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Abstract— In this paper we consider the use of a linear
periodic controller (LPC) for the control of linear time-invariant
(LTI) plants in the decentralized setting. If a plant has an
unstable decentralized fixed mode (DFM), it is well known
that no LTI controller can stabilize it, let alone provide good
performance. Here we show that, if the plant is centrally
controllable and observable and the graph associated with
the plant is strongly connected, even if the plant has an
unstable decentralized fixed mode we can still design an LPC to
provide LQR performance as close to optimality as desired. The
controller in each channel consists of a sampler, a zero-order-
hold, and a discrete-time linear periodic compensator, which
makes it easy to implement.

Keywords: Decentralized control, decentralized fixed

modes, linear periodic control, LQR optimal control.

I. INTRODUCTION

In this paper we are interested in control in the decentral-

ized setting. It is well known that a linear time invariant

(LTI) system can be stabilized using a decentralized LTI

controller if and only if the system does not possess any

unstable DFMs [6]. The use of time-varying controllers in

the decentralized setting has been investigated for some time.

It was shown in [3] that some DFMs can be moved using

time-varying feedback; at about the same time, [17] argued

that, in some cases, a generalized hold based controller can

achieve a similar result. This lead to further work on this

topic, including that of [18], [8], [1] and [2]. It also lead

to an attempt to classify DFMs into those which are truly

fixed and those which can be moved using a sufficiently

sophisticated controller; the key work is that of [14] and [7].

Here we are interested not only in stability but also in

performance. Carrying out optimal LTI controller design in

the decentralized setting is difficult. In [5] the authors show

constructively that, under a technical condition, if the plant

has no unstable decentralized fixed modes and is minimum

phase, then an LTI decentralized controller can do almost as

well as an LTI centralized controller. For more general cost

functions, the results which yield tractible design algorithms

are limited; [15] provides a detailed historical account of this

work and argues that the underlying concept in many of these

approaches is that of ’quadratic invariance’, which yields

a structural constraint on the plant. An explicit state-space

solution for a decentralized two channel problem with a

block triangular structure is provided in the H2 context [16].

However, a tractible design approach for finding the optimal

LTI decentralized controller in the general case remains open.

In this paper our objective is to construct an optimal

(or near optimal) controller, even if it is not LTI. Indeed,

if the LTI plant has an unstable decentralized fixed mode,

an LTI controller cannot stabilize it, let alone provide good

performance, so more complicated controllers must be used.

The paper [7] provides a necessary and sufficient condition

for the existence of a stabilizing nonlinear time-varying

(NLTV) controller. However, the performance provided by

the controller given there, as well as those provided in

the aforementioned papers on linear time-varying controllers

([3], [14], [17], [18], [8], [1], and [2]), is not discussed in

detail, and it is not claimed to be optimal in any way. In this

paper we adopt the classical LQR measure of performance,

and demonstrate that, if the plant is centrally controllable

and observable and the graph associated with the system

is strongly connected, then we can design a linear periodic

sampled-data decentralized controller which provides perfor-

mance as close to the optimal as desired. Under our plant

hypothesis, the system may have DFMs, possibly unstable,

but it follows from [7] that all are moveable using a suitable

NLTV controller. Our approach is motivated by our earlier

work on the control of linear (possibly time-varying) systems

using periodic control, especially that of [12], [10], [11] and

[13].

II. THE SETUP

Here we consider the strictly proper plant

ẋ = Ax +
∑p

i=1 Biui, x(t0) = x0

yi = Cix, i = 1, ..., p

}

(1)

with x(t) ∈ R
n, ui(t) ∈ R

mi and yi(t) ∈ R
ri for

i = 1, ..., p; we set m =
∑p

i=1 mi and r =
∑p

i=1 ri; we

represent this model by (A;B1, ..., Bp;C1, ..., Cp). Associ-

ated with this model are

y =






y1

...

yp




 , u =






u1

...

up




 , B :=

[
B1 · · · Bp

]
,

C :=






C1

...

Cp




 , O(Ci, A) :=








Ci

CiA
...

CiA
n−1








.

In the decentralized context we require ui to depend solely

on yi, whether the controller is LTI, linear time-varying

(LTV), or NLTV.
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Assumption 1: (A,B) is controllable and (C,A) is

observable.
The notion of a decentralized fixed mode was introduced

in [6]; the goal is to capture which eigenvalues are immov-

able using LTI feedback which respects the information flow

constraints. To this end, we define the set of feedback gains

Kdec by

{K ∈ R
r×r : K = diag{K1, ...,Kp} with Ki ∈ R

ri×ri}.

