaussian input
variable κ̃), or also sampling of κ̃ according to its probability
measure. �
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B. Analysis of PCEs’ accuracy: a Set Membership approach

The issue of evaluating the accuracy achieved by an
approximating function v̂∗j (ti,κ) ≈ vj(ti,κ) is clearly of
high importance. Indeed, Algorithm 2 guarantees that the
error between the PCE v̂∗j (ti, ·) and the actual value of
vj(ti, ·) is bounded by some finite quantity when the data
κ̃(r) used for the identification procedure are considered, but
it does not give by itself any guarantee on the accuracy for
all possible values of κ (i.e. the value µ∗

j,i is just a lower
bound of the largest approximation error that can occur).
Here, we propose a worst-case accuracy analysis, based on
SM identification theory, which allows us to estimate a worst-
case bound ζj,i, j = 1, . . . , nv, i = 0, . . . , N on the error
∆∗

j (ti,κ), defined as:

∆∗
j (ti,κ)

.
= vj(ti,κ)− v̂∗j (ti,κ). (10)

Thus, we look for a (possibly tight) bound ζj,i such that:∣∣∆∗
j (ti,κ)

∣∣ ≤ ζj,i,∀κ.

In order to derive a finite value for the bound ζj,i, we
restrict our analysis to values of κ belonging to a compact
set K ⊂ Rnκ . If κ already lies in a bounded or compact
set (e.g. for uniformly distributed variables in the interval
[−1, 1]), then such a set can be considered as the set K. If κ
belongs to an unbounded domain (e.g. if its components κi

are centered Gaussian random variables), then the set K can
be chosen as an arbitrarily large compact set, leaving out
values of κ that can occur with arbitrarily low probability.
Furthermore, let us consider the following assumption:

Assumption 4: For each value of j = 1, . . . , nv and for
each ti, i = 0, . . . , N , the function vj(ti,κ) is Lipschitz
continuous over K. �

The SM accuracy analysis is based on the prior information
on the unknown function vj(ti,κ), which include the
knowledge of the exact values of vj(ti, κ̃(r)), used in
Algorithm 2 to identify the coefficients of the PCE
v̂∗j (ti,κ), as well as some knowledge on the approximation
error ∆∗

j (ti,κ). In particular, the following Proposition
establishes the regularity properties of ∆∗

j (ti,κ):

Proposition 1: (Lipschitz continuity of the error function)
Let Assumptions 2 and 4 hold. Then for each value of j =
1, . . . , nv and for each ti, i = 0, . . . , N , the approximation
error function ∆∗

j (ti,κ) (10) belongs to the set Aj,i of
Lipschitz continuous functions over K, with constant Lj,i:

∆∗
j (ti,κ) ∈ Aj,i

.
= {∆(κ) : |∆(κ(1))−∆(κ(2))| ≤ Lj,i∥κ(1) − κ(2)∥2,

∀κ(1),κ(2) ∈ K}
(11)

Proof: Due to Assumptions 2 and 4, function vj(ti,κ)
is finite and Lipschitz continuous over K. The PCE v̂∗j (ti,κ),
being a sum of polynomials, is finite, continuous and differ-
entiable over the compact K. Thus, function ∆∗

j (ti,κ) (10) is

finite and continuous over the compact set K, hence Lipschitz
continuous over K.

The Euclidean norm ∥ · ∥2 has been used in (11) without
loss of generality, since the Lipschitz condition holds for any
norm, with a suitable finite Lipschitz constant. The Lipschitz
constant Lj,i can be estimated from data as:

L̂j,i = min{L : |∆∗
j (ti, κ̃(a))−∆∗

j (ti, κ̃(b)))| ≤
L∥κ̃(a) − κ̃(b)∥2, ∀a, b ∈ [1, ν]}

It can be easily shown that lim
ν→∞

L̂j,i = Lj,i (see e.g.
Theorem 1 in [6]).
By collecting the information given by (11) and by the
available values of ∆∗

j (ti, κ̃(r)), r = 1, . . . , ν, we can define
the Feasible Function Set for the j-th component of v(t) at
time ti:

FFSj,i
.
= {ṽj(ti,κ) : ṽj(ti,κ) = v̂∗j (ti,κ) + ∆j(ti,κ),

∆j(ti,κ) ∈ Aj,i,∆j(ti, κ̃(r)) = ∆∗
j (ti, κ̃(r)), ∀r ∈ [1, ν]}

(12)
In practice, FFSj,i is the set of all functions ṽj(ti,κ)
consistent with the available prior information and data
related to vj(ti,κ). Such a prior information is considered
validated if at least an estimate consistent with it exists, i.e.
if FFSj,i is not empty, see also [7]. The following result
shows that, by using Algorithm 2, the set FFSj,i is always
non-empty.

