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Abstract— Recently, identification of real-valued NMP zeros
of discrete-time LTI systems has been studied in a few works.
Among the key results, an adaptive input design approach is
presented for consistent estimation of NMP zeros of stable LTI
systems. However, this result is not applicable if the sign of
the first impulse response coefficient is unknown. This paper
studies the problem of estimation of the farthest NMP zeros
without such prior knowledge.

I. INTRODUCTION

A model is often used in control design for both analysis
and synthesis purposes. Consequently, system identification
with focus on control design has been a research area with
a lot of activity. The overall objective of identification for
control is to deliver models suitable for control design (see,
e.g., [5], [10] and the references therein). Non-minimum-
phase (NMP) zeros play important roles in many control ap-
plications since they limit closed loop performance. Recently,
identification of real-valued NMP zeros of discrete-time LTI
systems has been studied in a few works (see, e.g., [5], [10]
and [12]). Particularly, [12] proposes an adaptive approach
to consistent estimation of real-valued NMP zeros of stable
LTI systems, which shows that it is possible to estimate a
real-valued NMP zero with multiplicity one outside the unit
circle consistently using a simple two parameter FIR model
if the input can be manipulated and some prior information
is available. In [12], it is assumed that not only some prior
knowledge about the location of the NMP zero of interest
but also the sign of the first impulse response coefficient are
known. In fact, the assumption on the sign of the frequency
gain is frequently used in adaptive control (see [1], [11], [12]
and the references therein). However, prior knowledge on the
sign of the first impulse response coefficient is unavailable in
many practical cases. Based on the result in [12], this work
studies the problem of consistent estimation of the farthest
NMP zeros of stable LTI systems when the sign of the zero
is known while that of the first impulse response coefficient
is unknown. In this paper, a real-valued NMP zero z of a
system is called a farthest NMP zero if there is no zero of the
system larger (resp., less) than z when z > 0 (resp., z < 0).

II. REVIEW OF ADAPTIVE NMP ZERO ESTIMATION

In this section, we review the development of an adaptive
method for consistent estimation of real-valued NMP zeros
in [12]. The assumptions used in [12] are cited as follows:
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Assumption 2.1 (System): The system has a state-space
representation of the form

ξn+1 = Aoξn +Boun +Koeon
yn = Coξn + eon

(1)

where un ∈ R and yn ∈ R represent the input and measured
output at time n, respectively, where ξ ∈ Rm, for some
positive integer m, is the state vector, and eon represents noise
acting on the system.
The transition matrix Ao has all its eigenvalues strictly inside
the unit circle, i.e., the system is internally stable.
The input-output relationship of the system is given by

yn = Go(q)un + won, (2)

where

Go(q) = Co(qI −Ao)−1Bo =

∞∑
j=1

g∗j q
−j , (3)

and won = Ho(q)eon with Ho(q) = Co(qI − Ao)−1Ko + 1.
The system has one pure time delay, i.e., g∗1 6= 0.
The system has a real-valued NMP zero of multiplicity 1 at
an unknown location z∗, i.e., Go(z∗) = 0, where z∗ ∈ R and
|z∗| > 1.

Assumption 2.2 (Prior system knowledge): The following
prior knowledge is assumed:

i) A compact interval

G = {g1 : g
1
≤ g1 ≤ ḡ1} with 0 /∈ G, g∗1 ∈ G; (4)

ii) A compact interval Z ⊂ R with the following properties

Go(z) = 0, z ∈ Z ⇒ z = z∗
z ∈ Z ⇒ |z| > 1;

(5)

iii) The parity of the number of system zeros on the ray
{αz∗, α > 1} is known.

Assumption 2.3 (Noise): The noise {eon} is a sequence of
independent random variables of zero mean and variance λo
for which

sup
n

E
[
eε(e

o
n)

2]
<∞ (6)

holds for some ε > 0.
Assumption 2.4 (Input): The input is generated by

un+1 = ρ−1n un +
√
λu

√
1− ρ−2n rn (7)

where λu is a user-defined positive constant and {rn} is
a sequence of independent random variables of zero mean
and unit variance. Furthermore, {rn} is independent of {eon}
and subject to the condition supn E

[
eε(rn)

2]
<∞ for some

ε > 0.
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Fig. 1. Solid (red) line: Typical realization of (26) in [12] applied to (47)
with initial values g1 = −0.5 and z = 3.5. Dotted (blue) line: True location
of the zero.

