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Abstract— The asymptotic behavior of the stochastic gradient
algorithm with a biased gradient estimator is analyzed. Relying
on arguments based on differential geometry (Yomdin theorem
and Lojasiewicz inequality), relatively tight bounds on the
asymptotic bias of the iterates generated by such an algorithm
are derived. The obtained results hold under mild and verifiable
conditions and cover a broad class of complex stochastic gra-
dient algorithms. Using these results, the asymptotic properties
of the actor-critic reinforcement learning are studied.

Index Terms— Stochastic gradient search, biased gradient
estimation, reinforcement learning.

I. INTRODUCTION

Many problems in automatic control, system identification,
signal processing, machine learning, operations research and
statistics can be posed as a stochastic optimization problem,
i.e., as the minimization (or maximization) of an unknown
objective function whose values are available only through
noisy observations. Such a problem can efficiently be solved
by stochastic gradient search (also known as the stochastic
gradient algorithm). Stochastic gradient search is a proce-
dure of the stochastic approximation type which iteratively
approximates the minima of the objective function using a
statistical or Monte Carlo estimator of the gradient (of the
objective function). Not rarely, the estimator is biased, since
the consistent gradient estimation is often computationally
expensive or not available at all. As a result of the biased
gradient estimation, the stochastic gradient search is biased,
too, i.e., the corresponding algorithm does not converge to
the set of minima, but to its vicinity. In order to interpret
the results produced by such an algorithm and to tune the
algorithm’s parameters (e.g., to achieve a better bias/variance
balance and a better convergence rate), the knowledge about
the asymptotic bias of the algorithm iterates is crucially
needed.

Despite its practical and theoretical importance, the
asymptotic behavior of the stochastic gradient search with
biased gradient estimation (also referred to as the biased
stochastic gradient search) has not attracted much attention
in the literature on stochastic optimization and stochastic
approximation. To the best of the present author’s knowledge,
the asymptotic properties of the biased stochastic gradient
search (and the biased stochastic approximation) have only
been analyzed in [5], [8], [9] and [10]. Although these results
provide a good insight into the asymptotic behavior of the
biased gradient search, they hold under restrictive condi-
tions which are very hard to verify for complex nonlinear
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algorithms. Moreover, unless the objective function is of a
simple form (e.g., convex), none of the results of [5], [8],
[9], [10] offers an explicit bound on the asymptotic bias of
the algorithm iterates.

In this paper, we study the asymptotic behavior of the
biased gradient search. Using arguments based on differential
geometry (Yomdin theorem and Lojasiewicz inequality), we
derive relatively tight bounds on the asymptotic bias of the
algorithm iterates. The obtained results hold under mild
and easily verifiable conditions and cover a broad class
of complex stochastic gradient algorithms. In this paper,
we show how the results can be applied to the asymptotic
analysis of actor-critic reinforcement learning.

The paper is organized as follows. The main results are
presented in Section II, where the stochastic gradient search
with additive noise is analyzed. In Section III, the asymptotic
bias of the stochastic gradient search with Markovian dynam-
ics is studied. In Section IV, the asymptotic bias of actor-
critic reinforcement learning is assessed using the general
results obtained in Sections II and III.

II. MAIN RESULTS

In this section, the asymptotic behavior of the following
algorithm is analyzed:

θn+1 = θn − αn(∇f(θn) + ξn), n ≥ 0. (1)

Here, f : Rdθ → R is a differentiable function, while
{αn}n≥0 is a sequence of positive real numbers. θ0 is
an Rdθ -valued random variable defined on a probability
space (Ω,F , P ), while {ξn}n≥0 is an Rdθ -valued stochastic
process defined on the same probability space. To allow more
generality, we assume that for each n ≥ 0, ξn is a random
function of θ0, . . . , θn. In the area of stochastic optimization,
recursion (1) is known as the stochastic gradient search (or
the stochastic gradient algorithm). The recursion minimizes
function f(·), which is usually referred to as the objective
function. Term ∇f(θn) + ξn is interpreted as a gradient
estimator (i.e., an estimator of ∇f(θn)), while ξn represents
the estimator’s noise (or error). For further details, see [22],
[27] and references given therein.