Definition 1: The DFMs of (A;B1, ..., Bp;C1, ..., Cp)
are given by

⋂

K∈Kdec
sp(A + BKC).

Following [4], it turns out that graph theory can be used

to study decentralized systems. One can envision building a

directed graph of the plant (1) as follows: there are p nodes

representing the p control agents and p sensor agents, with

an arc from node i to node j iff Cj(sI − A)−1Bi 6= 0. A

directed graph is said to be strongly connected if there is a

path from every node to every other node along the arcs.

Proposition 1: [3] The directed graph corresponding

to (A;B1, ..., Bp;C1, ..., Cp) is strongly connected iff

for every partition of the set of indices {1, ..., p} into

nonempty sets S1 = {i1, ..., iq} and S2 = {iq+1, ..., ip}
satisfies






Ciq+1

...

Cip




 (sI − A)−1

[
Bi1 · · · Biq

]
6= 0.

Assumption 2: The directed graph corresponding to

(A;B1, ..., Bp;C1, ..., Cp) is strongly connected.

III. THE PROBLEM

Here our goal is to design a linear time-varying con-

troller which not only provides closed loop stability but

also provides near optimal LQR performance. To this end,

choose positive definite symmetric matrices Q ∈ R
n×n and

R ∈ R
m×m and consider the quadratic performance index

J(x0) =

∫ ∞

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt.

With t0 = 0, the LQR problem is to find, for each x0 ∈ R
n,

the control signal u which minimizes this cost. As is well-

known, the optimal controller is state-feedback:

u = Fx,

which gives rise to an optimal cost of the form J0(x0) =
xT

0 Px0 with P the positive definite solution of an associated

Riccati equation. For a given initial condition x0, we label

the optimal state trajectory by x0(t) and the optimal control

signal by u0, i.e.

x0(t) = e(A+BF )tx0, u0(t) = Fe(A+BF )tx0, t ≥ 0.

Here we consider sampled-data controllers of the form

zi[k + 1] = Gi(k)zi[k] + Hi(k)yi(kh),
zi[0] = zi0 ∈ R

li ,

ui(kh + τ) = Ji(k)zi[k] + Ki(k)yi(kh),
τ ∈ [0, h)







(2)

with the controller gains Gi, Hi, Ji, and Ki periodic of

period ℓ ∈ N for every i ∈ {1, 2, ..., p}; the period of the

overall controller is T := ℓh, and we associate this system

with ((Gi,Hi, Ji,Ki), i = 1, ..., ℓ;T ; ℓ). Note that for each

i, (2) can be implemented with a sampler, a zero-order-

hold, and an lth order periodically time-varying discrete-time

system of period ℓ. We define the augmented controller state

as

z[k] :=






z1[k]
...

zp[k]




 , z[0] := z0.

The state of the closed loop-system is a combination of

discrete and continuous states, defined by

xsd(t) :=

[
x(t)
z[k]

]

, t ∈ [kh, (k + 1)h).

Now we make precise our notion of stability.

Definition 2: The sampled-data controller (2) exponen-

tially stabilizes (1) if there exist constants γ > 0 and

λ < 0 so that, with t0 = 0, for every x0 ∈ R
n and

z0 ∈ R
l1+···+lp , we have

‖xsd(t)‖ ≤ γeλt‖xsd(0)‖, t ≥ 0.
With t0 = 0, if the sampled-data controller (2) exponen-

tially stabilizes the plant (1), then we label the corresponding

cost by J(x0, z0). The goal of this paper is to design (2),

parametrized by ε > 0, so that (i) it exponentially stabilizes

(1) and (ii) for every x0 ∈ R
n and z0 ∈ R

l, we have

|J(x0, z0) − J0(x0)| ≤ ε(‖x0‖
2 + ‖z0‖

2).

Before presenting any results, let us first provide some

motivation for the approach adopted in this paper. First

consider the control law

u(t) = Fx(kT ), t ∈ [kT, (k + 1)T ).

It is intuitively reasonable that this will be near optimal if

T is small enough, with the difference in cost tending to

zero as T → 0. Of course, Fx(kT ) is not measureable in

each channel in most cases, so it needs to be estimated. First,

make the natural partition of F :

F :=






F1

...

Fp




 .

