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Abstract— This paper extends recent results on minimum
variance input signal design for identification of Finite Impulse
Response (FIR) models to the Output Error (OE) system iden-
tification case. The idea is to use "the useful input parametriza-
tion" for OE models proposed by Stoica and Söderstrom (1982).
The advantage of this parametrization is that the Toeplitz
covariance matrix structure instrumental in the FIR analysis
also holds for this OE model input representation after a
transformation. However, an issue is that the corresponding
minimum variance cost function for the OE case will be more
complicated than for FIR models, and that the dimension of
the optimization problem will be of one degree higher than
for the corresponding FIR case. The proposed OE framework
is applied to minimum variance input signal design in system
identification frequency response estimation and model predic-
tive control. The results are illustrated by numerical examples.

I. INTRODUCTION

In recent years there have been considerable advances in
experiment design for identification of dynamical systems
based on convex optimization methods, [8], [6], [16], [3],
[15], [21], [7], [19], [1], [4], [9], [14], [10], [2], [5], [13],
[12]. As shown in [20] many classical methods for input
design can be reformulated as convex optimization problems.
The unifying framework for optimal input design for system
identification presented in [11] provides a transparent way
to connect the performance of the estimated model in the
intended application to the system identification experiment
conditions. The identification objective is to guarantee, with
a given probability, that the estimated model will be in the
set of models that satisfies given specifications. The papers
[23], [24] have analyzed and evaluated this framework,
in detail, by using the fact that the corresponding input
minimum variance optimization problem has a very simple
structure for Finite Impulse Response (FIR) models. The
problem is more involved for Output Error (OE), even if
it is possible to find the optimal input for such models
using numerical convex optimization. However, by using the
input parametrization proposed in [22], several structural FIR
results can be extended to identification of OE, and also Box-
Jenkins, models. This parametrization also allows for a direct
implementation of the corresponding SDP/LMI optimization
problem.

The outline of the paper is as follows: In Section II
application motivated system identification and optimal input
design are introduced. Section III considers the output error
model case in detail. Frequency response estimation is stud-
ied in Section IV, while Section V and VI deals with control
application examples. Section VII concludes the paper.
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II. PROBLEM FORMULATION

Consider an asymptotically stable time-invariant discrete-
time linear dynamical system

y(t) =
B(q)
F(q)

u(t)+ e(t), (1)

with input signal sequence {u(t)}, output signal sequence
{y(t)}, and zero mean white noise {e(t)} with variance σ2.
Here

B(q) = b1q−1 + . . .+bnq−n, F(q) = 1+ f1q−1 + . . .+ fnq−n,

where q−1 is the delay operator, i.e. q−1u(t) = u(t− 1). It
is assumed that the roots of F(q) are strictly inside the unit
circle and that B(q) and F(q) have no common factor (no
pole zero cancelations). The relation (1) is called an Output
Error (OE) model structure. By also including a noise model
with a separate parametrization we can extend the results to
be presented to so-called Box-Jenkins models.

We are interested in applications that depend on the
transfer function G(q) = B(q)/F(q). One important example
is the frequency response G(eiω) = B(eiω)/F(eiω). Other
applications are model based control design, such as internal
model control and model predictive control.

Introduce the model parameter vector

θ = [b1, . . . ,bn, f1, . . . , fn]
T ∈ R2n,

and assume that the true system can be described by the
parameter vector θo. We will use the notation G(q,θ) =
B(q,θ)/F(q,θ) to stress the parameter dependence.

A. Application
Let Vapp(θ) denote an application cost function that mea-

sures the degradation in performance due to model errors
for a certain model based application. The specifications are
given by

Vapp(θ)≤
1
2γ

, (2)

for some constant γ > 0. Without loss of generality, we
can assume that Vapp(θ) ≥ 0 with minimum at θo such
that Vapp(θo) = 0. This leads to the Taylor series expansion
approximation

Vapp(θ)≈ 0.5[θ −θo]
TV ′′app(θo)[θ −θo],

where we have neglected higher order terms. The application
specifications (2) can thus be approximated by the ellipsoidal
set

Eapp =

{
θ : [θ −θo]

TV ′′app(θo)[θ −θo]≤
1
γ

}
. (3)

The accuracy of this approximation depends on Vapp(θ) and
γ . A high value of γ gives a more restricted set and a better
quadratic approximation.
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For the frequency response example we have

Vapp(θ) = |G(eiω ,θ)−G(eiω ,θo)|2.

