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Abstract— An interesting generalization of dynamic factor
analysis models has been proposed recently by Forni, Lippi and
collaborators. These models, called generalized dynamic factor
analysis models describe observations of infinite cross-sectional
dimension. Quite surprisingly the inherent non-uniqueness of
factor analysis models does not occur in this generalized
context. We attempt an explanation of this fact by restricting
the analysis to static generalized factor models. We show
that there is a natural interpretation of generalized factor
analysis models in terms of Wold decomposition of stationary
sequences. A stationary sequence admits a (unique) generalized
factor analysis decomposition if and only if two rather natural
conditions are satisfied.

I. INTRODUCTION

Factor analysis models have a long history; they have
been first introduced by psychologists [28], [5] and have
successively been studied and applied in various branches
of statistics and econometrics [20], [21], [3], [19], [6], [7].
With a few notable exceptions however, [18], [29], [25], [26],
[10], little attention has been payed to these models in the
control engineering community.
Dynamic versions of factor models have also been introduced
in the econometric literature, see e.g. [15], [23], [24], [17]
and references therein.
Recently, we have been witnessing a revival of interest
on these models, motivated on one hand by the need of
modeling very large aggregates or very large dimensional
time series. Vector AR or ARMA models are inadequate
for large-dimensional data sets, because they involve a huge
number of parameters to estimate which may sometime turn
out to be larger than the sample size. On the other hand, an
interesting generalization of dynamic factor analysis models
allowing the cross-sectional dimension of the observed time
series to go to infinity, has been proposed recently by Forni
Lippi and collaborators in a series of widely quoted papers
[13], [14]. This new modeling paradigm is attracting a
considerable attention also in the engineering system identi-
fication community [1], [10], [24]. The models proposed by
Forni and Lippi, called Generalized Dynamic Factor Analysis
Models (GDFM)(see e.g. [14], [13] and references therein)
are motivated by economic applications. However large-
dimensional time series occur often in engineering and signal
processing applications, and typically occur, for example, in
computer vision and dynamic image processing. The role of
identification in image processing and computer vision has
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been addressed by several authors. We may refer the reader
to the recent survey [8] for more details and references.
For instance, if we are interested in modeling a “dynamic
texture” (see [12] for an example) we may end dealing
with a signal y(t) := vec(I(·, t)), obtained by vectorizing
at a given time t, the signals extracted from the image
intensities I(·, t) at each pixel, forming a vector, say y(t) ∈
Rm, with a “large” number (typically tens of thousands) of
components. One is interested, therefore, in classes of models
(and identification methodologies thereof) which are suited
for high dimensional data. Note also that the number N of
samples (i.e. t = 1, .., N ) is very often of the same order (and
sometimes smaller) than the data dimensionality (N < m).
For instance, in dynamic textures modeling, the number N
of images in the sequences is of the order of a few hundreds
while m (which is equal to the number of pixels of the image)
is certainly of the order of a few hundreds or thousands [12],
[4]. It is therefore apparent that some sort of dimensionality
reduction is absolutely necessary in this context.
In this paper boldface symbols will denote random variables
or random arrays, either finite or infinite. Due to page
limitations some of the proofs will not be given. A more
complete version with all proofs will appear elsewhere and
can be obtained from the authors upon request.

II. STATIC FACTOR ANALYSIS MODELS

A (static) Factor Analysis model is a representation

y = Ax + e, (1)

of m observable variables y = [y1 . . . ym ]>, assumed
zero-mean and with finite variance, as linear combinations
of n common factors x = [x1 . . . xn ]>, plus uncorrelated
“noise” or “error” terms e = [ e1 . . . em ]>. An essential
part of the model specification is that the m components of
the error e should be (zero-mean and) mutually uncorrelated
random variables, i.e.