If u = 0, then

x(t) = eAtx(0), yi(t) = Cie
Atx(0), t ≥ 0.

Hence, by measuring yi(t) only, we can easily obtain an

estimate of O(Ci, A)x(0). In most situations (Ci, A) is not

observable, so x(0) cannot be obtained. However, since

(C,A) is observable by assumption, there always exists n

linearly independent rows, say Cij
Anj , j = 1, 2, ..., n;

indeed, we can choose W ∈ R
n×nr to pick off those rows,

so that

Oest :=






Ci1A
n1

...

Cin
Ann




 = W






O(C1, A)
...

O(Cn, A)




 .
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Hence, while x(0) is not obtainable from every channel, the

quantity

ζ(0) := Oestx(0) (3)

has sufficent information from which to identify x(0), and

hence Fx(0).

The above motivates the following idea. On each period

[kT, (k + 1)T ), we apply an estimate û0(kT ) of u0(kT ), at

the same time doing a small amount of probing to obtain a

better estimate of this quantity for use during the next period;

we make use of the fact that the graph associated with the

system is strongly connected in order to pass information

among the channels. Specifically, for each j = 1, 2, ..., n,

we first estimate the quantity Cij
Anj x(kT ) by examining

yij
(t). Second, we then apply probing on top of the nominal

control signal û0(kT ) to pass this information to all of the

other channels. It turns out that we can do this in a linear

(though time-varying) fashion.

IV. REGULARIZITION

At this point it is convenient to put our system into a

form which is amenable to analysis. To proceed, it will be

convenient to impose

Assumption 3: For every i, j,∈ {1, ..., p}, the transfer

function Ci(sI − A)−1Bj is not identically zero.

While this seems restrictive at first glance, it turns out

that we can always regularize our system by first applying

some feedback. To proceed, we first need some notation. We

will use a slightly modified version of the notion of a generic

property given in [19]. Let x = {xij} ∈ R
n×m, and consider

polynomials φ(x) = φ(x11, ..., xnm) with coefficients in R.

A property π is a function π : R
n×m → {0, 1}, where

π(x) = 1 (or 0) means that π holds (or fails) at x. A property

π holds for almost all x ∈ R
n×m if there exists a nonzero

polynomial φ for which π fails at x iff φ(x) = 0.

Proposition 2: [9] For almost all K ∈ Kdec, for every

i, j,∈ {1, ..., p} the transfer function Ci(sI − A −
BKC)−1Bj is not identically zero.

After regularization, our cost function must be adjusted.

To see this, write

u = Ky + unew.

If we apply this to (1), then we end up with

ẋ = (A + BKC)x + Bunew

y = Cx

J(x0) =

∫ ∞

0

[x(t)T Qx(t) +

(unew(t) + Ky(t))T R(unew(t) + Ky(t))] dt

with an optimal control law of

unew = F̃ x = (F − KC)x.

Rather than bog down the ensuing analysis and design

procedure with undue notation, henceforth we shall assume

that Assumptions 1, 2 and 3 all hold but that the cost function

is of the form

J(x0) =

∫ ∞

0

[x(t)T Qx(t) +

(u(t) + Ky(t))T R(u(t) + Ky(t))] dt.

In order to implement the idea of the previous section, we

will be passing information from one channel to the rest. In

order to so, it is particularly convenient to convert the system

to one with single-input single-output (siso) channels. To this

end, consider vectors v ∈ R
r and w ∈ R

m partitioned in a

natural way as

v =






v1

...

vp




 , vi ∈ R

ri , w =






w1

...

wp




 , wi ∈ R

mi .

Proposition 3: For almost all (v, w) ∈ R
r × R

m, we

have that for every i, j ∈ {1, 2, ..., p}, the transfer

function vT
i Ci(sI − A)−1Bjwj is not identically zero.

Now freeze (v, w) ∈ R
r × R

m so that for every i, j ∈
{1, 2, ..., p}, the transfer function vT

i Ci(sI − A)−1Bjwj is

not identically zero. We now introduce the natural notation

C̄i := vT
i Ci, ȳi = C̄ix = vT

i Cix, i = 1, ..., p,

B̄j := Bjwj , j = 1, ..., p.

On occasion, we shall need to apply an input only through the

jth channel; to this end, we define w̄j :=





0
wj

0



 ∈ R
m.