It is assumed that the input is stationary and generated
by (7) with ρn = ρ and |ρ| > 1, which is emphasized by
indexing the signals with ρ, e.g.,

un(ρ) = ρ−1un−1(ρ) +
√
λu
√

1− ρ−2 rn−1, (8)
yn(ρ) = Go(ρ)un(ρ) + won. (9)

The model parameters used in [12] are the first impulse
response coefficient g1 and the zero of interest z. Corre-
spondingly, the model predictor and the normal equations
for the least squares critirion are given by (15) and (16) in
[12], respectively. It is verified that g1 = g∗1 and z = z∗ is
the unique solution to the normal equations with ρ = z∗, i.e.,
(22) in [12], and an adaptive algorithm is proposed by (26) in
[12] for estimation of NMP zeros of the system (2). It should
be pointed out that, according to Assumption 2.2, the sign of
the first impulse response coefficient g∗1 has to be known in
advance since 0 /∈ G. This is also explicitly stated in [12]. In
fact, without prior knowledge on the sign of g∗1 , the proposed
method in [12] is not applicable. For example, with prior
knowledge of the sign of g∗1 , the algorithm presented by [12]
managed to estimate the farthest NMP zero z∗ = 3 of the
system (47) by choosing initial values g1 = 0.5 and z = 3.5
(see Numerical example (61) in [12]). But it does not work
when the initial values are given by g1 = −0.5 and z = 3.5,
which represents the case in which the sign of g∗1 is unknown
in advance, see Fig. 1. To cope with this problem, this paper
proposes an improved algorithm for estimation of the farthest
NMP zeros of the system (2) when prior knowledge on the
sign of g∗1 is unavailable.

III. AN IMPROVED ALGORITHM

Let z∗ be the farthest NMP zero of interest and s∗ =
sgn(z∗). Since there is no prior knowledge on the sign of
g∗1 , we replace Assumption 2.2 with the following one, in
which the origin can be contained in the set G.

Assumption 2.2′: The following prior knowledge is as-
sumed:

i) A real convex compact set

G = {g1 : g
1
≤ g1 ≤ ḡ1} with g∗1 ∈ G; (10)

ii) A compact interval Z ⊂ R with the following properties

z∗ ∈ Z
Go(z) = 0, z ∈ Z ⇒ z = z∗

z ∈ Z ⇒ |z| > 1.
(11)

So there is no zero of the system (2) larger (resp. less)
than z∗ if s∗ = 1 (resp. s∗ = −1). Since Z is a compact
interval, there is a pair of positive numbers lZ and hZ such
that 1 < lZ ≤ |z| ≤ hZ for all z ∈ Z . Given hM > hZ ,
define a compact interval Z̄ ⊂ R by

Z̄ = {z ∈ R : sgn(z) = s∗, lZ ≤ |z| ≤ hM}. (12)

Clearly, Z ⊂ Z̄ and, for any arbitrarily large hM , there is no
zero of the system other than z∗ contained in Z̄ . Moreover,
based on the prior knowledge of the system, i.e., the compact
sets G and Z , it is easy to find a compact set

K = {k1 : k1 ≤ k1 ≤ k̄1} (13)

such that k∗1 ∈ K with k∗1 = g∗1/z∗, e.g., K = {k1 : k1 =
g1/z, g1 ∈ G, z ∈ Z}.