Σxe := Exe> = 0, (2)

Σe := E ee> = diag{σ2
1 , . . . , σ

2
m} . (3)

The aim of these models is to provide an “explanation” of
the mutual interrelation between the observable variables y
in terms of a small number of common factors, in the sense
that, setting

ŷi := a>i x, (4)

where a>i is the i-th row of the matrix A, one has exactly

Eyiyj = E ŷiŷj , (5)
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for all i 6= j. This property is just conditional orthogonality
(or conditional independence in the Gaussian case) of the
family of random variables {y1, . . . ,ym} given x and is a
characteristic property of the factors. It is in fact not difficult
to see that y admits a representation of the type (1) if
and only if x renders {y1, . . . ,ym} conditionally orthogonal
given x [25], [2]. We stress that conditional orthogonality
given x is actually equivalent to the orthogonality (uncorre-
lation) of the components of the noise vector e.
Unfortunately these models although providing a quite nat-
ural and useful data compression scheme in many circum-
stances, suffer from a serious non-uniqueness problem. Note
that the property of making {y1, . . . ,ym} conditionally
orthogonal is really a property of the subspace of random
variables linearly generated by the components of the vector
ŷ := Ax, denoted1 X := H(ŷ) and it will hold for any
set of generators of X . Any set of generating variables
for X can serve as a common factors vector and there
is no loss of generality to choose the generating vector x
for X of minimal cardinality (a basis) and normalized, i.e.
Exx> = I, which we shall always do in the following.
A subspace X making the components of y conditionally
independent is called a splitting subspace for {y1, . . . ,ym}.
The so-called “true” variables ŷi are then just the orthogonal
projections ŷi = E [yi | X].
We may then call n = dimx = dimX the dimension of the
model. Obviously a model of dimension n will automatically
have rankA = n as well. Two F.A. models for the same
observable y, whose factors span the same splitting subspace
X are regarded as equivalent. This is a trivial kind of non-
uniqueness since two equivalent F.A. models will have factor
vectors related by a real orthogonal transformation matrix.
The serious non-uniqueness comes from the fact that
there are in general many (possibly infinitely many) min-
imal splitting subspaces for a given family of observables
{y1, . . . ,ym}. This is by now well known [25], [22]. Hence
there are in general many nonequivalent minimal F.A. models
(with normalized factors) representing a fixed m-tuple of
random variables y. For example, by choosing for each k ∈
{1, . . . ,m}, x := [y1 . . . yk−1 yk+1 . . . ym ]>, one obtains
m “extremal” F.A. models called elementary regressions, of
the form 

y1 = [ 1 . . . 0 ]x + 0
. . .
yk = â>k x + ek
. . .
ym = [ 0 . . . 1 ]x + 0

(6)

where â>k = Eykx
>(Exx>)−1. The inherent nonunique-

ness of F.A. models is called “factor indeterminacy” (or
unindentifiability) in the literature and the term is usually
referred to parameter unidentifiability as it may appear that
there are always “too many” parameters to be estimated. It
may be argued that once a model (in essence, a splitting

1In the following we shall denote by the symbol H(v) the inner-product
space of random variables linearly generated by the scalar components
{v1, . . . ,vm} of a generic m-dimensional random vector v.

subspace) is selected, it can always be parametrized in a
one-to-one (and hence identifiable) way. Unfortunately, the
classification of all possible (minimal) F.A. representations
and an explicit characterization of minimality are, to a large
extent, still an open problem. The difficulty is indeed a
serious one.
Since, as we have argued, in essence non-uniqueness is just
a consequence of uncorrelation of the noise components, one
may try to get uniqueness by mitigating the requirement
of uncorrelation of the components of e. This however
turns out to be an ill-defined problem as the basic goal
of uniquely splitting the external signal into a noiseless
component plus “additive noise” is made vacuous, unless
some extra assumptions are made on the model and on
the very notion of “noise”. As we shall see, for models
describing an infinite number of observables a meaningful
weakening of the uncorrelatedness property can be made,
which can guarantee the uniqueness of the decomposition.

III. GENERALIZED FACTOR ANALYSIS MODELS

In this section we shall review the main points of the
construction of [14] particularized to the static case. Our
point in this review is the observation that the dynamics does
not seem to add anything to the structure of the underlying
model and tends instead to obscure certain important points.
Although we shall not attempt to do so, one could possibly
recapture the original dynamic picture by assuming that all
real random variables are substituted by random elements
taking values in sequence spaces of time series. The object
of our study are called (static) generalized factor analysis
models.
Consider an infinite collection of zero-mean finite variance
random variables y := {yk, k ∈ N}, which we shall
occasionally represent as a random vector with infinite
components. We want to describe every element of such
a sequence as a linear combination of a finite number of
common components plus “ noise”, i.e.