Throughout the paper, the following notation is used. The
Lebesgue measure is denoted by m(·), while ‖ · ‖ and d(·, ·)
stand for the Euclidean norm and the Euclidean distance
(respectively). S and A are the sets of stationary points and
the critical values of f(·), i.e.,

S = {θ ∈ Rdθ : ∇f(θ) = 0}, A = {f(θ) : θ ∈ S}.

For a compact set Q ⊂ Rdθ and ε ∈ (0,∞), AQ,ε denotes
the set of ε-critical points of f(·) contained in the f -image
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of Q, i.e.,

AQ,ε = {f(θ) : θ ∈ Q, ‖∇f(θ)‖ ≤ ε}.

For t ∈ (0,∞) and n ≥ 0, a(n, t) is the integer defined as

a(n, t) = min

{
k ≥ n :

k∑
i=n

αi > t

}
.

The algorithm (1) is analyzed under the following assump-
tions:

Assumption 2.1: limn→∞ αn = 0 and
∑∞
n=0 αn =∞.

Assumption 2.2: There exist Rdθ -valued stochastic pro-
cesses {ζn}n≥0 and {ρn}n≥0 (defined on (Ω,F , P )) such
that ξn = ζn + ρn for each n ≥ 0 and such that

lim
n→∞

max
n≤k<a(n,t)

∥∥∥∥∥
k∑
i=n

αiζi

∥∥∥∥∥ = 0, (2)

lim sup
n→∞

‖ρn‖ <∞ (3)

w.p.1 on {supn≥0 ‖θn‖ <∞} for any t ∈ (0,∞).
Assumption 2.3: There exists a real number p ∈ (0, 1]

and for any compact set Q ⊂ Rdθ , there exists another real
number MQ ∈ [1,∞) such that

m(AQ,ε) ≤MQε
p (4)

for all ε ∈ [0,∞).
Remark 2.1: Due to the Yomdin theorem [33, Theorem

1.2] (also known as the quantitative version of the Morse-
Sard theorem), Assumption 2.3 holds if f(·) is q times
differentiable and dθ < q < ∞. In this case, p = (q −
dθ)/(q − 1). A further insight can be provided for the case
when f(·) is real-analytic: If f(·) is real-analytic, Yomdin
theorem and Lojasiewicz inequality [19, Theorem 17], [20]
imply that for any compact set Q ⊂ Rdθ , there exit real
numbers rQ ∈ (0, 1], MQ, NQ ∈ [1,∞) such that

m(AQ,ε) ≤MQε, d(θ, S) ≤ NQ‖∇f(θ)‖rQ (5)

for all ε ∈ [0,∞), θ ∈ Q. Quantities p and rQ are usually
referred to as the Yomdin and Lojasiewicz exponents.

Assumption 2.1 corresponds to the step-size sequence
{αn}n≥0 and is commonly used in the asymptotic analysis of
stochastic gradient and stochastic approximation algorithms.
Assumption 2.2 is a noise condition. It can be interpreted as
a decomposition of the gradient estimator’s noise {ξn}n≥0
into a zero-mean sequence {ζn}n≥0 (which is averaged out
by step-sizes {αn}n≥0, see (2)) and the estimator’s bias
{ρn}n≥0 (which is almost surely bounded, see (3)). Assump-
tion 2.2 is satisfied if {ζn}n≥0 are martingale-differences
and {ρn}n≥0 are a continuous function of {θn}n≥0. It
also holds for gradient search with Markovian dynamics
(see Section III). If the gradient estimator is unbiased (i.e.,
limn→∞ ρn = 0 w.p.1), Assumption 2.2 reduces to the well-
known Kushner-Clark condition, the weakest noise assump-
tion under which the almost sure convergence of (1) can be
demonstrated. Assumption 2.3 is related to the stability of
the gradient flow dθ/dt = −∇f(θ), or more specifically,
to the geometry of the stationary points and the critical