The vector of model parameters that will be used is θ =
[k1 z]

T , where z is the farthest NMP zero of interest and k1
represents the numerical relationship between the NMP zero
z and the non-zero first impulse response coefficient g1 such
that g1 = k1z. The true value of the vector of parameters is
denoted by θ∗ = [k∗1 z∗]

T . Substition of g1 = k1z into (15)
in [12] gives the corresponding model predictor as follows

ŷn(θ, ρ) = k1z
(
un−1(ρ)− zun−2(ρ)

)
. (14)

In the limit n→∞, the prediction-error estimator of k1 and
z are defined by (see, e.g., [9] and [7])

E
[
ψn(θ(ρ), ρ)

(
yn(ρ)− ŷ(θ, ρ)

)]
= 0, (15)

where ψn(θ, ρ) is the gradient of the predictor (14) with
respect to the model parameters, i.e.,

ψn(θ, ρ) :=
∂ŷn(θ, ρ)

∂θ
=

[
z(un−1(θ)− zun−2(θ))
k1(un−1(θ)− 2zun−2(θ))

]
.

(16)
As in [12], we observe

E[un(ρ)un−k(ρ)] = λuρ
−|k|,

E[un−k(ρ)yn(ρ)] = λu
∑∞
j=1 g

∗
j ρ
−|j−k|,

E[un−1(ρ)yn(ρ)] = λuρG
o(ρ),

E[un−2(ρ)yn(ρ)] = λu[ρ2Go(ρ) + g∗1ρ(ρ−2 − 1)],

(17)

which are useful for the development of our proposed result.
Let Θ ⊂ R2 be a set such that θ ∈ Θ implies |k1| < ∞

and |z| > 1. Since g1 = k1z and |z| > 1, g1 = 0 if and
only if k1 = 0. Recall that |g∗1 | > 0 is taken for granted by
Assumption 2.1 and therefore |k∗1 | > 0. Moreover, assume
that θ∗ ∈ Θ and there is no zero of the system other than
z∗ contained in Θ, that is, θ = [k1 z]

T ∈ Θ and Go(z) = 0
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imply z = z∗. The following result is presented as the basis
for the algorithm.

Lemma 3.1: On the set Θ, θ∗ = [k∗1 z∗]
T is the unique

solution to

E
[
ψn(θ, z)

(
yn(z)− ŷ(θ, z)

)]
= 0, (18)

where θ = [k1 z]
T .

Proof: By computation with (17), we have

E
[
ψn(θ, z)

(
yn(z)− ŷ(θ, z)

)]
= λu

[
z(1− z2)

(
zGo(z)− (g∗1 − g1)

)
k1
(
z(1− 2z2)Go(z)− 2(1− z2)(g∗1z

−1g1)
)]

= 0. (19)

It is observed that the first element of (19) is equal to zero
if and only if there are z and g1 = k1z with θ ∈ Θ such that

g∗1 − g1 = zGo(z). (20)

Substitution of (20) into the second element of (19) gives

k1zG
o(z) = g1G

o(z) = 0 ⇒ Go(z) = 0 ⇒ z = z∗

since z∗ is the only zero of the system contained in Θ. Now
(20) implies g1 = g∗1 and hence k1 = g∗1/z∗ = k∗1 . 2

By Lemma 3.1, solving normal equation (18) yields con-
sistent estimates of k∗1 and z∗ (and hence that of g∗1). The
model (14) with the gradient (16) immediately suggests the
following recursive prediction error method scheme [9]:[

k̂1,n+1

ẑn+1

]
=

[
k̂1,n
ẑn

]
+

1

n+ 1
R−1n ψn(yn+1 − ŷn+1)

ŷn = k̂n−1ẑn−1(un−1 − ẑn−1un−2)

ψn =

[
ẑn−1(un−1 − ẑn−1un−2)

k̂1,n−1(un−1 − 2ẑn−1un−2)

]
Rn+1 = Rn +

1

n+ 1
(ψn+1ψ

T
n+1 −Rn). (21)

Let ρn in the input filter (7) be fixed on ρ with |ρ| > 1,
then the system is described by (8)-(9) and the model with
fixed parameters θ = [k1 z]

T is given by (14), (16) and

Rn+1(θ, ρ) = Rn(θ, ρ)

+
1

n+ 1

(
ψn+1(θ, ρ)ψTn+1(θ, ρ)−Rn(θ, ρ)

)
. (22)