yk = f>k x + ỹk , k = 1, 2, . . . (7)

where x is a q-dimensional fixed random vector which can
be taken with orthonormal components ( Var [x] = Iq) and
ỹk is a random variable which is orthogonal to x, whose
specific character (see the definition of idiosyncratic noise
below) will be discussed later. The linear combination f>k x
is also denoted by ŷk (ŷ in vector notation).
The infinite covariance matrix of the vector y is denoted by
Σ, while Σn indicates the top-left n × n block of Σ, equal
to the covariance matrix of the first n components of y, the
corresponding n-dimensional vector being denoted by yn.
The inequality Σ ≥ 0 means that all submatrices Σn of Σ
are at least positive semidefinite.
The orthogonality of the noise term and the common com-
ponents implies that

Σn = Σ̂n + Σ̃n , ∀n ∈ N , (8)

where Σ̂n := Eŷnŷn> and Σ̃n := Eỹnỹn>.
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Let `2(Σ), Σ ≥ 0 denote the Hilbert space of infinite
sequences a := {ak, k ∈ N} such that ‖a‖2Σ := a>Σa <∞.
When Σ = I we simply use the symbol `2, indicating the
corresponding norm with the symbol ‖ · ‖.
The sequence whose first n elements are the same as in a,
while the others are set equal to zero is denoted a[n].

Definition 1: Let {an, n ∈ N} be a sequence of elements
of the set `2∩`2(Σ). We say that {an, n ∈ N} is an averaging
sequence (AS) if limn→∞ ‖an‖ = 0.

Example 1: The sequence of elements in `2

an =
1

n
[ 1 . . . 1︸ ︷︷ ︸

n

0 . . . ]> (9)

is an averaging sequence.
The definition of AS allows us to introduce the concept of
idiosyncratic sequence of random variables.

Definition 2: We say that y is idyosincratic if
limn→∞ a>ny = 0 for any averaging sequence
an ∈ `2 ∩ `2(Σ).
Another useful defintion is the following. Let H(y) be the
Hilbert space spanned by the sequence {yk, k ∈ N}.

Definition 3: Let z ∈ H(y). We say that the random
variable z is an aggregate (of y) if there exists an AS
an such that limn→∞ a>ny = z. The set of all aggregate
random variables in H(y) is denoted by G(y) and called
the aggregation subspace of H(y).
It is straightforward to check that G(y) is a closed subspace.
Clearly, if y is an idiosyncratic sequence then G(y) =
{0}. Furthermore, it is possible to define an orthogonal
decomposition of the type

y = E[y | G(y)] + u , (10)

where all components uk are uncorrelated with G(y). The
idea behind this decomposition is that, in case G(y) is
finite dimensional, say generated by a q-dimensional random
vector x, one may naturally capture a unique decomposition
of y as in (7). Unfortunately, in general G(y) = {0} does
not imply that y is idiosyncratic, as it can be seen in the
following example.

Example 2: ([14]) Consider a sequence y with
yj⊥yh ∀ j 6= h (i.e. y is a white noise), such that
‖yj‖2 = j. This sequence is not idiosyncratic, since, given
the AS

dn =
1√
n

[ 0 . . . 0 1︸ ︷︷ ︸
n

0 . . . ]> , (11)

we obtain that ‖d>ny‖ = 1∀n. Let then z be an aggregate
random variable, so that there must exist an AS an such that

z = lim
n→∞

a>ny = lim
n→∞

∞∑
j=1

an,jyj . (12)

Note that, being z ∈ H(y) and y an orthogonal basis of
such space, we can uniquely express z as

z =

∞∑
j=1

bjyj , (13)