values of f(·). As explained in Remark 2.1, this assumption
holds if f(·) is at least dθ + 1 times differentiable. Although
such a degree of differentiability can be considered as a
restrictive condition, it holds for the objective functions of
many stochastic gradient algorithms used in system identi-
fication, signal processing, machine learning and statistics.
E.g., in Section IV, we show that the objective function
associated with actor-critic reinforcement learning is smooth
(i.e., infinitely many times differentiable). In [32], we prove
the same property for the objective functions associated with
sequential Monte Carlo methods for the identification of non-
linear non-Gaussian state-space models. In [30], we show
the analyticity for the objective functions associated with the
recursive maximum likelihood estimation in hidden Markov
models. It is also worth mentioning that the objective func-
tions associated with principal component analysis (as well
as with many other adaptive signal processing algorithms) are
often polynomial or rational, and hence, smooth and analytic,
too (see e.g., [12] and references cited therein).

In order to state the main results of this section, we need
some further notation. For a compact set Q ⊂ Rdθ , ΛQ
denotes the event

ΛQ = lim inf
n→∞

{θn ∈ Q} =

∞⋃
n=0

∞⋂
k=n

{θk ∈ Q}.

LQ ∈ [1,∞) stands for an upper bound of ‖∇f(·)‖ on Q
and for a Lipschitz constant of f(·), ∇f(·) on the same set.
Moreover, ρ is the random variable defined by

ρ = lim sup
n→∞

‖ρn‖.

With this notation, our main result on the asymptotic bias of
the recursion (1) can be stated as follows.

Theorem 2.1: Let Assumptions 2.1 – 2.3 hold. Then, for
any compact set Q ⊂ Rdθ , there exists a real number KQ ∈
[1,∞) (depending only on LQ and MQ) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQρ
p/2, (6)

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ KQρ
p (7)

w.p.1 on ΛQ.
The proof of Theorem 2.1 is provided in [31]. As a direct

consequence of the Yomdin theorem, Lojasiewicz inequality
and Theorem 2.1, the following result is obtained.

Corollary 2.1: Let Assumptions 2.1 and 2.2 hold.
(i) Suppose that f(·) is q-times differentiable and that dθ <

q < ∞. Then, all conclusions of Theorem 2.1 hold with
p = (q − dθ)/(q − 1).

(ii) Suppose that f(·) is real-analytic. Then, the conclu-
sions of Theorem 2.1 hold with p = 1. Moreover, for
any compact set Q ⊂ Rdθ , there exists a real number
KQ ∈ [1,∞) (depending only on LQ, MQ and NQ) such
that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQρ
rQ/2

w.p.1 on ΛQ.
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In the literature on stochastic optimization, it is well-
known that stochastic gradient search with an unbiased
gradient estimator (the case where ρ = 0) exhibits the
following asymptotic behavior: limn→∞∇f(θn) = 0,
limn→∞ d(θn, S) = 0 and {f(θn)}n≥0 converges (i.e.,
lim supn→∞ f(θn) = lim infn→∞ f(θn)). When the gradi-
ent estimator is biased (i.e., ρ > 0), this is not true any more:
Now, the quantities

lim sup
n→∞

‖∇f(θn)‖, (8)

lim sup
n→∞

d(θn, S), (9)

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) (10)

are strictly positive. However, it is reasonable to expect
these quantities to decrease in ρ and to tend to zero when
ρ → 0. Hence, the quantities (8) – (10) and the way they
depend on ρ can be considered as a sensible characterization
of the asymptotic behavior and the asymptotic bias of the
gradient search with biased gradient estimation. In the case
of algorithm (1), such a characterization is contained in
Theorem 2.1 and Corollary 2.1: Both the theorem and its
corollary provide relatively tight, explicit bounds on the
quantities (8) – (10) in terms of the gradient estimator’s bias
ρ and the Yomdin and Lojasiewicz exponents. Apparently,
the results of Theorem 2.1 and Corollary 2.1 are of a local
nature: They hold only on the event where algorithm (1) is
stable (i.e., where sequence {θn}n≥0 belongs to a compact
set Q). Stating results on the asymptotic bias of stochastic
gradient search in such a local form is quite sensible due to
the following reasons. The stability of stochastic gradient
search is based on well-understood arguments which are
rather different from the arguments the proofs of Theorem
2.1 and Corollary 2.1 rely on. Moreover, as illustrated in
Appendix and [31], it is relatively easy to get a global
version of Theorem 2.1 and Corollary 2.1 by combining them
with the methods used to verify or to ensure the stability
(e.g., with the results of [1, Section II.1.9], [4] and [10]).
It is also worth mentioning that local asymptotic results are
typical in the areas of stochastic optimization and stochastic
approximation (e.g., similarly as Theorem 2.1 and Corollary
2.1, most of the results of [1, Part II] hold only on set ΛQ).