Note limn→∞Rn(θ, ρ) = R(θ, ρ) := E[ψn(θ, ρ)ψTn (θ, ρ)]
and let the input filter (7) use the model zero. Using (17),
we obtain

R(θ) = R(θ, z) = E
[
ψn(θ, z)ψTn (θ, z)

]
= λu

[
z2(z2 − 1) 2k1z(z

2 − 1)
2k1z(z

2 − 1) k21(4z2 − 3)

]

and hence R−1(θ) = 1
λu

[
4z2−3
z2(z2−1) − 2

k1z

− 2
k1z

1
k21

]
. Furthermore,

we have

R−1(θ)ψn(θ, z) =
1

λu

[
2z2−1
z(z2−1)un−1(z)− 1

z2−1un−2(z)

− 1
k1
un−1(z)

]
.

(23)

Substitution of (23) with θ = [k1 z]
T replaced by θ̂n =

(k̂1,n ẑn)T into the recursive scheme (21) yields our pro-
posed algorithm as follows

ŷn+1 = k̂1,nẑn(un − ẑnun−1)[
k̂1,n+1

ẑn+1

]
=

[
k̂1,n
ẑn

]
+

1

λu(n+ 1)

×

[
2ẑ2n−1

ẑn(ẑ2n−1)
un−1 − 1

ẑ2n−1
un−2

− 1
k̂1,n

un−1

]
(yn+1 − ŷn+1). (24)

In the sequel, the entire adaptive system is presented
by (25)-(29) for analysis, where ηn = [eon+1 rn]T , θn =

[k̂1,n ẑn]T , Φn = [Φ1
n Φ2

n · · · Φ7
n]T with Φ1

n = un, Φ2
n =

ξn, Φ3
n = eon, Φ4

n = un−1, Φ5
n =

2ẑ2n−1
λuẑn(ẑ2n−1)

un−1 −
1

λu(ẑ2n−1)
un−2, Φ6

n = − 1
λuk̂1,n

un−1, Φ7
n = ŷn, Q1,n+1 =

Φ5
n+1(CoΦ2

n+1+Φ3
n+1−Φ7

n+1), Q2,n+1 = Φ6
n+1(CoΦ2

n+1+
Φ3
n+1 − Φ7

n+1),

A(θ) =



z−1 0 0 0 0 0 0
Bo Ao Ko 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

2z2−1
λuz(z2−1) 0 0 − 1

λu(z2−1) 0 0 0

− 1
λuk1

0 0 0 0 0 0

k1z 0 0 −k1z2 0 0 0


,

B(θ) =



0
√
λu
√

1− z−2
0 0
1 0
0 0
0 0
0 0
0 0


, Q(Φn+1) =

[
Q1,n+1

Q2,n+1

]
.

Adaptive system

D0 := {[k1 z]T : k1 ∈ K, z ∈ Z̃} (25)
θ0 = [k1,0 z0]T ∈ intD0, k1,0 6= 0, z0 = s∗hZ (26)

Φn+1 = A(θn)Φn +B(θn)ηn (27)
θn+1− = θn + 1

n+1Q(Φn+1) (28)

θn+1 =

{
θn+1− θn+1− ∈ D0

θ0 otherwise
(29)

It is reasonable to choose θ0 ∈ intD0 with |k1,0| > 0
since |z0| = hZ and |g∗1 | > 0. In practice, k1,0 should be
chosen with small |k1,0| while hM is set to be large.

IV. STABILITY AND SENSITIVITY ANALYSIS OF THE
ASSOCIATED ODE

The asymptotic behaviour of the adaptive system (25)-(29)
is determined by the so called associated ODE (see [9]).
For rigorous analysis for recursive estimation schemes with
resetting, readers are referred to [2] and [3]. The associated
ODE for system (27)-(29) is given by

θ̇t =
1

t
F (θt) (30)
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where F (θ) := E[Q(Φ̄n(θ)] and in turn Φ̄n(θ) corresponds
to (27) with frozen parameters θ, i.e.,

Φ̄n+1(θ) = A(θ)Φ̄n(θ) +B(θ)ηn. (31)

This implies

F (θ) =
1

λu
E
{[ 2z2−1

z(z2−1)un−1(z)− 1
z2−1un−2(z)