and, by uniqueness of the representation, it follows that
limn→∞ an,j = bj ∀j. On the other hand, being an an AS,
the limits of an,j must be zero, so that bj = 0. Hence z = 0.
Thus G(y) = {0} but y is not idiosyncratic.
Note that the sequence y, interpreted as a stochastic process
with respect to the cross-sectional index k, is non-stationary.
The nature of an idiosyncratic sequence is strictly related to
the behaviour of the eigenvalues of its covariance matrix. To
explain this point, it is useful to introduce some notations and
facts about the eigenvalues of infinite covariance matrices.
Denote by λyn,k the k–th eigenvalue of the n× n upper left
submatrix Σn of Σ. The λyn,k are real nonnegative and can be
ordered in decreasing magnitude. Forni and Lippi [14, Fact
M], show that the k–th eigenvalue of Σn is a non decreasing
function of n and hence has a limit, λyk, which may possibly
be +∞. Each such limit is called an eigenvalue of Σ. In case
all the limits are finite one can show that they are bona–
fide eigenvalues of the infinite matrix Σ (considered as a
linear operator on `2). Clearly these eigenvalues can also
be ordered. Henceforth we shall denote by λy1 the maximal
eigenvalue of Σ, with the convention that λy1 = +∞ when
there are infinite eigenvalues as defined above.
A strong characterization of idiosyncratic sequences is given
by the following theorem, stated after [14] after some obvi-
ous simplifications.

Theorem 1: The sequence y is idiosyncratic if and only if
λy1 is finite.

Proof: Assume first that limn→∞ λyn,1 = +∞. Since
Σn ≥ 0, for every n one has the diagonalization

U>n ΣnUn = Dn , (14)

where Un is orthonormal and

Dn = diag{λyn,1, . . . , λyn,n } (15)

For every n, consider the first column of Un, say un1 , which
is the eigenvector of the eigenvalue λyn,1 and define the
sequence of elements in the set `2 ∩ `2(Σ)

an :=
1√
λyn,1

[
un>1 0 . . .

]>
. (16)

Note that this is an AS, whose application to y gives
‖a>ny‖ = 1 for every n, thus the sequence y cannot be
idiosyncratic.
Conversely, suppose now that λy1 < +∞ and again apply the
diagonalization Σn = UnDnU

>
n . Let an be an arbitrary AS

and consider the random variable

z = lim
n→∞

a>ny = lim
n→∞

an>n yn , (17)

which has variance

var[z] = lim
n→∞

an>n UnDnU
>
n ann := dn>n Dnd

n
n , (18)

where dn is an AS whose first n elements form a vector
equal to U>n ann, while the remaining can be taken equal to
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those of an.
Since dn>n Dnd

n
n =

∑n
i=1 λ

y
n,id

2
n,i one can write

var[z] = lim
n→∞

n∑
i=1

λyn,id
2
n,i ≤ lim

n→∞
λy1

n∑
i=1

d2
n,i

= lim
n→∞

λy1‖dnn‖2 = 0

which shows that y is idiosyncratic.
Definition 4: Let q be a finite integer. A sequence y is

purely deterministic of rank q (in short q-PD) if H(y) has
dimension q.
Clearly for a q-PD sequence y can be seen as a (in general
non-stationary) purely deterministic process in the classical
sense of the term, see [9]. Let x be an orthonormal basis in
H(y). Obviously y is a q-PD random sequence if and only
if there is a Rq-valued function f(k) , k ∈ N, such that

yk = f>(k)x =

q∑
i=1

fi(k)xi , k ∈ N , (19)

where the functions f1(·), f2(·), . . . fq(·) must be linearly
independent, for otherwise the rank of y would be smaller
than q.
We want to relate this concept with the idea of aggrega-
tion subspace of y, as defined earlier. Let now x be an
orthonormal basis in G(y); quite unfortunately, there are
nontrivial sequences representable in the form (19) which
are idiosyncratic (or contain idiosyncratic sequences). See
Example 3 below.

Example 3: Consider a sequence y whose k−th element
is

yk = λkx , |λ| < 1, (20)

where x is a zero–mean random variable of variance σ2.
Clearly, y is non–stationary and 1-PD, its spanning subspace
H(y) being the one-dimensional space H(x). The covari-
ance matrix of the first n components of y is

Σn = Eynyn> = σ2


λ2 λ3 . . . λn+1

λ3 λ4 . . . λn+2

...
...

. . .
...

λn+1 λn+2 . . . λ2n

 (21)

Being rank(Σn) = 1 for every n, we have

λy1 = lim
n→∞

tr(Σn) = lim
n→∞

σ2
n∑
k=1

λ2k =
σ2λ2

1− λ2
, (22)

thus, in force of Theorem 1, y is idiosyncratic. Hence there
are non-stationary q−PD sequences which are idiosyncratic.
This is a possibility which we clearly must exclude if the
decomposition (7) has to be unique. To this end Forni and
Lippi seem to impose a condition on the eigenvalues of the
covariance matrix of a q−PD sequence. We introduce the
following definition.