V. ESTIMATION OF THE CONTROL SIGNAL

To construct the proposed control law, the idea is to period-

ically apply an estimate û0(kT ) of u0(kT ), at the same time

constructing a better estimate.1 The approach adopted here is

motivated by that used in [10] to solve the optimal centralized

LQR problem in the face of significant plant uncertainty. To

this end, we first choose n̄ ∈ {1, ..., n} as well as a number

of matrices, starting with two (n̄ + 1) × (n̄ + 1) matrices:

S =










1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2n̄

...

1 n̄ n̄2 · · · n̄n̄










,

H(h) = diag{1, h,
h2

2!
, ...,

hn̄

n̄!
}.

With Ij ∈ R
rj×rj the identity matrix, we also define

Sj := S ⊗ Ij , Hj := H ⊗ Ij , j ∈ N.

1We partition û
0(kT ) in a natural way as





û
0

1
(kT )
.
.
.

û
0
p
(kT )



.
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We now define the observability-like matrices

Oi :=








Ci

CiA
...

CiA
n̄







∈ R

ri(n̄+1)×n,

as well as two versions of the sampled output:

Yi(t) :=








yi(t)
yi(t + h)

...

yi(t + n̄h)








, Ȳi(t) :=








ȳi(t)
ȳi(t + h)

...

ȳi(t + n̄h)








.

The following result has two parts: the first explains how

to estimate x(kT ); the second explains how to pass this

information amongst the channels. Here we carry out probing

with a test signal, scaled by ρ ∈ (0, 1).

Lemma 1: For every h̄ ∈ (0, 1) there exists a constant

γ > 0 so that for every t0 ∈ R, x0 ∈ R
n, h ∈ (0, h̄),

ū ∈ R
m and δ ∈ R:

(i) The solution of (1) with

u(t) =

{
(1 + ρ)ū t ∈ [t0, t0 + n̄h)
(1 − ρ)ū t ∈ [t0 + n̄h, t0 + 2n̄h)

satisfies, for i = 1, ..., p:

‖Hi(h)−1S−1
i [

ρ − 1

2ρ
Yi(t0) +

ρ + 1

2ρ
Yi(t0 + n̄h)]−

Oix0‖ ≤ γh(‖x0‖ + ‖ū‖),

and

‖x(t) − x0‖ ≤ γh(‖x0‖ + ‖ū‖), t ∈ [t0, t0 + 2n̄h].

(ii) The solution of (1) with

u(t) =

{
ū + w̄jδ t ∈ [t0, t0 + n̄h)
ū − w̄jδ t ∈ [t0 + n̄h, t0 + 2n̄h)

satisfies, for i = 1, ..., p:

‖H(h)−1S−1[Ȳi(t0) − Ȳi(t0 + n̄h)]−

2








0
C̄iB̄j

...

C̄iA
n̄−1B̄j








δ‖ ≤ γh(‖x0‖ + ‖ū‖ + ‖δ‖),

and

‖x(t) − x0‖ ≤ γh(‖x0‖ + ‖ū‖ + ‖δ‖),

t ∈ [t0, t0 + 2n̄h].

To see how this result can be applied, assume that

u(t) =

{
(1 + ρ)û0(kT ) t ∈ [kT, kT + n̄h)
(1 − ρ)û0(kT ) t ∈ [kT + n̄h, kT + 2n̄h);

part (i) says that

‖Hi(h)−1S−1
i [

ρ − 1

2ρ
Yi(t0)+

ρ + 1

2ρ
Yi(t0+n̄h)]−Oix(kT )‖

≤ γh(‖x(t0)‖ + ‖ū‖).

Hence, we can obtain a good estimate Est[Oix(kT )] of

Oix(kT ) for i = 1, ..., p. Now assume that n̄ ≥
max{n1, ..., nn};2 clearly we can form an estimate of ζ(t)
given by (3):

ζ̂(kT ) := W






Est[O1x(kT )]
...

Est[Opx(kT )]




 ;

notice that the jth element of ζ̂(kT ), namely ζ̂j(kT ), is

simply an estimate of Cij
Anj x(kT ), which is simply an

element of Est[Oij
x(kT )], so it obtainable from channel ij .

The idea is to now pass the information about ζ̂(kT ) through

the system so that it is available at each channel. Specifically,

ζ̂1(kT ) is available at channel i1; with ρ > 0, if we set

u(t) = û0(kT )+

{
ρw̄i1 ζ̂1(kT ) t ∈ [kT + 2h̄, kT + 3h̄)

−ρw̄i1 ζ̂1(kT ) t ∈ [kT + 3h̄, kT + 4h̄),

then the probing takes place only on input i1 using informa-

tion available from channel i1. We can then form an estimate

of ζ̂1(kT ) on every other channel using Lemma 1 (ii):

1

2ρ
H(h)−1S−1[Ȳi(t0 + 2h̄) − Ȳi(t0 + 3h̄)] ≈








0
C̄iB̄i1

...