− 1
k1
un−1(z)

]
×
(
yn(z)− ŷn(θ, z)

)}
. (32)

Computing (32) with (17), we obtain

F (θ) =

[
Go(z) +

( g∗1
z − k1

)
− z
k1
Go(z)

]
. (33)

Substitution of (33) into (30) and introduction of t = ev

give the associated ODE for the adaptive system (27)-(29)
as follows

k̇1(v) = Go(z(v)) +
g∗1
z(v)

− k1(v), (34)

ż(v) = − z(v)

k1(v)
Go(z(v)). (35)

Recall that g1(v) = k1(v)z(v). Multiplying by z(v) and
k1(v) both sides of (34) and (35) respectively, we have

z(v)k̇1(v) = z(v)Go(z(v)) + g∗1 − g1(v), (36)
k1(v)ż(v) = −z(v)Go(z(v)). (37)

Since ġ1(v) = z(v)k̇1(v) + k1(v)ż(v), (36) and (37) give

ġ1(v) = g∗1 − g1(v), (38)

which immediately yields

g1(v)− g∗1 = (g1(0)− g∗1)e−v. (39)

This means that the equilibrium g∗1 of system (38) is expo-
nentially stable. If k1(0) has the same sign as k∗1 , then g1(0)
has the same sign as g∗1 and the analysis of stability and
sensitivity has been discussed in [12]. Let us now consider
the cases when k1(0) has has different sign from that of k∗1 ,
i.e., g1(0) has a different sign from that of g∗1 . According to
(39), there exists a number v1 ≥ 0 such that g1(v1) = 0 and
hence k1(v1) = 0. Define v∗ = inf{v ≥ 0 : z(v) = z∗} . If
v∗ ≤ v1, then the Lebesgue measure of set {v ≥ v∗ : ż(v) 6=
0} is zero. This implies z(v) = z∗ for all v ≥ v∗. In this
case, k1(v) → k∗1 as v → ∞ since g1(v) → g∗1 as v → ∞.
So we only need to consider the cases with v∗ > v1.

First, let us consider the case when s∗ = 1, k∗1 > 0 and
k1(0) < 0, which implies g∗1 > 0 and g1(0) < 0. Since
k1(v) < 0 , g1(v) < 0 for v < v1 and k1(v) > 0, g1(v) > 0
for v > v1, there are numbers a1 > 0 and 0 < a2 < v∗− v1
such that k̇1(v) > 0 and ġ1(v) > 0 on v ∈ [v1−a1, v1 +a2].
Obviously, z(v) is continuous and bounded on [0, v1 − a1]
and [v1 + a2, v∗). We claim that z(v) is essentially bounded
on [v1 − a1, v1 + a2]. Since z(0) > z∗ and v∗ > v1 + a2,

−z(v)Go(z(v)) does not change its sign on v ∈ [v1−a1, v1+
a2]. So we have

g1(v1 + a2)− g1(v1 − a1) =

∫ v1+a2

v1−a1
ġ1(v)dv

=

∫ v1+a2

v1−a1

[
k̇1(v)z(v)− z(v)Go(z(v))

]
dv (40)

If −z(v)Go(z(v)) is positive on [v1 − a1, v1 + a2], then, by
the mean value theorem, (40) gives

g1(v1 + a2)− g1(v1 − a1)

≥
∫ v1+a2

v1−a1
k̇1(v)z(v)dv = k̇1(va)

∫ v1+a2

v1−a1
z(v)dv (41)

where va ∈ (v1 − a1, v1 + a2). This implies that z(v) is
essentially bounded on [v1−a1, v1 +a2]. If −z(v)Go(z(v))
is negative on [v1 − a1, v1 + a2], then (40) gives

g1(v1 + a2)− g1(v1 − a1) +

∫ v1+a2

v1−a1
z(v)Go(z(v))dv

=

∫ v1+a2

v1−a1
k̇1(v)z(v)dv = k̇1(vb)

∫ v1+a2

v1−a1
z(v)dv (42)

where vb ∈ (v1 − a1, v1 + a2). Since z(v) > 1 for v ∈
[v1 − a1, v1 + a2] and the system is internally stable, (3)
implies that 0 < z(v)Go(z(v)) < ∞ on [v1 − a1, v1 + a2].
So we have ∫ v1+a2

v1−a1
z(v)Go(z(v))dv <∞.