Definition 5: Let y be a q−PD sequence; then y is called
q-aggregate if the q nonzero eigenvalues of its covariance
matrix are all infinite.

The question now is which properties need to be satisfied
by the functions f1, f2, . . . fq for y to be a q-aggregate
sequence. The answer is in the following theorem.

Theorem 2: Let y be a q−PD sequence, i.e. let

yk = f>(k)x =

q∑
i=1

fi(k)xi , k ∈ N ; (23)

then y is q−aggregate if and only if, for each i = 1, . . . , q,
it holds that

lim
n→∞

‖fni (·)−Π[fni (·) | Fni ]‖2 = +∞ . (24)

where Π is the orthogonal projection onto the Euclidean
space

Fni = span {fnj (·), j = 1, . . . , q, j 6= i} (25)
The proof of this theorem is rather long and will be given

elsewhere.
Example 4: Consider the 2−PD sequence

yk :=

2∑
i=1

fi(k)xi (26)

with

f1(k) = 1 ∀k , f2(k) = 1−
(

1

2

)k
.

It is not difficult to check that this sequence does not satisfy
condition (24). We shall show that this sequence is not
2-aggreggate. The Gramian matrix of the functions f1, f2

restricted to [1, n] is

fn>fn =

[
‖fn1 ‖22 < fn1 , f

n
2 >2

< fn1 , f
n
2 >2 ‖fn2 ‖22

]
(27)

and it is easy to see that as n → ∞, the second eigenvalue
converges to 5

3 . Hence one eigenvalue of the covariance
matrix of y is finite and the sequence is not 2-aggregate.

The following proposition, which follows trivially from
Theorem 1, guarantees uniqueness of the decomposition (7)
when ŷ is q-aggregate and ỹ is idiosyncratic.

Proposition 1: A q-aggregate sequence ŷ can be idiosyn-
cratic only if it is the zero sequence.
The next definition is the static version of a similar one of
[14] for the dynamic setting.

Definition 6: The sequence y is a q−factor sequence
(q−FS) if it can be written as an orthogonal sum

yk = f>k x + ỹk , (28)

where ŷk := f>k x is a q-aggregate sequence and ỹ is
idiosyncratic (and orthogonal to x). The representation (28)
is called a generalized factor model with q factors.
Hence y is a q−FS if and only if it admits a representation
by a generalized factor model with q factors.
The crucial question is now to give a criterion telling us
which random sequences are q−FS. Forni and Lippi [14]
provide a criterion based on the unboundedness of the eigen-
values of the covariance matrix. The criterion is rephrased
below for the static setting which concerns us here.
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Theorem 3: If the sequence y is a q−FS then λyq = +∞
but λyq+1 is bounded.
The condition is clearly necessary since the sequence ỹ
is idiosyncratic iff the first (i.e. maximal) eigenvalue of
Σ̃ is finite and the covariance matrix Σ̂ of the sequence
ŷ := {ŷk = f>k x, n ∈ N} has q unbounded eigenvalues, i.e.
λŷq = +∞. The proof of sufficiency in [14] is very involved
and we shall not discuss it.
Unfortunately, as shown by Example 2, there are sequences
which do not admit a q−FS (with q finite). The covariance
matrix of the scalar sequence y of Example 2 is diagonal
with infinitely many eigenvalues of Σ equal to +∞, accord-
ing to the definition given above. Hence the sequence may
be called a ∞−aggregate sequence. However y cannot be
q−aggregate since it cannot be q−PD for any finite q; in
fact, it can be shown that y is a purely-non-deterministic
sequence. On the other hand y is not idiosyncratic either
since we have shown that G(y) = {0}.

