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Abstract— In this paper, we propose an extension of the
invariance principle for switched systems under dwell-time
switched solutions. Our approach allows the derivative of an
auxiliary function V along the solutions of the switched system
to be positive on some bounded sets. The auxiliary function
V , which plays the role of a Lyapunov function, is called a
Lyapunov-like function in this paper. Our results are useful to
estimate attractors of switched systems and basins of attraction.
Results for a common Lyapunov-like function and multiple
Lyapunov-like functions are given. Illustrative examples show
the potential of the theoretical results in providing concrete
information on the asymptotic behavior of nonlinear dynamical
switched systems.

I. INTRODUCTION

There has been an increasing interest in studying dynamics

of switched systems. Switched systems arise in practice when

modeling the operation of many engineering systems [1]–[4].

The existence of a common Lyapunov function is a sufficient

condition for asymptotic stability of equilibrium of switched

systems under arbitrary switching [5]. However, a common

Lyapunov function may be difficult to find or may not exist.

To overcome this difficulty, a multiple Lyapunov function

approach has been considered (see for example [6]). On the

other hand, the attractor of many switched systems is not

an equilibrium. A classical example is the on-off control of

temperature. For this class of problems we are not interested

in studying the stability of a particular equilibrium but the

asymptotic behavior of solutions.

LaSalle’s invariance principle [7] is useful to analyze the

asymptotic behavior of dynamical system solutions. Vari-

ous extensions of LaSalle’s invariance principle have been

proposed. An extension of LaSalle’s invariance principle,

which allows the derivative of a Lyapunov-like function to be

positive on some bounded sets, was proposed for continuous

systems in [8], for discrete systems in [9] and for delayed

systems in [10]. These results were applied to the problem

of synchronization [8] and to obtain estimates of attractors

of uncertain dynamical systems [11].

Various invariance principles for switched systems have

been proposed [12], [13], [14], [15]. A version of the

invariance principle is given in [13] for dwell-time switched
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systems composed of a finite number of continuous nonlinear

vector fields.

We propose an extension of the results of [8] for switched

systems that is also an extension of the invariance principle

for switched systems given in [13]. The advantage of this

extension is that the derivative of the Lyapunov-like function

along the solutions of the switched system can be positive on

some bounded sets. Also, the assumptions on the Lyapunov-

like function along the solution are less restrictive than those

in [13].

II. PRELIMINARIES

In this paper, we consider the following class of

continuous-time switched systems

ẋ(t) = fσ(t)(x(t)), x(0) = x0, (1)

where σ(t) : [0,∞) → P = {1, 2, ..., N} is a piecewise con-

stant function, continuous from the right, called a switching

signal and fσ(x) is a smooth vector field of Rn. Let {τk} be a

sequence of consecutive switching times associated to σ and

Ip = {t ∈ [τk, τk+1) : σ(τk) = p} be the union of intervals

where system p is active. A continuous piecewise-smooth

function xσ(t)(t) : [0,∞) → R
n is a solution of the switched

system (1) if xσ(t)(t) satisfies ẋσ(t)(t) = fp(xσ(t)(t)) for

every t ∈ Ip for all p ∈ P . We assume that the switching

sequence τk is divergent and, without loss of generality, that

each system p is active infinite times. In other words, we

assume for every T > 0 and p ∈ P the existence of a k
such that σ(τk) = p and τk > T . The set of all switched

solutions will be denoted by S. We denote ϕσ(t)(t, x0), or

simply ϕ(t, x0), the solution of (1) starting at xo at time

t = 0 under the switching signal σ(t).
The following definitions were taken from [13] (see also

[16] and [5]).

Definition 1: The solution ϕ(t, x0) ∈ S of (1) has a non

vanishing dwell time if there exists h > 0 such that

inf
k
(τk+1 − τk) ≥ h. (2)

where {τk} is the sequence of switching times associated

with ϕ(t, x0). The number h is called a dwell time for

ϕ(t, x0) and the set of all switched solutions possessing a

nonvanishing dwell time is denoted by Sdwell ⊂ S.