But, by (42), this implies z(v) is essentially bounded on
[v1 − a1, v1 + a2]. Therefore, we have

‖z(v)‖∞ := ess sup
v≥0
|z(v)| <∞. (43)

in this case. It is also observed that ż(v) is well defined
and hence z(v) is continuous for v ∈ [v1 − a1, v1) and
v ∈ (v1, v1 + a2]. Similarly, we can find these properties in
the other cases when k1(0) (resp. g1(0)) has a different sign
from that of k∗1 (resp. g∗1). When hM is chosen sufficiently
large with ‖z(v)‖∞ < hM , k1(v) and z(v) are in the interior
of D0 almost everywhere on [0, v1 + a2] (see Lemma 5.1
[12]), which implies that k1(v) (resp. g1(v)) computed by
(24) change its sign from the one of k1(0) to that of k∗1
(resp. g∗1) almost surely as the step number n increases from
0 to larger than v1 + a2. Let v0 ≥ v1 + a2. Then we have
sgn(k1(v0)) = sgn(k∗1), i.e., sgn(g1(v0)) = sgn(g∗1) and
θ(v0) = [k1(v0) z(v0)]T ∈ D0. The rest of analysis of
stability and sensitivity on [v0,∞) is similar to that in [12]
and hence omitted.

According to the analysis given above, we have the
following result.

Lemma 4.1: Let [k1(v, v0, γ) z(v, v0, γ)]T with γ =
[γ1 γ2]T ∈ D0 and v ≥ v0 be the solution to (34)-(35)
with k1(v0) = γ1 and z(v0) = γ2. Then there are positive
constants C1, C2, a and b such that∣∣∣∣∂k1(v, v0, γ)

∂γ

∣∣∣∣ ≤ C1e
−b(v−v0),

∣∣∣∣∂z(v, v0, γ)

∂γ

∣∣∣∣ ≤ C2e
−a(v−v0)

for all v ≥ v0.
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V. CONVERGENCE ANALYSIS

In this section, we consider the convergence of our al-
gorithm (24) based on the above analysis. For the readers’
convenience, we cite the following definition (see [2] and
[3]).

Definition 5.1: A random process {sn} is said to be M-
bounded, which is denoted by sn = OM (1), if Mq(s) =
supn≥0 E1/q

[
|sn|q

]
<∞ for all 1 ≤ q <∞.

Suppose that {cn} is a sequence of positive numbers. We
also write sn = OM (cn) if sn/cn = OM (1).

We can verify that Conditions 1-3 in [12, Appendix A]
(see also [2]) are satisfied, which is done in the same way
as the proof of [12, Theorem 6.1] (see [12, Appendix E]).
Therefore, by [12, Theorem A.1] (see also [2, Theorem
4.1]), we have

Theorem 5.1: Let the above assumptions with Assumption
2.2 replaced by Assumption 2.2′ hold. If [k̂1,n ẑn]T is
computed by recursive scheme (24), then

k̂1,n − k∗1 = OM (n−β), ẑn − z∗ = OM (n−β) (44)

where β = min{1/2, |z∗G̃o(z∗)/k∗1 |} with G̃o given by
G̃o(z)(z − z∗) = Go(z).

By the well-known Borel-Cantelli lemma, convergence in
Lq for all q ≥ 1 with rate OM (n−β) and β > 0 implies
almost sure convergence. Thus, Theorem 5.1 implies that
[k̂1,n ẑn]T converges to θ∗ = [k∗1 z∗]

T almost surely.