B. System Identification
Let θ̂N be a model parameter vector estimated from N

measured input output observations, {u(t),y(t), t = 1, . . . ,N}
using a Prediction Error Model (PEM) identification method,
see [17]. We then have the following asymptotic (large N)
result

θ̂N ∈ ESI =
{

θ : [θ −θo]
T IF [θ −θo]≤

κ

N

}
, w.p. α, (4)

where
IF =

1
2π

∫
π

−π

Ψu(eiω)Ψ∗u(e
iω)dω, (5)

is the average Fisher information matrix and Ψu(eiω) is the
normalized prediction error gradient. The constant κ depends
on the number of estimated parameters and the probability α ,
and can be determined from the χ2-distribution. This means
that we guarantee with probability α that the estimated model
belongs to the ellipsoidal set given in (4). Furthermore,
(provided the input is persistently exciting so that the Fisher
information matrix is invertible)

E{[θ̂N−θo][θ̂N−θo]
T} ≈ 1

N
I−1

F ,

for large N.
In Section III we will in detail discuss the Fisher infor-

mation matrix IF for OE models.

C. Minimum Variance Input Design
To connect system identification to the application we need

to insure that the system identification set defined by (4) is
inside the application set defined by the quadratic form (3).
Since both sets are ellipsoidal, it is enough to verify the
matrix inequality1

N
κ

IF ≥ γ V ′′app(θo). (6)

This inequality together with (4) imply θ̂N ∈ Eapp, (3), with
at least probability α .

Inspired by the framework of least costly identification
experiment design for control introduced in [5], the following
minimum variance input signal optimization problem

min
u(t)

E{u2(t)} s.t.
N
κ

IF ≥ γ V ′′app(θo), (7)

where {u(t)} is the input signal to be used in the system iden-
tification experiment, where proposed in [11]. The objective
is to find the minimum variance input signal such that the
application specification is satisfied for the estimated model
θ̂N . It is important to understand how the Fisher information
matrix IF depends on the input signal. In general, IF is an
affine function in the input power spectral density Φu(ω)
and since E{u2(t)} is also linear in Φu(ω), we obtain
a Semi-Definite Program (SDP) (linear cost-function and
linear matrix inequities) where we optimize with respect to
the power spectral density or the corresponding covariance
function. This infinite dimensional convex optimization prob-
lem can be approximately solved using a finite dimensional
parametrization of Φ(ω)≥ 0. The problem simplifies greatly

1X ≥ Y means that [X−Y ] is a positive semi-definite matrix.

for Finite Impulse Response (FIR) models, since σ2IF is
the symmetric Toeplitz matrix with the initial values of the
covariance function of {u(t)}, rk = E{u(t)u(t − k)}, as its
first row. Since the cost function is the variance of {u(t)},
i.e. r0, we obtain a Semi-Definite Program with optimization
variables rk, k = 0, . . . , (n−1).

A more classical formulation of the minimum variance
input signal design problem is

min
u(t)

E{u2(t)} s.t. E{Vapp(θ̂N)} ≤ γ. (8)

This problem can be approximated by

min
u(t)

E{u2(t)} s.t. trace{V ′′app(θo)
1
N

I−1
F } ≤ γ, (9)

and can also be reformulated as convex optimization problem
using Schur complements.

III. STRUCTURAL RESULTS FOR OE MODELS

For OE models the gradient filter (without normalization)

Ψ(q) =
d

dθ
G(q,θ)

has the following structure, see [17],

Ψ(q) =[
q−1

F(q)
, . . . ,

q−n

F(q)
,

B(q)
F(q)

(−q−1)

F(q)
, . . . ,

B(q)
F(q)

(−q−n)

F(q)

]T

,

and the Information Matrix equals

IF =
1

σ2 E{[Ψ(q)u(t)][Ψ(q)u(t)]T}.