Proposition 2: (Non-emptiness of the FFS) Let Assump-
tions 2 and 4 hold, let Algorithm 2 be used and let a∗

j,i, µ
∗
j,i

be a solution to problem (9). Then, FFSj,i ̸= ∅. �
Proof: The least-square problem (9) is obviously al-

ways feasible, meaning that there is always a coefficient
vector a∗

j,i defining the resulting optimal PCE v̂∗j (ti,κ).
Then, by construction the exact function vj(ti,κ) is equal
to v̂∗j (ti,κ) + ∆∗

j (ti,κ) and, according to Proposition 1,
∆∗

j (ti,κ) belongs to Aj,i, moreover its values at the points
κ̃(r) are equal to ∆∗

j (ti, κ̃(r)), r = 1, . . . , ν. Thus, the
unknown function vj(ti,κ) belongs to FFSj,i, which results
to be non-empty.

Now, thanks to the fact that vj(ti,κ) belongs to FFSj,i, an
expression for the bound ζj,i can be obtained. Let us define
the following functions:

∆j,i (κ)
.
= min

r=1,...,ν

(
∆∗

j (ti, κ̃(r)) + Lj,i∥κ− κ̃(r)∥2
)

∆j,i (κ)
.
= max

k=1,...,ν

(
∆∗

j (ti, κ̃(r))− Lj,i∥κ− κ̃(r)∥2
) .

(13)
which have been shown to be tightest upper and lower
bounds, respectively, of the absolute value of the error
∆∗

j (ti,κ) (see e.g. [8]). Then, the following result hold.
Theorem 1: Let Assumptions 1-4 hold, let Algorithm 2 be

used and let a∗
j,i, µ

∗
j,i be a solution to problem (9). Then,
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the approximation error of the resulting PCE is bounded as:

∀κ ∈ K, ∀j ∈ [1, nv], ∀i ∈ [0, N ]
|∆∗

j (ti,κ)| ≤ ζj,i
ζj,i

.
= sup

κ∈K
max{

∣∣∆j,i (κ)
∣∣ , ∣∣∆j,i (κ)

∣∣}. (14)

Proof: See [9].

The bound ζj,i given by (14) can be numerically estimated
to have an indication on the worst-case error between the
PCE v̂∗j (ti,κ) and the exact function vj(ti,κ) (see [10]).

Remark 2: We considered a least-squares approach to
identify the PCEs’ coefficients just for simplicity. The Set
Membership procedure to compute the guaranteed accuracy
bounds is general and it does not depend on how the
coefficients have been derived. The use of more sophisticated
ways to derive the PCEs’ coefficients is actually part of future
research. �

IV. SIMULATION EXAMPLE

We consider an electric LRC circuit, and we are interested
in simulating the courses of the output voltage vC(t) and
of the current iL(t) when a step input voltage u(t) =
5 10−3 V is applied to the circuit, starting from the initial
conditions vC(0) = iL(0) = 0, i.e. v(t) = [v1(t), v2(t)]

T =
[iL(t), vC(t)]

T . The time instants ti, i = 0, . . . , 99 are
chosen as ti = i Ts s, where Ts = 1.21 10−4 s. The system
equations are

i̇L(t) = − 1

L
vC(t)−

R

L
iL(t) +

1

L
u(t)

v̇C(t) =
1

C
iL(t).

(15)

The resistance R is assumed to be a random variable
R = R0(1 + 0.3κ1), where R0 = 3.5Ω and κ1 is a
random variable with uniform distribution over [−1, 1]. The
inductance L and the capacitance C are nonlinear functions
of the current iL(t) and voltage vC(t), respectively:

L(iL(t)) = 0.5L (1 + exp(a1 iL(t)
2))

C(vC(t)) = 0.5C (1 + exp(a2 vC(t)
2)),

where a1 = −0.5 108, a2 = −0.5 106. Moreover, the
maximal values L and C, achieved when vC(t) = iL(t) = 0,
are equal to L = L0(1+0.2κ2), C = C0(1+0.2κ3), where
κ2, κ3 are also random variables with uniform distribution
over [−1, 1]. κ1, κ2, κ3 are assumed to be independent.
Clearly, the input random variable is κ = [κ1, κ2, κ3]

T . Ac-
cording to Table II, the PCE is carried out by using Legendre
polynomial. Algorithm 2 has been applied to identify a PCE
for the values of vC(ti,κ) and iL(ti,κ) at all the considered
time instants. The values of κ̃(r) have been chosen by
extracting eight values for each random variable over the
interval [−1, 1] according to their probability measure (i.e.
uniform) and taking all possible combinations, thus resulting
in ν = 512 total values. A maximal order l = 5 has been
chosen in step 4) of Algorithm 2 for all of the variables of
interest, thus resulting in L = 56 maximal number of terms
in the expansions. The obtained PCEs v̂∗1(ti,κ) ≈ iL(ti,κ)
and v̂∗2(ti,κ) ≈ vC(ti,κ) result to be very accurate, as it is

shown for example in Fig. 1, where the first-order moments
E[v̂∗1(ti,κ)], computed according to (7) (i.e. by simply
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Fig. 1. Simulation example. Mean values at t = ti, i = 0, . . . , 99 of the
current iL(t), obtained either with MC simulations of the model (dashed line
with ’◦’) or with the coefficients of the term of degree 0 in their respective
PCEs v̂∗1(ti,κ) (solid line with ’∗’).
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Fig. 2. Simulation example. Variances at t = ti, i = 0, . . . , 99 of the
current iL(t), obtained either with MC simulations of the model (dashed
line with ’◦’) or on the basis of the coefficients of the PCEs v̂∗1(ti,κ) (solid
line with ’∗’).