Definition 2: Let U be an open subset of R
n containing

the origin. We say that V : U → [0,+∞) is a common weak

Lyapunov function for (1) if it is a smooth function, positive

definite, and the following holds

∇V (x)fp(x) ≤ 0 (3)
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for each x ∈ U and each p ∈ P .

Definition 3: A compact set M is weakly invariant with

respect to the switched system (1) if for each x0 ∈ M there

exist an index p ∈ P , a solution ϕ(t, x0) of the vector field

fp(x) and a real number b > 0 such that ϕ(t, x0) ∈ M for

either t ∈ [−b, 0] or t ∈ [0, b].
Definition 4: A switched solution ϕ(t, x0) of (1) is at-

tracted to a compact set M if for each ǫ > 0 there exists a

time T > 0 such that for each t ≥ T one has

ϕ(t, x0) ∈ B(M, ǫ) (4)

where B(M, ǫ) = ∪a∈MB(a, ǫ). Clearly ϕ(t, x0) is at-

tracted to M if and only if

lim
t→∞

dist(ϕ(t, x0),M) = 0. (5)

Definition 5: Let ϕ(t, x0) : [0,∞) × R
n → R

n be a

continuous curve. A point p is a limit point of ϕ(t, x0) if

there exists a sequence {tk}k∈N ,with tk → ∞, as k → ∞
such that limk→∞ ϕ(tk, x0) = p. The set of all limit points of

ϕ(t, x0) will be denoted by ω+(x0). If ϕ(t, x0) is bounded,

ω+(x0) is nonempty and compact (see [17]).

Proposition 1: Let ϕ(t, x0) ∈ Sdwell be a bounded

switched solution of (1) for t ≥ 0. Then, ω+(x0) is weakly

invariant.

Proof: See [13].

The following results are the basis for the development of

the extension of the invariance principle for switched systems

proposed here. Next theorem is an invariance principle for

switched systems.

Theorem 1: [13] Let V : U → [0,+∞) be a weak

common Lyapunov function for (1), with fp(0) = 0. Let

ℓ > 0 and Ωℓ be a connected component of the level set

{x ∈ U : V (x) ≤ ℓ} such that 0 ∈ Ωℓ. Suppose that Ωℓ is

bounded and Ep = {x ∈ U : ∇V (x)fp(x(t)) = 0}. Finally,

let M be the union of all the weakly invariant sets which are

contained in ∪Ep∩Ωℓ. Then every solution ϕ(t, x) ∈ Sdwell

starting in Ωℓ is attracted to M.

Next theorem is an extension of LaSalle’s invariance

principle for continuous systems, which allows the derivative

of the Lyapunov-like function V be positive in some bounded

sets.

Theorem 2: [8] Let V : Rn → R be a C1-function and

f : Rn → R
n a smooth vector field. Let Z = {x ∈ R

n :
∇V (x)f(x) > 0}. Suppose ℓ = supx∈Z V (x) and that Ωℓ =
{x ∈ R

n : V (x) ≤ ℓ} is bounded. Let M be the largest

invariant set contained in {x ∈ R
n : ∇V (x)f(x) = 0}∪Ωℓ.

Then, every solution, ϕ(t, x0), of ẋ = f(x) that is bounded

for t ≥ 0 is attracted to the invariant set M. Moreover, if

x0 ∈ Ωℓ, then ϕ(t, x0) is defined for every t ≥ 0, ϕ(t, x0) ∈
Ωℓ for every t ≥ 0 and ϕ(t, x0) is attracted to the largest

invariant set contained in Ωℓ.

III. MAIN RESULTS

In this section, extensions of the invariance principle for

switched systems will be developed. The main feature of

these extensions is that the derivative of the Lyapunov-like

function V can be positive on bounded sets. By relaxing the

signs of the derivatives of the Lyapunov-like function V on

some bounded set, it becomes easier to find V satisfying

the assumptions of these extensions. As a consequence, the

asymptotic behavior of a larger class of switched dynamical

systems can be studied with this theory.