Gradient algorithms with biased gradient estimation are
often used in the areas of system identification [14], [23],
machine learning [2], [6], [16], operations research [11],
[15], and statistics [7], [26]. To interpret the result pro-
duced by such an algorithm and to tune the algorithm’s
parameters (e.g., to achieve better bias/variance balance and
convergence rate), the knowledge of the asymptotic bias is
crucially needed. Despite this fact, the asymptotic behavior
of the gradient search with biased gradient estimation has
not received much attention in the literature on stochastic
optimization and stochastic approximation. To the best of
the present author’s knowledge, the asymptotic properties of
the biased stochastic gradient search and biased stochastic
approximation has been studied only in [5, Section 5.3],
[8], [9], [10, Section 2.7]. Although these results provide

a good insight into the asymptotic behavior of the biased
gradient search, they hold only if f(·) is unimodal or if
{θn}n≥0 is contained in the domain of an asymptotically
stable attractor of dθ/dt = −∇f(θ). Moreover, unless
f(·) is of a simple form (e.g., convex), the results of [5,
Section 5.3], [8], [9], [10, Section 2.7] do not provide any
explicit bound on the asymptotic bias of the gradient search
with biased gradient estimation. Unfortunately, in the case
of complex stochastic gradient algorithms (such as those
studied in Section IV), f(·) is usually multimodal and very
complicated (with lot of unisolated local extrema and saddle
points). Consequently, for such algorithms, not only it is hard
to verify the assumptions adopted in [5, Section 5.3], [8], [9],
[10, Section 2.7], but these assumptions are likely not to hold
at all.

Relying on the Yomdin theorem (a quantitative version
of the Morse-Sard theorem) and the Lojasiewicz inequality,
Theorem 2.1 and Corollary 2.1 overcome the difficulties
described in the previous paragraph. Both the theorem and its
corollary allow the objective function to be multimodal (with
manifolds of unisolated extrema and saddle points), do not
require dθ/dt = −∇f(θ) to have an asymptotically stable
attractor and do not assume (apriori) any particular behavior
of {θn}n≥0. In addition to this, Theorem 2.1 and Corollary
2.1 provide relatively tight explicit bounds on the asymptotic
bias of algorithm (1). Moreover, as illustrated in Section IV,
the theorem and its corollary cover a relatively broad class of
stochastic gradient algorithms used in reinforcement learn-
ing. In another paper [32], using Theorem 2.1, we analyze
sequential Monte Carlo methods for the identification of non-
linear non-Gaussian state-space models and we demonstrate
that the asymptotic bias of these methods converges to zero
polynomially in the number of particles.

III. STOCHASTIC GRADIENT SEARCH WITH MARKOVIAN
DYNAMICS

In order to illustrate the results of Section II and to set up
a framework for the analysis carried out in Section IV, we
apply Theorem 2.1 to stochastic gradient algorithms with
Markovian dynamics. These algorithms are defined by the
following difference equation:

θn+1 = θn − αn(F (θn, Zn+1) + ρn), n ≥ 0. (11)

In this recursion, F : Rdθ × Rdz → Rdθ is a Borel-
measurable function, while {αn}n≥0 is a sequence of pos-
itive real numbers. θ0 is an Rdθ -valued random variable
defined on a probability space (Ω,F , P ), while {Zn}n≥0
and {ρn}n≥0 are Rdz and Rdθ -valued stochastic processes
defined on the same probability space. More specifically, ρn
is a random function of θ0, . . . , θn for each n ≥ 0. {Zn}n≥0
is a Markov process controlled by {θn}n≥0, i.e., there exists
a family of transition probability kernels {Πθ(·, ·)}θ∈Rdθ on
Rdz such that

P (Zn+1 ∈ B|θ0, Z0, . . . , θn, Zn) = Πθn(Zn, B) (12)
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w.p.1 for any Borel-measurable set B ⊆ Rdz and n ≥ 0. In
the context of stochastic gradient search, F (θn, Zn+1) + ρn
represents a gradient estimator (i.e., an estimator of∇f(θn)).