IV. STATIONARY SEQUENCES AND THE WOLD
DECOMPOSITION

As we have just seen, non-stationarity can bring in many
pathologies which seem to be difficult to rule out. We
consider now the special case in which the sequence y,
defined on Z+, is (weakly) stationary; i.e. Eytys = r(t− s)
for t, s ≥ 0. It is well known, see e.g. [11], [27] that,
introducing the remote future subspace of y:

H∞(y) =
⋂
t≥0

Ht(y) (29)

the sequence of orthogonal wandering subspaces Et :=
Ht(y)	Ht+1(y) and their orthogonal direct sum

H̃(y) =
⊕
t≥0

Et

one has a unique orthogonal decomposition

y = ŷ + ỹ , ŷk ∈ H∞(y) ỹk ∈ H̃(y) (30)

for all k ∈ Z+, the component ŷ being the purely determin-
istic (PD) component while ỹ the purely non deterministic
(PND) one. The two sequences are orthogonal and uniquely
determined. Furthermore, it is well known that ỹ has an abso-
lutely continuous spectrum with a spectral density function,
say Sy(ω), while ŷ has a singular spectral distribution (for
example consisting only of jumps) possibly together with a
singular spectral density such that∫

logSy(ω) dω = −∞ . (31)

In this section we want to give an interpretation of the
decomposition (7) in the light of the the Wold decomposition.
First we prove the following lemma.

Lemma 1: Let y be stationary and PND and assume that
its spectral density is bounded; i.e.

Sy(ω) ∈ L∞([−π, π]) . (32)

Then y is idiosyncratic.

Proof: Consider an AS an; then

‖a>ny‖2 = ‖an‖2Σ = a>nΣan ≤ λy1‖an‖2 . (33)

Since y is PND and its spectral density is bounded, for a
well known theorem of Szegö [16, p.65], Σ has bounded
eigenvalues, thus ‖a>ny‖2 → 0, i.e. y is idiosyncratic.
Lemma 1 has an important consequence, namely

Lemma 2: Let y be a stationary sequence with a bounded
spectral density, then G(y) ⊆ H∞(y) .
Note that the statement holds in particular for PD processes
with a singular spectrum, as in this case Sy(ω) ≡ 0.
The converse inclusion, i.e. H∞(y) ⊆ G(y), is in general
not true. However, for stationary sequences with a finite
dimensional remote future, we can state the following.

Theorem 4: Assume that y is a stationary sequence with
a bounded spectral density and that dimH∞(y) < ∞.
Then H∞(y) ≡ G(y).
Hence,

Theorem 5: Every stationary sequence with bounded
spectral density and remote future space of dimension q is a
q−factor sequence and admits a unique generalized factor
analysis decomposition (28) where ŷ is the PD and ỹ the
PND components of y.
It is not hard to show that the assumption of stationarity here
is crucial. In fact, Example 3 discussed before shows that in
the non-stationary case a PD process y whose remote future
is the one-dimensional space H(z) may be idiosyncratic.
In the following example, we show how to build an AS that
generates a basis in a finite-dimensional remote future space.

Example 5: Consider a PD process y, with a remote
future of finite dimension 2ν. It is well-known that any such
process can be expressed as a sum of elementary oscillations
of the form yk =

∑ν
i=1 vi cosωik + wi sinωik , where

vi and wi are mutually uncorrelated zero–mean random
variables with var[vi] = var[wi]. It can be seen that
H∞(y) = span {vi, wi, i = 1, . . . , ν}. Consider the AS
an whose elements have components

an,k =

{
1

n

∑ν
i=1 cosωik + sinωik k ≤ n

0 k > n
(34)

Applying an to y we obtain the random variable

zn =

n∑
k=1

an,kyk =
1

n

n∑
k=1

 ν∑
i=1

zin,k +

ν∑
i,j=1,i6=j

zi,jn,k

 ,
where

zin,k = vi cos2 ωik + wi sin2 ωik +
vi + wi

2
sin 2ωik

zi,jn,k =
vi −wi

2
cos(ωi + ωj)k+

vi + wi

2
×

. . . [cos(ωi − ωj)k + sin(ωi + ωj)k + sin(ωi − ωj)k]

As n tends to infinity, all the non quadratic terms vanish,
giving

z = lim
n→∞

1

n

n∑
k=1

ν∑
i=1

vi cos2 ωik + wi sin2 ωik (35)
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and so

z =

ν∑
i=1

civi + diwi , (36)

where ci, di are constants in the interval [0, 1]. Thus the
random variable z is an aggregate of y, so G(y) 6= {0} and
y is not idiosyncratic. This example suggests a method to
obtain a basis of H∞(y). In order to obtain only one of
the random variables spanning H∞(y), say for example vp,
p ≤ ν, it is sufficient to apply to y the AS an of components
an,k = 1

n cosωpk for k ≤ n and equal to zero for k > n,
obtaining

z = lim
n→∞

a>ny =
1

n

n∑
k=1

vp cos2 ωpk=cpvp , (37)

with cp > 0. Analogously, one can obtain the random
variables wi using a sine instead of the cosine.