The key idea, introduced in [22], is to write

Ψ(q) =
1

F2(q)
×[

q−1F(q), . . . ,q−nF(q),(−q−1)B(q), . . . ,(−q−n)B(q)
]T

= S (F,−B)
[
q−1, . . . ,q−2n]T 1

F2(q)
(10)

where we have introduced the Sylvester matrix

S (F,−B) =



1 f1 . . . fn

0
. . . . . . . . . 0

1 f1 . . . fn
0 −b1 . . . −bn

0
. . . . . . . . . 0

0 −b1 . . . −bn


.

Define the filtered input signal

ū(t) =
1

F2(q)
u(t),

for which

Ψ(q)u(t) = S (F,−B) [ū(t−1) ū(t−2), . . . , ū(t−2n)]T

and thus

IF =
1

σ2 S (Fo,−Bo) R̄2n S (Fo,−Bo)
T .

The matrix R̄2n is the 2n× 2n symmetric Toeplitz matrix
with first row [r̄0, . . . r̄2n−1], where r̄k = E{ū(t)ū(t − k)} is
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the covariance function of the filtered input signal ū(t). We
have. as before, denoted the true system with sub-index o.

In the frequency domain

Ψu(eiω) = Ψ(eiω)

√
Φu(eiω)

σ

in (5), where Φu(eiω) is the power spectral density of {u(t)}.

In order to formulate the minimum variance optimal input
signal design problem we have to relate the variance of the
original input signal u(t) to the covariance function of ū(t),

E{u2(t)}= E{[F2(q,θo)ū(t)]2}= f̄ T
o R̄2n+1 f̄o

where f̄o is the n+1 dimensional column vector constructed
from the coefficients of F2(q,θo). Notice that we have to
increase the dimension of the Toeplitz matrix to (n+ 1)×
(n+ 1) to determine the variance of u(t). This means that
we need to optimize with respect to the covariances r̄0 to r̄2n
of ū(t).

Another option is to minimize the variance of the output
signal y(t), c.f. [18], by using

E{y2(t)}= E{[B(q,θo)F(q,θo)ū(t)]2}= b̄T
o R̄2n b̄o,

where b̄o is the n dimensional column vector constructed
from the coefficients of the polynomial B(q,θo)F(q,θo).
Notice that the leading coefficient of B(q)F(q) is zero and we
thus only need to know the covariances r̄k, k = 0, . . . ,(2n−1)
to calculate the variance of y(t), i.e. the same number of
covariances that is defining IF .

A. Optimal Input Design for OE Models
We can now write the constraint in the minimum variance

input optimization problem (9) for OE models as

N
κσ2 S (Fo,−Bo) R̄2n S (Fo,−Bo)

T ≥ γ V ′′app(θo). (11)

Since we assume no pole zero cancelations for the true
system, the Sylvester matrix S (Fo,−Bo) has full rank.
Hence, we can write (9) as

min
r̄k, k=0,...,2n

f̄ T
o R̄2n+1 f̄o (12)

s.t. R̄2n ≥
κσ2γ

N
S (Fo,−Bo)

−1V ′′app(θo)S (Fo,−Bo)
−T

R̄2n+1 ≥ 0.

We have to add the constraint R̄2n+1 ≥ 0 for r̄k, k = 0, . . . ,2n,
to be a quasi-stationary covariance sequence.

If we instead choose to minimize the variance of the output
signal y(t), we should solve

min
r̄k,k=0,...,2n−1

b̄T
o R̄2n b̄o (13)

s.t. R̄2n ≥
κσ2γ

N
S (Fo,−Bo)

−1V ′′app(θo)S (Fo,−Bo)
−T .

It is easy to recover u(t) from ū(t) by using u(t)=F2(q)u(t).