The algorithm (11) is analyzed under the following as-
sumptions.

Assumption 3.1:
∑∞
n=0 αn = ∞,

∑∞
n=0 α

2
n < ∞ and∑∞

n=0 |αn − αn+1| <∞.
Assumption 3.2: There exist a differentiable function f :

Rdθ → R and a Borel-measurable function F̃ : Rdθ×Rdz →
Rdθ such that ∇f(·) is locally Lipschitz continuous and

F (θ, z)−∇f(θ) = F̃ (θ, z)− (ΠF̃ )(θ, z) (13)

for each θ ∈ Rdθ , z ∈ Rdz , where (ΠF̃ )(θ, z) =∫
F̃ (θ, z′)Πθ(z, dz

′).
Assumption 3.3: For any compact set Q ⊂ Rdθ , there

exists a Borel-measurable function ϕQ : Rdz → [1,∞) such
that

max{‖F (θ, z)‖, ‖F̃ (θ, z)‖, ‖(ΠF̃ )(θ, z)‖} ≤ ϕQ(z),

‖(ΠF̃ )(θ′, z)− (ΠF̃ )(θ′′, z)‖ ≤ ϕQ(z)‖θ′ − θ′′‖,
sup
n≥0

E
(
ϕ2
Q(Zn+1)I{τQ>n}|θ0 = θ, Z0 = z

)
<∞

for all θ, θ′, θ′′ ∈ Q, z ∈ Rdz , where τQ = inf{n ≥ 0 : θn 6∈
Q}.

Assumption 3.4: lim supn→∞ ‖ρn‖ < ∞ w.p.1 on
{supn≥0 ‖θn‖ <∞}.

The main results on the asymptotic bias of the recursion
(11) reads as follows.

Theorem 3.2: Let Assumptions 3.1 – 3.4 hold, and sup-
pose that f(·) (introduced in Assumption 3.2) satisfies As-
sumption 2.3. Then, all conclusions of Theorem 2.1 are true.

The proof of Theorem 3.2 is provided in [31].
Assumption 3.1 is related to the sequence {αn}n≥0. It

holds if αn = 1/na for n ≥ 1, where a ∈ (1/2, 1] is a
constant. Assumptions 3.2 – 3.4 correspond to the stochastic
process {Zn}n≥0 and are common for the asymptotic anal-
ysis of stochastic approximation algorithms with Markovian
dynamics. Assumptions 3.2 – 3.4 have been introduced by
Metivier and Priouret and later generalized by Kushner, Yin
and their co-workers (see [1, Part II], [17] and references
cited therein). However, neither the results of Metivier and
Priouret, nor the results of Kushner, Yin and their co-
workers provide any information on the asymptotic bias of
the gradient search with biased gradient estimation.

Regarding Theorem 3.2, the following note is in order.
As already mentioned in the beginning of the section, the
purpose of the theorem is illustrating the results of Theorem
2.1 and providing a framework for studying the examples
presented in the next sections. Since these examples perfectly
fit into the framework developed by Metivier and Priouret,
more general assumptions and settings of [17] are not con-
sidered here in order to keep the exposition as concise as
possible.

IV. EXAMPLE 1: ACTOR-CRITIC REINFORCEMENT
LEARNING

In this section, we apply Theorems 2.1, 3.2 and Corollary
2.1 to the asymptotic analysis of actor-critic algorithms for
Markov decision processes.