VI. NUMERICAL EXAMPLES

In this section, we show the effectiveness of our proposed
result. To compare with the result in [12], we consider
the estimation of the farthest NMP zeros of the following
examples, i.e., the systems (59)-(61) in [12], for which
s∗ = 1 and Z = [2, 10] (cf. [12]). Consequently, z0 = 10.
It is noticed that, for any arbitrarily large hM , z∗ is the
only zero of the system in Z̄ , where Z̄ is defined by (12).
Since we do not have much prior knowledge on ‖z(v)‖∞, we
should choose sufficiently large hM in practice. Moreover,
for g1,0 = 0.5 in [12], we choose |k1,0| = |g1,0/z0| = 0.05.
In practice, since we do not know the sign of g∗1 , we should
choose k1,0 such that |g1,0| and hence |k1,0| are small so
that the sign of g1 (resp., k1) will change to the same as g∗1
(resp., k∗1) within a few steps in case that g1,0 (resp., k1,0)
has different sign from that of g∗1 (resp., k∗1).

Example 6.1 Consider a system described by

yn = (q−1 − 3q−2)un + eon (45)

where {eon} is Gaussian white noise of variance 0.01. Note
that system (45) has exactly one NMP zero at z∗ = 3. Let
Z = [2, 10] and hence z0 = 10. Moreover, Z̄ = [2, 106].
Since there is no prior knowledge on the sign of g∗1 , k1,0
can be a positive or negative number. Typical realizations of
the algorithm presented in Section III with θ0 = [k1,0 z0]T =
[±0.05 10]T are given in Fig. 2 and Fig. 3, respectively.

Example 6.2 Consider a system that has a pole and an
additional zero described by

yn =
(q − 3)(q − 0.1)

q2(q − 0.5)
un + eon. (46)

Fig. 2. Solid (red) line: Typical realization of (24) applied to (45) with
θ0 = [0.05 10]T . Dotted (blue) line: True location of the zero.

Fig. 3. Solid (red) line: Typical realization of (24) applied to (45) with
θ0 = [−0.05 10]T . Dotted (blue) line: True location of the zero.

System (46) has one NMP zero at z∗ = 3. Let Z̄ = [2, 106].
Typical realizations of the algorithm presented in Section III
with θ0 = [k1,0 z0]T = [±0.05 10]T are given in Fig. 4 and
Fig. 5, respectively.

Example 6.3 To study the behavior of algorithm (24)
applied to a system of higher complexity (i.e., where G and
H have more poles and zeros), let us consider the following
system

yn =
(q − 3)(q − 1.5)(q − 0.2)(q + 0.3)

q4(q − 0.5)
un +

q

q − 0.8
eon.

(47)
The farthest NMP zero of system (47) is at z∗ = 3. It is
noticed that the result in [12] does not work when the initial
values are given by g1,0 = −0.5 and z0 = 3.5, see Fig. 1.
Let us now turn to the algorithm (24) with Z̄ = [2, 106].
Typical realizations of the algorithm presented in Section III
with θ0 = [k1,0 z0]T = [±0.05 10]T are given in Fig. 6 and
Fig. 7, respectively.

VII. CONCLUSION

In this paper, a modified version of an adaptive technique
for the estimation of NMP zeros has been presented, which
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Fig. 4. Solid (red) line: Typical realization of (24) applied to (46) with
θ0 = [0.05 10]T . Dotted (blue) line: True location of the zero.

Fig. 5. Solid (red) line: Typical realization of (24) applied to (46) with
θ0 = [−0.05 10]T . Dotted (blue) line: True location of the zero.

relaxes one important assumption on the prior knowledge
available to the user, namely, that of the sign of the high
frequency gain. This modification improves the applicability
of the method, and its performance has been shown both
theoretically and via simulation examples.

Our proposed method introduces and employs a parameter
k1 instead of g1, which represents the numerical relationship
between the NMP zero z and the non-zero first impulse re-
sponse coefficient g1 such that g1 = k1z. By exploiting such
numerical relationship, we propose an improved algorithm
and find that the solution to the associated ODE is essentially
bounded and hence the proposed algorithm can go through
the singular point almost surely in a case when g1,0 (resp.,
k1,0) has different sign from that of g∗1 (resp., k∗1). Therefore,
our proposed method applies to the cases when there is no
prior information on the sign of the first impulse response
coefficient g∗1 .
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