taking, for each ti, the coefficients of the polynomial of
degree 0 in the PCEs) are compared with the first-order
moments computed numerically by averaging over 27000
MC simulations of the model (15). It can be noted that an
almost perfect matching exists between the two estimates at
all of the considered time instants.
A similar good accuracy is achieved with the second order
moments (see Fig. 2), again computed either with the rela-
tionship (8) or with MC simulations of the system model.
Fig. 3 shows the comparison between the p.d.f. of the
voltage vC(t21,κ) computed with 27000 MC simulations
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Fig. 3. Simulation example. Comparison between the p.d.f. of variable
vC(t21,κ) either with 27000 MC simulation with the system model (left)
or with 27000 MC evaluations of the PCE v̂∗2(t21,κ) (right).

by using either the dynamical model (15) or the related
PCE v̂∗2(t21,κ). It can be seen that, also for the p.d.f., a
good matching is achieved (and the same results have been
obtained for all of the considered variables of interest at all
time instants), however while the MC simulations with the
model equations require about 377 s, the MC simulations
with PCE take only 2.7 s (both on a Intelr CoreTM 2 Duo
processor with 4 GB RAM and MatLabr 2009).
Finally, the guaranteed error bound ζ1,9 has been evaluated,
as an example, for the variable v̂∗1(t9,κ) ≈ iL(t9,κ). In
particular, a value µ∗

1,9 = 4.08 10−6 is obtained and a
Lipschitz constant L1,9 = 2.2 10−5 has been estimated from
data. The resulting estimate of ζ1,9 (14), computed with a
dense uniform gridding over K = [−1, 1]× [−1, 1]× [−1, 1],
is equal to 1.55 10−5. Fig. 4 depicts the errors ∆∗

1(t9,κ) (10)

Fig. 4. Simulation example. Approximation errors ∆∗
1(t9,κ) (’∗’) and

worst-case bounds ±ζ2,9 (dashed lines).

obtained in the performed 27000 MC simulations together
with the obtained bound ±ζ1,9, which result to be quite tight.

V. CONCLUSIONS

In this paper, we considered a least-squares approach to
indentify the coefficients of Polynomial Chaos Expansions

(PCEs), starting from a finite number of simulation data. We
carried out an analysis of the worst-case error between the
PCEs and the corresponding random variables of interest,
resulting in guaranteed error bounds that can be used to
evaluate the accuracy of the obtained PCE. The features
of the proposed approach have been shown on an example
concerning a nonlinear electric circuit.

REFERENCES

[1] N. Wiener, “The homogeneous chaos,” American Journal of Mathe-
matics, vol. 60, pp. 897–936, 1938.

[2] R. Cameron and W. Martin, “The orthogonal development of non-
linear functionals in series of fourier-hermite functionals,” Annals of
Mathematics, vol. 48, pp. 385–392, 1947.

[3] R. Ghanem and P. Spanos, Stochastic finite elements - A spectral
approach. Springer, 1991.

[4] Z. N. Nagy and R. Braatz, “Distributional uncertainty analysis using
polynomial chaos expansions,” in Multi-conference on Systems and
Control, Jokohama, Japan, 2010, pp. 1103–1108.

[5] D. Xiu and G. E. Karniadakis, “The wiener-askey polynomial chaos
for stochastic differential equations,” SIAM Journal of Scientific Com-
putation, vol. 24, pp. 619–644, 2002.

[6] M. Canale, L. Fagiano, and M. Milanese, “Set Membership ap-
proximation theory for fast implementation of model predictive
control laws,” Automatica, vol. 45, no. 1, pp. 45–54, 2009, doi:
10.1016/j.automatica.2008.06.015.

[7] M. Milanese and C. Novara, “Set Membership identification of non-
linear systems,” Automatica, vol. 40, pp. 957–975, 2004.

[8] M. Canale, L. Fagiano, and M. Milanese, “Efficient model predictive
control for nonlinear systems via function approximation techniques,”
IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1911–
1916, 2010, doi: 10.1109/TAC.2010.2049776.

[9] L. Fagiano, M. Khammash, and C. Novara, “On the guaranteed
accuracy of polynomial chaos expansions,” Politecnico
di Torino - UC Santa Barbara, Tech. Rep., September
2011, technical report # TR_FaKaNo_05092011. Available:
http://lorenzofagiano.altervista.org/docs/FaKaNo_TR_05092011.pdf.

[10] M. Milanese and C. Novara, “Computation of local radius of infor-
mation in SM–IBC identification of nonlinear systems,” Journal of
Complexity, vol. 4, no. 6, pp. 937–951, August 2007.

733