To define an average-cost Markov decision process with
a parameterized randomized control, we need the following
notation. dθ ≥ 1, Nx > 1 and Ny > 1 are integers, while
X = {1, . . . , Nx} and Y = {1, . . . , Ny}. φ(x, y) is a non-
negative (real-valued) function of (x, y) ∈ X ×Y . p(x′|x, y)
is a non-negative function of (x, x′, y) ∈ X×X×Y satisfying∑
x′∈X p(x

′|x, y) = 1 for each x ∈ X , y ∈ Y . qθ(y|x) is a
non-negative function of (θ, x, y) ∈ Rdθ × X × Y with the
following properties: It is differentiable in θ for any x ∈ X ,
y ∈ Y and fulfills

∑
y∈Y qθ(y|x) = 1 for all θ ∈ Rdθ ,

x ∈ X . For θ ∈ Rdθ , {(Xθ
n, Y

θ
n )}n≥0 is an X × Y-valued

Markov chain which is defined on a (canonical) probability
space (Ω,F , Pθ) and which admits

Pθ(X
θ
n+1 = x′, Y θn+1 = y′|Xθ

n = x, Y θn = y)

= qθ(y
′|x′)p(x′|x, y)

for each x, x′ ∈ X , y, y′ ∈ Y . f(·) is a function defined by

f(θ) = lim
n→∞

Eθ(φ(Xθ
n, Y

θ
n ))

for θ ∈ Rdθ . With this notation, an average-cost Markov
decision problem with parameterized randomized control can
be defined as the minimization of f(·). In the literature on
reinforcement learning and operations research, {Xθ

n}n≥0 is
called a controlled Markov chain, while {Y θn }n≥0 are control
actions. {p(x′|x, y)}x,x′∈X ,y∈Y are the chain transition prob-
abilities, while {qθ(y|x)}x∈X ,y∈Y are the action likelihoods.
θ is a parameter indexing the action likelihoods. For further
details on Markov decision processes, see [3] and references
cited therein.

Since f(·) and its gradient rarely admit a close-form ex-
pression, f(·) is minimized using methods based on stochas-
tic gradient search and Monte Carlo gradient estimation. One
of the most sophisticated methods of this kind is the actor-
critic algorithm proposed by Konda and Tsitsiklis in [16].
This algorithm is defined by the following equations:

Vn+1 =λVn + sθn(Yn+1|Xn+1), (14)

Wn+1 =(sθn(Yn+1|Xn+1)− sTθn(Yn|Xn))T η′n

+ c(Xn, Yn)− η′′n, (15)

θn+1 =θn − αnsθn(Yn+1|Xn+1)sTθn(Yn+1|Xn+1)η′n,
(16)

η′n+1 =η′n + βnVn+1Wn+1, (17)
η′′n+1 =η′′n + βn(φ(Xn+1, Yn+1)− η′′n), n ≥ 0. (18)

In this recursion, λ ∈ [0, 1) is a constant (usually referred
to as the discounting factor), while {αn}n≥0 and {βn}n≥0
are sequences of positive real numbers. Function sθ(y|x) is
defined by

sθ(y|x) = ∇θ log(qθ(y|x))
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for θ ∈ Rdθ , x ∈ X , y ∈ Y . θ0, η′0, V0 are Rdθ -
valued random variables, while η′′0 , W0 are R-valued ran-
dom variables. {Xn}n≥1 and {Yn}n≥1 are (respectively)
X and Y valued stochastic processes which are generated
through Monte Carlo simulations: For each n ≥ 0, Xn+1

is simulated from p(·|Xn, Yn) independently of θ0, η′0,
η′′0 , V0, W0, X0, Y0, . . . , Xn, Yn, while Yn+1 is simulated
from qθn(·|Xn+1) independently of θ0, η′0, η′′0 , V0, W0,
X0, Y0, . . . , Xn, Yn, Xn+1. Hence, {(Xn, Yn)}n≥1 satisfies

P (Xn+1 = x, Yn+1 = y|θ0, X0, Y0, . . . , θn, Xn, Yn)

= qθn(y|x)p(x|Xn, Yn)

w.p.1 for all x ∈ X , y ∈ Y , n ≥ 1.
Remark 4.2: In algorithm (14) – (18), recursion (16) is a

gradient search minimizing f(·), while term

sθn(Yn+1|Xn+1)sTθn(Yn+1|Xn+1)η′n

is a Monte Carlo estimator of ∇f(θn). This estimator is
biased and its bias is proportional to 1− λ (see [16]).

Algorithm (14) – (18) is analyzed under the following
assumptions.