C̄iA
n̄−1B̄i1








︸ ︷︷ ︸

Mi,i1

ζ̂1(kT ), i = 1, ..., p.

Now assume that n̄ ∈ {1, ..., n} is sufficiently large that

Mi,j 6= 0 for every i, j ∈ {1, ..., p}.3 This now means that

1

2ρ
(MT

i,i1
Mi,i1)

−1MT
i,i1

H(h)−1S−1

︸ ︷︷ ︸

=:M̄i,i1

[Ȳi(t0+2h̄)−Ȳi(t0+3h̄)]

≈ ζ̂1(kT ), i = 1, ..., p.

Of course, we can do the same for ζ̂2(kT ) as well: set

u(t) = û0(kT )+

{
ρw̄i2 ζ̂2(kT ) t ∈ [kT + 4h̄, kT + 5h̄)

−ρw̄i2 ζ̂2(kT ) t ∈ [kT + 5h̄, kT + 6h̄),

which means that the probing takes place only on channel

i2 using information obtainable from channel i2, yielding

M̄i,i2 [Ȳi(t0 + 4h̄) − Ȳi(t0 + 5h̄)] ≈ ζ̂2(kT ), i = 1, ..., p.

We can carry out the same procedure for the remaining

elements of ζ̂(kT ) as well.

2Choosing n̄ = n will do.
3Choosing n̄ = n will do.
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Since our objective is to form an estimate of ζ(kT ) at each

channel, it is convenient to define some new block diagonal

matrices containing associated M̄i,j terms:

M̃i := diag{M̄i,i1 , ..., M̄i,in
}, i = 1, ..., n.

We shall label the estimate of ζ(kT ) on channel i by ζ̂i(kT ).
At this point we are ready to provide a precise definition of

the controller.

VI. THE CONTROLLER

Now we fix n̄ ∈ {1, .., n} to satisfy the two constraints

discussed in the previous section, and let h > 0 and ρ > 0.

We use an interval of length h̄ := n̄h often; we set ℓ :=
(2n + 3)n̄ and the controller period to be T := ℓh.

With û0(0) ∈ R
m, we define the controller via three parts

- for k ∈ Z
+:

(i) Construct ξ̂(kT ) on [kT, kT + 2h̄).
Set

u(t) =

{
(1 + ρ)û0(kT ) t ∈ [kT, kT + h̄)
(1 − ρ)û0(kT ) t ∈ [kT + h̄, kT + 2h̄),

(4)

and define

Est[Oix(kT )] :=

Hi(h)−1S−1
i [

ρ − 1

2ρ
Yi(kT ) +

ρ + 1

2ρ
Yi(kT + h̄)]. (5)

Now define

ζ̂(kT ) := W






Est[O1x(kT )]
...

Est[Onx(kT )]




 .

(ii) Estimate ζ̂i(kT ) on [kT + 2h̄, kT + (2n + 2)h̄).
We first probe in sequence using the n elements of ζ̂(kT ):

u(t) = û0(kT )+






ρw̄i1 ζ̂1(kT ) t ∈ [kT + 2h̄, kT + 3h̄)

−ρw̄i1 ζ̂1(kT ) t ∈ [kT + 3h̄, kT + 4h̄)
...

ρw̄in
ζ̂n(kT ) t ∈ [kT + 2nh̄, kT + (2n + 1)h̄)

−ρw̄in
ζ̂n(kT ) t ∈ [kT + (2n + 1)h̄,

kT + (2n + 2)h̄)
(6)

and then form an estimate of ζ̂i(kT ) at the ith channel:

ζ̂i(kT ) := M̃i






Ȳi(kT + 2h̄) − Ȳi(kT + 3h̄)
...

Ȳi(kT + 2nh̄) − Ȳi(kT + (2n + 1)h̄)




 ,

for i = 1, ..., p.

(iii) Form the updated control law on [kT+(2n+2)h̄, kT+
(2n + 3)h̄).