V. DISCUSSION

In the paper [14] stationarity with respect to the cross-
sectional index is not required. However without stationar-
ity, there may be sequences which satisfy the eigenvalue
conditions of Theorem 3 but do not admit a generalized
factor analysis decomposition. Example 2 shows one such
sequence. Understanding which class of non-stationary se-
quences admits a generalized factor analysis decomposition
seems still to be an open problem.
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[9] H. Cramèr, “On some classes of non-stationary stochastic processes,”
in Proc. IV Berkeley Symposium on Math. Statistics and Probability,
1961, vol. II, pp. 57–77.

[10] M. Deistler and C. Zinner, “Modelling high-dimensional time series
by generalized dynamic factor models: an introductory survey,” Com-
munications on Information and Systems, vol. 7, no. 2, pp. 153–166,
2007.

[11] J. L. Doob, Stochastic processes, ser. Wiley Classics Library. New
York: John Wiley & Sons Inc., 1990, reprint of the 1953 original, A
Wiley-Interscience Publication.

[12] G. Doretto, A. Chiuso, S. Soatto, and Y. Wu, “Dynamic textures,”
International Journal of Computer Vision, vol. 51, no. 2, pp. 91–109,
February 2003.

[13] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized
dynamic factor model: identification and estimation,” The review of
Economic and Statistics, vol. 65, pp. 453–473, 2000.

[14] M. Forni and M. Lippi, “The generalized dynamic factor model:
representation theory,” Econometric Theory, vol. 17, pp. 1113–1141,
2001.

[15] J. Geweke, “The dynamic factor analysis of economic time series,” in
Latent Variables in Socio-Economic Models, D. A. . A. Goldberger,
Ed. North-Holland, 1977, pp. 365–383.

[16] U. Grenander and G. Szegö, Toeplitz forms and their applications,
second ed. New York: Chelsea, 1984.

[17] Y. Hu and R. Chou, “On the Peña-Box model,” Journal of Time Series
Analysis, vol. 25, pp. 811–830, 2004.

[18] R. Kalman, “Identifability and problems of model selction in econo-
metrics,” in Advances in econometrics, W. Hildebrandt, Ed. Cam-
bridge: Cambridge University Press, 1983.

[19] D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical
Method, Second ed. London: Butterworths, 1971.

[20] W. Ledermann, “On the rank of the reduced correlation matrix in
multiple factor analysis,” Psychometrika, vol. 2, pp. 85–93, 1937.

[21] ——, “On a problem concerning matrices with variable diagonal
elements,” Proc. Royal Soc. Edinburgh, vol. XL, pp. 1–17, 1939.

[22] A. Lindquist and G. Picci, Linear stochastic systems: a geometric
approach. In preparation, 2011.

[23] D. Peña and G. Box, “Identifying a simplifying structure in time
series,” J. Amer. Stat. Ass., vol. 82, pp. 836–843, 1987.

[24] D. Peña and P. Poncela, “Nonstationary dynamic factor analysis,”
Journal of Statistical Planning and Inference, vol. 136, pp. 1237–
1257, 2006.

[25] G. Picci, “Parametrization of factor analysis models,” Journal of
Econometrics, vol. 41, pp. 17–38, 1987.

[26] G. Picci and S. Pinzoni, “Dynamic factor-analysis models for station-
ary processes.” IMA Journal of Math. Control and Information, vol. 3,
pp. 185–210, 1986.

[27] Y. A. Rozanov, Stationary Random Processes, Holden-Day, Ed.
Holden Days, 1967.

[28] C. Spearman, “General intelligence, objectively determined and mea-
sured,” American Journal of Psychology, vol. 15, pp. 201–203, 1904.

[29] J. van Schuppen, “Stochastic realization problems motivated by econo-
metric modeling,” in Modeling Identification and robust control,
C. Byrnes and A. Lindquist, Eds. Amsterdam: North-Holland, 1986.

1490