These two optimization problems look very much as the
one for optimal input design for identification of FIR models,
and both can be solved by more or less re-using the FIR code.
The two main differences are

• The cost function f̄ T R̄2n+1 f̄ T is slightly more compli-
cated than for the FIR case, where we just minimize the
input variance r0.

• For the OE case the dimension of the optimization
problem for input variance minimization equals the
number of parameters plus one. It is one dimension
higher than for the corresponding FIR problem. This
implies that it is difficult to obtain an analytic solution
even for the simplest OE model case with just two
parameters.

IV. FREQUENCY RESPONSE ESTIMATION

We will start by analyzing the classical frequency response
problem for which

Vapp(θ) = |G(eiω ,θ)−G(eiω ,θo)|2, (14)

where ω is a given frequency. For

G(eiω ,θ) =
B(eiω ,θ)

F(eiω ,θ)
⇒

d
dθ

G(eiω ,θ) = S (F,−B)
[
e−iω . . .e−2niω]T 1

F2(eiω ,θ)
.

Here we have used the same calculations as when deriving
the gradient filter Ψ(q) in (10). Now

V ′′app(θo) =
2

|F(eiω ,θo)|4
S (Fo,−Bo)×

Re
{[

e−iω , . . . ,e−2niω
]∗ [e−iω , . . . ,e−2niω

]}
S (Fo,−Bo)

T .

Here Re denotes the real part of the matrix. Notice that
Vapp(θo) is a real-valued function of θ ∈R2n. We now obtain
the simple expression

S (Fo,−Bo)
−1V ′′app(θo)S (Fo,−Bo)

−T =
2

|F(eiω ,θo)|4
M,

where M is the symmetric 2n×2n Toeplitz matrix with first
row [1,cos(ω), . . . ,cos((2n−1)ω)].

We now have the input minimum variance problem
(min E{u2(t)})

min
r̄k, k=0,...,2n

f̄ T
o R̄2n+1 f̄o (15)

s.t. R̄2n ≥
κσ2γ

N
2

|F(eiω ,θo)|4
M, R̄2n+1 ≥ 0

and the output minimum variance problem (min E{y2(t)})

min
r̄k,k=0,...,2n−1

b̄T
o R̄2n b̄o (16)

s.t. R̄2n ≥
κσ2γ

N
2

|F(eiω ,θo)|4
M.

For ω 6= 0,π the Toeplitz matrix M is the covariance matrix
corresponding to the sinusoidal signal

m(t) =
√

2cos(ωt) ⇒ rk = cos(ωk), k = 0,1, . . .

Here we have used the framework of quasi-stationary signals
to define the covariance function rk of the sinusoidal signal
m(t), see [17].

It is easy to solve the output minimum variance problem
(16).
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Proposition 1: An optimal solution to Problem (16) with
ω 6= 0,π is given by

ū(t) =
√

2κγ σ√
N

√
2

|F(eiω ,θo)|2
cos(ωt),

and thus
u(t) =

2
√

κγ σ√
N

cos(ωt).

The solutions for ω = 0,π are

u(t) =
√

2κγ σ√
N

cos(ωt), ω = 0,π.

Proof: The covariance matrix of proposed input signal
satisfies

R̄opt
2n =

κσ2γ

N
2

|F(eiω ,θo)|4
M

and since R̄2n ≥ R̄opt
2n for all other feasible solutions we have

b̄T R̄2n b̄o ≥ b̄T
o R̄opt

2n b̄o,

i.e. the cost function is minimized for R̄opt
2n . Notice that the

solution does not depend on the phase of the sinusoidal
signal. For ω = 0,π we need to scale the amplitude with
a factor of

√
2 to obtain the correct power.

Proposition 1 may seem obvious, but as shown in [24],
it is for example in general not true if we instead use the
constraint

E{|G(eiω , θ̂N)−G(eiω ,θo)|2} ≤ δ

in the minimum variance optimization problem. The input
minimum variance problem (15) is also more involved,
since the dimension is higher and we have two matrix
inequalities. The sinusoidal solution to Problem (16) satisfies
the constraint, but as shown in the following example it is
possible to find signals with a smaller optimal cost.