Set

u(t) = û0(kT ), t ∈ [kT + (2n + 2)h̄, kT + (2n + 3)h̄),

and define the estimate of x(kT ) on the ith channel by

x̂i(kT ) := O−1
estζ̂

i(kT ),

as well as the updated control signal:

û0((k + 1)T ) =






F1x̂
1(kT )
...

Fpx̂
p(kT )




 . (7)

It turns out that the above controller has a state-space

representation of the form under consideration. Also, the

performance provided by the controller (4)-(7) tends toward

the optimal performance as ρ → 0 and T → 0, yielding:

Theorem 1: For every ε > 0 there exists a decentralized

controller of the form (2) which exponentially stabilizes the

plant (1) and ensures that, for every x0 ∈ Rn and z0 ∈ R
l,

the closed-loop system satisfies

J(x0, z0) − J0(x0) ≤ ε(‖x0‖
2 + ‖z0‖

2).

Remark 1: Notice that if the plant has unstable decentral-

ized fixed modes then no LTI controller can stabilize the

plant let alone provide near optimal performance. Also, if

we set z0 = 0 then the cost depends solely on x0. Last of

all, since the controller is linear periodic, it is easy to prove

that if we inject noise and each plant controller interface, the

map from the noise to all internal signals has a finite induced

gain in the ∞-norm sense.

VII. AN EXAMPLE

Consider the following system

ẋ =





2 0 −1
0 1 0
0 0 0



x +





1
0
1



 u1 +





0
1
0



 u2

y1 =
[

0 1 0
]
x

y2 =
[

1 0 0
]
x.

Suppose that the goal is to design a controller to minimize

the optimal cost with Q = I and R = I . This yields an

optimal control law of

u =

[
−12.7082 0 7.4721

0 −2.4142 0

]

x.

It can be easily checked that this system is controllable

and observable, so it satisfies Assumption 1. The transfer

function is

[
0 1

s−1
s+1

s(s+2) 0

]

, so it is strongly connected -

it satisfies Assumption 2. It can be easily checked that the

system has a decentralized fixed mode at 1, which means

that no LTI controller can stabilize it, let alone provide good

performance.

Since some elements of the blocks of G(s) are zero,

we need to regularize the system by applying some output

feedback: we choose

u =

[
1 0
0 1

]

y + unew,

so the optimal feedback for the regularized system is

unew =

[
−12.7082 −1.0000 7.4721
−1.0000 −2.4142 0

]

x.
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Fig. 1. The closed loop state response (x is solid while x
0 is dashed).

The first step is to choose n̄ - we set n̄ = n = 3. Since

(C1, Anew) is observable, we shall set

ζ(t) =





C1

C1Anew

C1A
2
new



x(t).

Since n̄ = 3, we first carry out estimation of ζ(kT ) for

2n̄h = 6h. We then probe n = 3 times, each of 6h
units of time. We then pause for n = 3 units of time,

yielding a period of T = 27h units of time. For large values

of T our controller may not provide closed loop stability;

as T decreases, stability is obtained, and the closed loop

performance improves as T → 0; however, to get near

optimal performance we need ρ to be small.

We have carried out a simulation for the case of ρ =

0.1, h = 0.001, T = 0.027, x(0) =
[

1 1 1
]T

, and

û0(0) = 1, and displayed the results in Figures 1 and 2;

in each plot we have also placed the optimal response for

comparison and for simplicity we have presented the signals

for the regularized system. We see that the response of x is

nearly optimal, while the control signal looks like the optimal

control signal with some dither added.
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−1

0

1
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u 2

time

Fig. 2. The closed-loop control signal response (u is solid while u
0 is

dashed.).

VIII. SUMMARY AND CONCLUSIONS

In this paper we considered the use of a linear periodic

controller (LPC) for the control of linear time-invariant

(LTI) plants in the decentralized setting. If a plant has an

unstable decentralized fixed mode, it is well known that

no LTI controller can stabilize it, let alone provide good

performance. Here we show that, if the plant is centrally

controllable and observable and the graph associated with

the plant is strongly connected, even if the plant has unstable

decentralized fixed modes we can still design an LPC to

provide LQR performance as close to optimality as desired.

The controller in each channel consists of a sampler, a zero-

order-hold, and a discrete-time linear periodic compensator,

which makes it easy to implement. However, to obtain good

performance we need to sample quickly, which may result

in poor performance in the presence of noise.

We would like to extend this work to the H∞ and/or L1

paradigm. Furthermore, we would like to investigate the case

in which the graph associated with the plant is not strongly

connected.
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