Two extensions of the invariance principle are developed in

this paper. One considers a common Lyapunov-like function

for all subsystems and another considers multiple Lyapunov-

like functions.

A. Common Lyapunov-Like Function

In this subsection, we consider the existence of a single

Lyapunov-like function V for all subsystems of the switched

system (1). Let Cp = {x ∈ R
n : ∇V (x)fp(x) > 0} be the

set where the derivative of function V along trajectories of

system p is positive and Ep = {x ∈ Rn : ∇V (x)fp(x) = 0}.

Theorem 3: Consider the switched system (1) and let

V (x) : R
n → R be a smooth function. Suppose that

ℓ = supx∈∪Cp
V (x) < ∞ and Ωℓ = {x ∈ R

n : V (x) ≤ ℓ} is

bounded. Finally, let M be the union of all weakly invariant

sets that are contained in ∪Ep ∪Ωℓ. Then,

(i) If x0 ∈ Ωℓ and ϕ(t, x0) ∈ Sdwell, then ϕ(t, xo) ∈ Ωℓ

for all t ≥ 0 and ϕ(t, xo) is attracted to the largest weakly

invariant set contained in Ωℓ.

(ii) Every bounded solution ϕ(t, x0) ∈ Sdwell is attracted to

M.

Proof: (i): Let x0 ∈ Ωℓ. Suppose there exists τ > 0
such that ϕ(τ, x0) /∈ Ωℓ. Then, there exist τ̄ ∈ (0, τ) such

that V (ϕ(τ̄ , x0)) = ℓ (by continuity of V and ϕ(t, xo)) and

V (ϕ(t, x0)) > ℓ, ∀t ∈ (τ̄ , τ ], but this is a contradiction, since

∇V (x)fp(x(t)) ≤ 0 out of Ωℓ ⊃ ∪Cp, ∀p ∈ P . Therefore,

ϕ(t, x0) ∈ Ωℓ, ∀t ≥ 0. Hence ω+(x0) 6= ∅ is compact and

ω+(x0) ⊂ Ωℓ. Moreover, ϕ(t, x0) tends to ω+(x0), as t →
∞. Since ω+(x0) is a weakly invariant set, then the solution

is attracted to the largest weakly invariant set of Ωℓ.

(ii): Let x0 /∈ Ωℓ. If ϕ(t, x0) ∈ Sdwell enters Ωℓ at

some t, then the result follows from the first part of this

proof. Suppose the bounded solution ϕ(t, x0) /∈ Ωℓ, ∀t ≥ 0.

We have V (ϕ(t, x0)) > ℓ and ∇V (ϕ(t, x0))fp(ϕ(t, x0)) ≤
0, ∀t ≥ 0, ∀p ∈ P . Since ℓ = supx∈∪Cp

V (x), ϕ(t, x0) /∈
∪Cp ⊂ Ωℓ, ∀t ≥ 0. We conclude that V (ϕ(t, x0)) is a

bounded non-increasing function of t. Then, there exists

L ∈ R such that L = limt→∞ V (ϕ(t, x0)).

Since the solution is bounded, ω+(x0) 6= ∅. Let a ∈
ω+(x0), then ∃{tk} with tk → ∞ as k → ∞ such

that ϕ(tk, x0) → a. The continuity of V ensures that

V (ϕ(tk, x0)) → V (a) as k → ∞, then V (a) = L, ∀a ∈
ω+(x0).

By Proposition 1, ω+(x0) is a weakly invariant set, thus

there exists an interval [α, β] containing the origin and a

function υ(t) such that υ(0) = a, υ(t) ∈ ω+(x0), ∀t ∈
[α, β] and ∃j ∈ P such that υ̇(t) = fj(υ(t)), ∀t ∈
[α, β]. Then, V (υ(t)) = V (a) = L, ∀t ∈ [α, β] and

∇V (υ(t))fj(υ(t)) = 0 ∀t ∈ [α, β]. Particularly, for t = 0
we have ∇V (υ(0))fj(υ(0)) = ∇V (a)fj(a) = 0. Hence

a ∈ ∪Ep. Then ω+(x0) ⊂ ∪Ep. Since ω+(x0) is a weakly
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invariant set, the solution is attracted to the largest weakly

invariant set M in ∪Ep ∪ Ωℓ.