A. Example of Input Minimum Variance Design
Consider the first order OE frequency reponse

G(eiω) =
be−iω

1+ f e−iω , | f | ≤ 1. (17)

The minimum variance problem (15) then equals

min
r̄k, k=0,1,2

[1,2 fo, f 2
o ]

[
r̄0 r̄1 r̄2
r̄1 r̄0 r̄0
r̄2 r̄1 r̄0

]
[1,2 fo, f 2

o ]
T (18)

s.t.
[

r̄0 r̄1
r̄1 r̄0

]
≥C

[
1 cos(ω)

cos(ω) 1

]
,[

r̄0 r̄1 r̄2
r̄1 r̄0 r̄0
r̄2 r̄1 r̄0

]
≥ 0, C =

κσ2γ

N
2

|F(eiω ,θo)|4
.

It is possible to analytically solve this problem. The solution
is given in the appendix. The optimal solution depends on
the inequalities

2| f |(1− cos(ω))

(1+ f )2 ≥ 1,
2| f |(1+ cos(ω))

(1− f )2 ≥ 1.

If none of these constraints are fulfilled the optimal solution
is the same as for the output variance case, i.e. the sinusoidal
signal given by Proposition 1. This is the case for small | f |,
which makes sense since for f = 0 the input variance and the

output variance problem coincides. It is interesting to notice
that a | f | close to one may give a quite different solution.
The following numerical example confirms this.

The true parameters are bo = 1 and fo = 0.9. Figure 1
shows the corresponding input minimum variance of the
solution to Problem (15) and Problem (16) for ω ∈ [0,π]. We
have scaled the variances so that r0 for the solution given by
Proposition 1 is equal to 1.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ω

r 0
Fig. 1. First order example:Scaled input minimum variance of the solution
to Problem (16) (dashed line) and to Problem (15) (full line) for ω ∈ [0,π].

V. FEED FORWARD CONTROL EXAMPLES

Consider the OE system with additive disturbance

y(t) = G(q,θo)u(t)+d(t), (19)

with input signal sequence {u(t)}, output signal sequence
{y(t)}, and disturbance {d(t)}. The control objective is to
reject the disturbance d(t), i.e. to keep y(t) close to zero. To
simplify the calculations we will assume d(t) to be a unit
step disturbance,

d(t) =
{

0, t < 0
1, t ≥ 0 . (20)

The model based feed forward open loop controller to this
disturbance rejection problem is u(t) = −d(t)/G(1,θ). We
will study the effects of errors in the static gain G(1,θ)
on the steady state control error using the application cost
function

Vapp(θ) =

[
1− G(1,θo)

G(1,θ)

]2

. (21)

Here

V ′′app(θo) =
2

B2(1,θo)F2(1,θo)
×

S (Fo,Bo)[1,1, . . . ,1]T [1,1, . . . ,1]S T (Fo,Bo).

From Proposition 1 it follows that the constant signal

ū(t) =

√
2

B((1,θo)F(1,θo)

√
2κγ σ√

N
and hence

u(t) =

√
2

G(1,θ)

√
2κγ σ√

N
solves the output minimum variance problem (13).
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VI. A MODEL PREDICTIVE CONTROL EXAMPLE

The final examples concern Model Predictive Control
(MPC). Here it is not possible to analytically find V ′′app(θ),
and we will instead use numerical differentiation. We will
study two cases. In the first one we have a constant dis-
turbance on the output signal and in the second one the
disturbance is applied to the input.