Assumption 4.1: limn→∞ αn/βn = 0,
∑∞
n=0 βn = ∞,∑∞

n=0 β
2
n <∞ and

∑∞
n=0 |βn − βn+1| <∞.

Assumption 4.2: p(x′|x, y) > 0 for each x, x′ ∈ X , y ∈
Y .

Assumption 4.3: For each x ∈ X , y ∈ Y , sθ(y|x) is
locally Lipschitz continuous in θ on Θ.

To state the main results of this section, we need some
further notation. δ is a real numbers defined as

δ = min{p(x′|x, y) : x, x′ ∈ X , y ∈ Y}

(obviously 0 < δ < 1). For a compact set Q ⊂ Rdθ and
fixed x ∈ X , y ∈ Y , L1,Q(x, y) is an upper bound in θ ∈ Q
for ‖sθ(y|x)‖, while L2,Q is a Lipschitz constant in θ ∈ Q
for qθ(y|x), sθ(y|x). For the same Q, let

LQ=max{|φ(x, y)|, L1,Q(x, y), L2,Q(x, y) :x ∈ X , y ∈ Y}.

With this notation, our results on the analytical properties
of f(·) and asymptotic behavior of algorithm (14) read as
follows.

Proposition 4.1: Let Assumption 4.2 hold.
(i) Suppose that qθ(y|x) is q times differentiable in θ

for each θ ∈ Rdθ , x ∈ X , y ∈ Y . Then, f(·) is q times
differentiable on Rdθ . If additionally dθ < q < ∞, then,
for any compact set Q ⊂ Rdθ , there exists a real number
MQ ∈ [1,∞) such that (4) holds for p = (q − dθ)/(q − 1)
and all ε ∈ [0,∞).

(ii) Suppose that qθ(y|x) is real-analytic in θ for each
θ ∈ Rdθ , x ∈ X , y ∈ Y . Then, f(·) is real-analytic on Rdθ .
Moreover, for any compact set Q ⊂ Rdθ , there exist real
numbers rQ ∈ (0, 1) and MQ, NQ ∈ [1,∞) such that (5)
holds for all ε ∈ [0,∞), θ ∈ Q.

Theorem 4.3: Let Assumptions 3.1, 4.2 and 4.3 hold.
(i) Suppose that qθ(y|x) is q times differentiable in θ for

each θ ∈ Rdθ , x ∈ X , y ∈ Y , where dθ < q < ∞. Let
p = (q − dθ)/(q − 1). Then, for any compact set Q ⊂ Rdθ ,

there exists a real number KQ ∈ [1,∞) (depending only on
δ, LQ, MQ) such that

lim sup
n→∞

‖∇f(θn)‖ ≤ KQ(1− λ)p/2,

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ KQ(1− λ)p

w.p.1 on ΛQ.
(ii) Suppose that qθ(y|x) is real-analytic in θ for each

θ ∈ Rdθ , x ∈ X , y ∈ Y . Then, all conclusions of Part (i)
hold with p = 1. Moreover, for any compact set Q ⊂ Rdθ ,
there exists a real number KQ ∈ [1,∞) (depending only on
δ, LQ, MQ, NQ) such that

lim sup
n→∞

d(θn, S) ≤ KQ(1− λ)rQ/2

w.p.1 on ΛQ.
The proof of Proposition 4.1 and Theorem 4.3 is provided

in [31].
Assumptions 4.1 corresponds to the asymptotic properties

of sequence {βn}n≥0. It is satisfied if βn = 1/nb and
αn = 1/na for n ≥ 1 and if 1/2 < b < a ≤ 1. Assumption
4.2 is related to the stability of the controlled Markov chain
{Xθ

n}n≥0 and is often used in the asymptotic analysis of
reinforcement learning algorithms (see e.g., [3]). Assumption
4.3 corresponds to the parameterization of the action likeli-
hoods qθ(y|x) and is almost always met in practice. For some
commonly used parameterizations (such as exponential and
trigonometric), qθ(y|x) is not only Lipschitz continuously
differentiable in θ, but also real-analytic.