Example 1: Consider the switched system (1) with P =
{1, 2} and

f1(x) =

[

x2

−x1 + x2(1 − x2
1 − x2

2)

]

,

f2(x) =

[

x2

−x1 − x2

]

.

Let V (x) = (x2
1 + x2

2)/2. Then C1 = {x ∈
R

2 : x2
1 + x2

2 < 1} \ {x : x2 = 0}, C2 = ∅,

E1 = {x2
1 + x2

2 = 1} ∪ {x : x2 = 0} and E2 = {x ∈
R

2 : x2 = 0}. Therefore, ℓ = supx∈∪Cp
V (x) = 1/2

and Ωℓ = {x ∈ R
2 : x2

1 + x2
2 ≤ 1}. Then, by

Theorem 3, every bounded solution ϕ(t, x0) ∈ Sdwell

is attracted to the largest weakly invariant set of

∪Ep ∪ Ωℓ = {(x ∈ R
2 : x2

1 + x2
2 ≤ 1} ∪ {x : x2 = 0}.

Figure 1 illustrates the time-domain simulation for x0 =
[1 1.2]′ and τk+1 = τk + 1, k = 1, · · · , 50.

B. Multiple Lyapunov-Like Functions

In what follows, we consider the use of multiple

Lyapunov-like functions, that is, we consider the existence

of smooth functions Vp : Rn → R, ∀p ∈ P . Let C = {x ∈
R

n : ∃p ∈ P such that ∇Vp(x)fp(x) > 0} be the

set where the derivative of function Vp along trajectories

of system p is positive and E = {x ∈ R
n : ∃p ∈

P such that ∇Vp(x)fp(x) = 0}.

Assumption 1: There exist continuous functions a, b :
R

n → R satisfying a(x) ≤ infp Vp(x) and b(x) ≥
supp Vp(x) for all x ∈ R

n [11].

Under Assumption 1, we define Ωℓj = {x ∈ R
n : a(x) ≤

ℓj} with ℓ0 = supx∈C b(x) and ℓj = supx∈Ωℓj−1
b(x), j ∈

P . It is clear by construction that

C ⊆ Θ ⊂ Ωℓ0 ⊂ . . . ⊂ Ωℓj ⊂ Ωℓj+1
⊂ . . . ⊂ ΩℓN .

with θ = {x ∈ R
n : b(x) ≤ ℓ0}.

Assumption 2: The set ΩℓN = {x ∈ R
n : a(x) ≤ ℓN} is

bounded.

Assumption 3: For every pair of consecutive switching

times τh < τj such that σ(τh) = σ(τj) = p, the following

holds:

Vp(ϕ(τh, x0)) > Vp(ϕ(τj , x0)) for ϕ(τh, x0) /∈ Θ and

ϕ(τj , x0) /∈ Θ.

Before stating the main result on multiple Lyapunov-like

functions, the following lemma is needed to guarantee that

a switched solution starting in Ωℓj−1
never leaves Ωℓj while

a fixed p ∈ P is active.

Lemma 1: Suppose, ϕ(τk, x0) ∈ Ωℓj−1
at the switching

time τk with σ(τk) = p ∈ P , then ϕ(t, x0) ∈ Ωℓj for all

t ∈ [τk, τk+1).
Proof: Suppose by contradiction the existence of T ∈

[τk, τk+1), such that ϕ(T, x0) /∈ Ωℓj . Then Vp(ϕ(τk, x0)) ≤
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Fig. 1: (a) Switching solution with initial condition x0 =
[1 1.2]′ /∈ Ωℓ for Example 1, (b) corresponding phase portrait

and (c) corresponding V̇ (ϕ(t, x)).

b(ϕ(τk, x0) ≤ ℓj and Vp(ϕ(T, x0)) ≥ a(ϕ(T, x0)) ≥ ℓj ,

which is a contradiction because ∇Vp(x)fp(x) ≤ 0 for x
outside Θ and for all p ∈ P .