A. Constant Output Disturbance
Consider a first order OE state space model with additive

output disturbance d(t) difference form[
x1(t +1)
x2(t +1)
x3(t +1)

]
=

[
1− f f −b

1 0 0
0 0 0

][
x1(t)
x2(t)
x3(t)

]
+

[
b
0
1

]
u(t)

++

[
1
0
0

]
v(t) (22)

y(t) = [1 0 0]

[
x1(t)
x2(t)
x3(t)

]
,

where the state x(t) = [y(t),y(t−1),u(t−1)]T is fully mea-
surable. Here v(t) = d(t +1)+ ( f −1)d(t)− f d(t−1). The
disturbance is d(t)= 1, t ≥ 0, and zero otherwise. This means
that v(t) = 0, t ≥ 1. We then have y(−1) = u(−1) = 0 and
y(0) = 1. The application cost-function is defined by

Vapp(θ) =
1
M

M

∑
t=1

[y(t,θ)− y(t,θo)]
2, (23)

where y(t,θ) is the output signal under the MPC feedback
control based on the model θ . The application set Eapp is
defined by (3), and the system identification set ESI is defined
by (4).

We use a standard MPC problem formulation

min
u(k), k=t,...t+h−1

t+h

∑
k=t+1

{y2(k)+λ [u(k−1)−u(k−2)]2}

+xT (t +h)Qx(t +h) (24)

subject to the dynamics with given initial conditions x(t) and
a constraint on the input signal.

We will first study the system with true parameters bo =
0.1 and fo =−0.9, i.e., the static gain of the system is 1. The
MPC prediction and control horizons are h = 10 and Vapp is
calculated with M = 10. There are no constraints on the input
signal in the MPC control problem. The weights λ and Q
are both set to zero. The Hessian V ′′app(θo) is found using
numerical differentiation. The problem (12) is then solved
with γ = 1000, σ2 = 0.01, N = 100 and κ from the χ2(2)-
distribution with α = 0.95. We assume that the disturbance
is not active during the identification experiment. We add,
however, white measurement noise.

Figure 2 shows the ellipsoidal sets, where ESI lies inside
of Eapp. The larger semi-axis of Eapp corresponds to eigen-
vector [0.07 −1.00]T with eigenvalue 0.04, and the smaller
to eigenvector [−1.00 − 0.07]T with eigenvalue 223. We
performed 1000 estimates of the model parameters, 94.6 %
of those are in ESI . We see that, with respect to the intended
application, it is more important to estimate b with high
accuracy than f .

We now change the input weight λ to 0.1. The larger semi-
axis of Eapp corresponds to eigenvector [0.07 −1.00]T with

0.096 0.098 0.1 0.102 0.104 0.106

−0.905

−0.904

−0.903

−0.902

−0.901

−0.9

−0.899

−0.898

−0.897

−0.896

b

f

Fig. 2. MPC Example with λ = 0 and output disturbance: Eapp is the outer
ellipse (almost vertical lines), ESI is the inner ellipse and θ̂N are the small
circles.

eigenvalue 0.05, and the smaller to eigenvector [−1.00 −
0.07]T with eigenvalue 41.4. We can conclude that it is still
more important to estimate b.

B. Constant Input Disturbance
We will now move the disturbance to the input of the

system

y(t) =
bq−1

1+ f q−1 [u(t)+d(t)].

The incremental state space model (22) is modified to v(t) =
b[d(t)− d(t − 1)] with d(t) = 1, t ≥ 0 and zero otherwise.
Here we will have x(0) = 0. The application cost (23) and
the MPC design formulation (24) remain the same and the
settings are equivalent to those in the first example with
output disturbance. The identification experiment is done
without disturbance, but with measurement noise.

Figure 3 shows the obtained ellipsoidal sets. The larger
semi-axis of Eapp corresponds to eigenvector [0.06 −1.00]T
with eigenvalue 0.0005, and the smaller to eigenvector
[−1.00 −0.06]T with eigenvalue 0.89. We performed 1000
estimates of the model parameters, 95 % of those lie inside
ESI . We can see that even though the disturbance has shifted
from the output to the input, the most important direction
remains the same. That is, it is still more crucial to estimate
b with high accuracy than f . Although, not as high accuracy
as in the previous examples.

We can see that the important direction of the parameters
has shifted compared to the output disturbance case. It is
now crucial to estimate the positive weighted difference
0.81 f −0.58b of the parameters with high accuracy instead
of a positive weighted sum.