Although actor-critic algorithms are widely used in rein-
forcement learning, the available literature does not give a
quite satisfactory answer to the problem of their asymptotic
behavior. To the best of the present author’s knowledge, the
existing results do not even guarantee that the asymptotic
bias of recursion (14), (18) goes to zero as λ tends to one,
More specifically, none of the existing results guarantees that
{θn}n≥0 converges to a vicinity of S = {θ : ∇f(θ) =
0} and that the radius of the vicinity tends to zero as λ
approaches one (e.g., [16], probably the strongest results of
the kind, claims this only for a subsequence of {θn}n≥0).
The main difficulty stems from the fact that actor-critic
algorithms are so complex that the existing asymptotic results
for biased stochastic gradient search and biased stochastic
approximation [5, Section 5.3], [8], [9], [10, Section 2.7]
cannot be applied. Relying on the results presented in Sec-
tions II and III, Theorem 4.3 overcomes these difficulties:
Under mild and easily verifiable conditions, Theorem 4.3 not
only guarantees that the asymptotic bias of algorithm (14),
(18) converges to zero as λ tends to one, but also provides
a relatively tight polynomial bound on the rate in terms of
λ and the Yomdin and Lojasiewicz exponents.

APPENDIX
STABILITY OF STOCHASTIC GRADIENT SEARCH WITH

MARKOVIAN DYNAMICS

In order to obtain a ‘global’ version of the results of
Sections II and III, the almost sure stability of the stochastic
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gradient search with random truncations and Markovian
dynamics is studied here. Such an algorithm is defined by
the following equations:

θ′n+1 = θn − αn(F (θn, Zn+1) + ρn), (19)
θn+1 = θ′n+1 I{‖θ′n+1‖≤βσn} + ϑ0 I{‖θ′n+1‖>βσn}, (20)

σn+1 = σn + I{‖θ′n+1‖>βσn}. (21)

Here, F (·, ·), {αn}n≥0, {Zn}n≥0 and {ρn}n≥0 have the
same meaning as in Section III. ϑ0 ∈ Rdθ is a (deterministic)
vector, while {βn}n≥0 is an increasing sequence of positive
real numbers satisfying ‖ϑ0‖ < β0 and limn→∞ βn =∞. θ0
is an Rdθ -valued random variable fulfilling ‖θ0‖ < β0, while
σ0 = 0. The random truncation scheme has been proposed
and analyzed in [8], [9], [10].

The stability of the algorithm (19) – (21) is analyzed under
the following assumptions.

Assumption A.1: ρn = g(θn) for each n ≥ 0, where g :
Rdθ → Rdθ is a Borel-measurable locally bounded function.

Assumption A.2: lim inf‖θ‖→∞ f(θ) = ∞ and
infθ∈Rdθ f(θ) > −∞. Moreover, there exist real numbers
c ∈ (0, 1), r ∈ [1,∞) such that

‖∇f(θ)‖ ≥ c, ‖g(θ)‖
‖∇f(θ)‖

≤ c

for all θ ∈ Rdθ satisfying ‖θ‖ ≥ r.
Assumption A.3: Given any compact set Q ⊂ Rdθ ,

sup
n≥0

E
(
ϕ2
Q(Zn)

∣∣ θ0 = θ, Z0 = z
)
<∞

for all θ ∈ Rdθ , z ∈ Rdz .
The next proposition contains the main results on the

stability of the algorithm (19) – (21).
Proposition 1.2: Let {θn}n≥0 be generated by recursion

(19) – (21). Moreover, let Assumptions 3.1 – 3.3, A.1, A.2
and A.3 hold, and suppose that f(·) (introduced in Assump-
tion 3.2) satisfies Assumption 2.3. Then, the following is
true:

(i) There exists a real number a ∈ [1,∞) (depending only
on r, f(·)) such that lim supn→∞ ‖θn‖ < a w.p.1.

(ii) There exists a real number K ∈ [1,∞) (depending
only on LQa and MQa , where Qa = {θ ∈ Rdθ : ‖θ‖ ≤ a})
such that

lim sup
n→∞

‖∇f(θn)‖ ≤ Kρp/2,

lim sup
n→∞

f(θn)− lim inf
n→∞

f(θn) ≤ Kρp

w.p.1.
Proposition 1.2 is just an extension of the results of [10]

and [28]. Its proof is provided in [31].
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