Theorem 4: Consider the switched system (1) and let

Vp : Rn → R be a smooth function for all p ∈ P . Under

Assumptions 1 - 3 we have:

(i) For all x0 ∈ Θ and all σ(t) such that ϕ(t, x0) ∈ Sdwell,

ϕ(t, x0) ∈ ΩℓN for t ≥ 0 and is attracted to the largest

weakly invariant set in ΩℓN .

(ii) Every bounded solution of (1) ϕ(t, x0) ∈ Sdwell is

attracted to the largest weakly invariant set of E ∪ΩℓN .

Proof: (i): The proof of part (i) explores the same ideas

of induction on the number N of vector fields used in the

proof of Lemma 2 in [13].

For N = 1, that is, P = {1}, it is straightforward to

show that solutions starting in Θ do not leave Ωℓ0 . Indeed,

let x0 ∈ Θ and suppose the existence of T > 0 such that

ϕ(T, x0) /∈ Ωℓ0 . Then V1(x0) ≤ ℓ0 and V1(ϕ(T, x0)) >
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ℓ0. The continuity ensures that V1(ϕ(t, x0)) must increase

over some subintervals of [0, T ) outside Θ, but this is a

contradiction. Therefore, ϕ(t, x0) ∈ Ωℓ0 , ∀t ≥ 0.

Next we assume (i) holds for N = j − 1 vector fields,

P = {1, · · · , j−1}, that is, if x0 ∈ Θ and ϕ(t, x0) ∈ Sdwell

then ϕ(t, x0) ∈ Ωℓj−1
, for all t ≥ 0.

Now, we show that (i) holds for N = j. Let x0 ∈ Θ.

While the first j − 1 systems are active, the trajectory does

not leave Ωℓj−1
, then at the switching time τk when the

jth system becomes active for the first time, we have that

ϕ(τk, x0) ∈ Ωℓj−1
. Then by Lemma 1, ϕ(t, x0) ∈ Ωℓj for

all t ∈ [τk, τk+1). Moreover, for any τr such that r ≥ k+1,

σ(τr) has to be equal to any of the systems p ∈ P .

Assumption 3 implies that ϕ(τr , x0) has to belong to some

Ωℓi with i ≤ j − 1. Therefore ϕ(t, x0) ∈ Ωℓj for all t ≥ 0.

Hence ϕ(t, x0) ∈ ΩℓN for all t ≥ 0. By assumption

2, ΩℓN is bounded and hence ω+(x0) 6= ∅, compact and

ω+(x0) ⊂ ΩℓN . Since ω+(x0) is a weakly invariant set,

then the solution is attracted to the largest weakly invariant

set in ΩℓN .

(ii) Let x0 /∈ Θ and ϕ(t, x0) ∈ Sdwell be a bounded

solution. If there exists T > 0 such that ϕ(T, x0) ∈ Θ then

the proof follows directly from (i). Now, we suppose that

ϕ(t, x0) /∈ Θ, ∀t ≥ 0. Then, ∇Vp(ϕ(t, x0))fp(ϕ(t, x0)) ≤
0, ∀t ∈ Ip and ∀p ∈ P , since C ⊂ Θ. For all p ∈ P , consider

the subsequence of switching times {τkp
} at which the

system p becomes active, that is, σ(τkp
) = p for all kp. From

assumption 3, we have that the sequence Vp(ϕ(τkp
, x0)) is

a decreasing sequence of real numbers bounded from below.

Then Vp(ϕ(τk, x0)) → Lp as k → +∞.