VII. CONCLUSION

We have studied the system identification input design
approach developed in [11] for OE models. By using the
parametrization proposed in [22] we can relate the OE error
case to input design for FIR models. The main difference
is a more complicated cost function. The usefulness of the
proposed approach lies in its simplicity and exactness. This
is because many approaches to optimal input design rely
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Fig. 3. MPC Example with λ = 0 and input disturbance: Eapp is the outer
ellipse (almost vertical lines), ESI is the inner ellipse and θ̂N are the small
circles. .

either on the discretization of the spectrum, or on restricting
its structure (say, to an MA spectrum). The so-called partial
correlation approach [14], does not constrain the structure of
the input spectrum, but it is a bit cumbersome to apply to
general input design problems, since it cannot easily handle
frequency domain constraints. The approach considered here,
on the other hand, is reasonably straightforward to use and it
has wide applicability, as we have shown in Sections III-V.

An interesting observation based on the parametrization
introduced in Section II (based on [22]) is that for an
important class of polynomial model structures (e.g. FIR,
OE and BJ, as seen here), the covariance matrix of the pa-
rameters, and thus their confidence ellipsoids, is constrained
by a Toeplitz structure. This is an early observation in
the system identification literature (since it motivated the
original definition of "persistency of excitation" in terms of
the positive definiteness of a Toeplitz matrix). However, it is
important to remind the reader that this is the reason why it
is impossible in many cases for the identification ellipsoid
to match the application ellipsoid. Therefore, in order to
understand the effects of the model structure in optimal input
design (and identification in general), it is very important to
analyze the geometry of Toeplitz ellipsoids, for which it is
enough to start from the study of basic FIR structures, since
the geometry of more complicated structures has similar
degrees of freedom.

In addition, from the parametrization introduced in Section
II we can clearly see the influence of the true parameter
vector on the input design problem (for OE and BJ struc-
tures): the elements of θo appear in the Sylvester matrix
S (F,−B) and the transformation F2(q)ū(t) = u(t). This
shows that θo has a double effect: it changes the geometry of
the confidence ellipsoid (i.e. the directions and lengths of its
principal axes), and it affects the weighting of the spectral
components of u(t), in the sense that some frequencies
will have more influence on the estimation accuracy than
others. Understanding these effects can have great impact
on areas such as robust experiment design, where the lack
of knowledge about the true plant (before the experiment is
performed) has to be explicitly taken into account.

APPENDIX

We will derive optimality conditions for problem (18) for

C =
κσ2γ

N
2

|F(eiω |4
= 1.

The general solution is then obtained by multiplying the
solution for C = 1 with C. We will use the notation d =
cos(ω) ∈ [−1,1]. The objective function in (18) equals

J(r̄0, r̄1, r̄2) = ar̄0 +br̄1 + cr̄2, (25)

with a = 1+ 4 f 2 + f 4 > 0, b = 4 f + 4 f 3 and c = 2 f 2 ≥ 0,
where | f | ≤ 1. Notice that a+b+c=(1+ f )4 and a−b+c=
(1− f )4. The first constraint in (18) is[

r̄0−1 r̄1−d
r̄1−d r̄0−1

]
≥ 0

for which[
1 1
−1 1

]T [r̄0−1 r̄1−d
r̄1−d r̄0−1

][
1 1
−1 1

]
=

[
2(r̄0− r̄1−1+d) 0

0 2(r̄0 + r̄1−1−d)

]
≥ 0 (26)

Hence we obtain the condition

r̄0 ≥ 1+ |r̄1−d| (27)

Next, we will use the same transformation idea to obtain[
1 0 1
0 1 0
−1 0 1

]T [r̄0 r̄1 r̄2
r̄1 r̄0 r̄1
r̄2 r̄1 r̄0

][
1 0 1
0 1 0
−1 0 1

]

=

[
2(r̄0− r̄2) 0 0

0 r̄0 2r̄1
0 2r̄1 2(r̄0 + r̄2)

]
≥ 0 (28)

This gives the two conditions

r̄0 ≥ r̄2,

[
r̄0 2r̄1

2r̄1 2(r̄0 + r̄2)

]
≥ 0 (29)

The matrix inequality holds if

r̄0 ≥ 0, r̄0 + r̄2 ≥ 0, 2(r̄2
0 + r̄0r̄2)−4r̄2

1 ≥ 0

The two conditions (29) can thus be summarized by

r̄0 ≥ |r̄2|, r̄2 ≥
2r̄2

1
r̄0
− r̄0 (30)

We can now divide the derivation into three cases when the
different conditions are active:
Case 1: Assume r̄1 > d. Condition (27) is then active for
r̄0 = 1+ r̄1−d ⇒ r̄1 = r̄0−1+d. Condition (30) then implies

r̄2 ≥
2r̄2

1
r̄0
− r̄0 = r̄0 +

2(1−d)2

r̄0
−4(1−d)

and the cost-function (25) with these constraints active
becomes

J(r̄0) = ar̄0 +b(r̄0−1+d)+ c(r̄0 +
2(1−d)2

r̄0
−4(1−d))

This is a convex function in r̄0 and minimized for

r̄2
0 =

2c(1−d)2

a+b+ c
=

4 f 2(1− cos(ω))2

(1+ f )4
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This solution is only valid if r̄1 > d, which is equivalent to
r̄0 > 1. This means

2| f |(1− cos(ω))

(1+ f )2 > 1 ⇔

| f − (−2+ cos(ω))|<
√
(2− cos(ω))2−1. (31)

Case 2: Assume r̄1 < d. Condition (27) is then active for
r̄0 = 1− r̄1 + d ⇒ r̄1 = −r̄0 + 1 + d. Condition (30) then
implies

r̄2 ≥
2r̄2

1
r̄0
− r̄0 = r̄0 +

2(1+d)2

r̄0
−4(1+d)

and the cost-function (25) with these constraints active
becomes

J(r̄0) = ar̄0 +b(−r̄0 +1+d)+ c(r̄0 +
2(1+d)2

r̄0
−4(1+d))

This is a convex function in r̄0 and minimized for

r̄2
0 =

2c(1+d)2

a−b+ c
=

4 f 2(1+ cos(ω))2

(1− f )4

This solution is only valid if r̄1 < d, which is equivalent to
r̄0 > 1, i.e.

2| f |(1+ cos(ω))

(1− f )2 > 1 ⇔

| f − (2+ cos(ω)|<
√
(2+ cos(ω))2−1. (32)

Case 3: Finally, we now have to check the case r̄1 = d and
r̄0 = 1 . Since c ≥ 0 in the cost function (25), r̄2 should be
chosen as small as possible, but (30) implies r̄2 ≥

2r̄2
1

r̄0
− r̄0 =

2d2−1= cos(2ω). The condition r̄0≥ |r̄2| will only be active
for ω = 0,π .
Summary: Inequality (31) defines an interval for f centered
at f = −2+ cos(ω) (for fixed ω ), which is contained in
−1 < f < 0. The interval contain f = −1 but not f =
0 becomes (−2 + cos(ω))2 ≤ (2− cos(ω))2 − 1, which is
a contradiction. Inequality (32) defines an interval for f
centered at f = 2−cos(ω) (for fixed ω ), which is contained
in 0 < f < 1. The interval contains f = 1, but not f = 0.

Depending on f , and ω we have the optimal solutions:
If (31) holds (negative f ) , the optimal solution is

r̄0 =
2| f |(1− cos(ω))

(1+ f )2 , r̄1 = r̄0−1+ cos(ω),

r̄2 = r̄0 +
2(1− cos(ω))2

r̄0
−4(1− cos(ω)).

If (32) holds (positive f ) , the optimal solution is

r̄0 =
2| f |(1+ cos(ω))

(1− f )2 , r̄1 =−r̄0 +1+ cos(ω),

r̄2 = r̄0 +
2(1+ cos(ω))2

r̄0
−4(1+ cos(ω))

If neither of the conditions hold (small f ) the optimal
solution is

r̄0 = 1, r̄1 = cos(ω), r̄2 = cos(2ω),
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