Since ϕ(t, x0) is bounded then ω+(x0) is nonempty. Let

c ∈ ω+(x0), then there exists a sequence {tj} such that

ϕ(tj , x0) → c as j → ∞. Since the set P is finite, there

exists at least one index p ∈ P and a subsequence {tjk}
such that {tjk} ∈ Ip. Then, Vp(ϕ(tkj

, x0)) → Vp(c) = Lp,

∀c ∈ ω+(x0), for p ∈ P .

By Proposition 1, ω+(x0) is a weakly invariant set, thus

there exist an interval [λ, γ] containing the origin, a function

υ(t) such that υ(0) = c, υ(t) ∈ ω+(x0), ∀t ∈ [λ, γ] and ∃p ∈
P such that υ̇(t) = fp(υ(t)), ∀t ∈ [λ, γ]. We showed that for

p ∈ P , Vp(c) = Lp, ∀c ∈ ω+(x0) thus Vp(υ(t)) = Lp ∀t ∈
[λ, γ], then ∇Vp(υ(t))fp(υ(t)) = 0, ∀t ∈ [λ, γ]. Particularly,

for t = 0, ∇Vp(υ(0))fp(υ(0)) = ∇Vp(c)fp(c) = 0, then

c ∈ E. Therefore ω+(x0) ⊂ E, but ω+(x0) is a weakly

invariant set, then the solution is attracted to the largest

weakly invariant set of ΩℓN ∪ E.

Observation 1: If the switching times are finite then the

proof of Theorem 4 (ii) follows from Theorem 2.

Observation 2: In Theorem 4, if we assume that Vp :
R

n → R is a radially unbounded function for all p ∈ P , that

is, Vp(x) → ∞, as ||x|| → ∞, then every solution ϕ(t, x0)
is bounded for t ≥ 0 and the conclusions of Theorem 4 hold

for any solution ϕ(t, x0) ∈ Sdwell.

Figure 2 illustrates the behavior of the switched solution

inside the sets θ and Ωlj for two initial conditions. In Figure

2, the trajectory ϕ(t, x1) is attracted to the largest weakly

invariant set in E ∪ΩℓN when x1 /∈ Θ and ϕ(t, x1) /∈ Θ for

all t ≥ 0, on the other hand, trajectories are attracted to the

largest weakly invariant set in ΩℓN when x2 ∈ Θ.

Q
W

l0
. . .

E

x1

x
2

D

pV f p(x) > 0

W
lN

(a)

Fig. 2: Geometric interpretation of Theorem 4.

Example 2: Consider the switched system (1) with P =
{1, 2} and

f1(x) =

[

−x1(−1 + x2
1 + x2

2)
−2x2(−1 + x2

1 + x2
2)

]

,

f2(x) =

[

x2

−x1 − x2

]

.

Let V1(x) = 2x2
1 + x2

2 and V2(x) = (x2
1 + x2

2)/2. We have

that C = {x ∈ R
2 : x2

1+x2
2 < 1}\{(0, 0)}; E = {x2

1+x2
2 =

1} ∪ {x ∈ R
2 : x2 = 0} Choose

a(x) = (x2
1 + x2

2)/2

b(x) = 2x2
1 + x2

2;

ℓ0 = sup
x∈C

b(x) = 2;

Ωℓ0 = Ωℓ2 = {x ∈ R
2 : x2

1 + x2
2 ≤ 4};

Θ = {x ∈ R
2 : 2x2

1 + x2
2 ≤ 2};

then, every bounded solution ∈ Sdwell is attracted to the

largest weakly invariant set of E ∪ ΩℓN = {x ∈ R
2 :

x2
1 + x2

2 ≤ 4} ∪ {x ∈ R
2 : x2 = 0}.

Figure 3 illustrates the time-domain simulation for x0 =
[1 1.2]′ and τk+1 = τk + 1, k = 1, · · · , 51.

IV. CONCLUSION

In this paper, a more general version of the invariance

principle for switched systems was presented. Results for a

common and multiple Lyapunov-like functions were given.

The invariant sets of switched systems were obtained with

less restrictive conditions on the Lyapunov-like functions.The

proposed theorems are useful to estimate the basin of attrac-

tion of switched systems.
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