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Abstract— A challenge of great interest in systems biology
consists in predicting the behavior of bacteria in response
to environmental changes. In this context, the present work
analyzes the global stability of more realistic models for
bacterial linear metabolic pathways integrating allosteric and
genetic regulation. Indeed, we use the composite-system method
for analyzing stability of large-scale dynamical systems to build
a Lyapunov function for a specific class of bacterial irreversible
linear metabolic pathways.

I. INTRODUCTION

Most bacteria have developed sophisticated mechanisms
for the control of their metabolic activities. However, these
complex systems exhibit some general control structures
widespread in the life kingdom and strongly conserved along
the evolution. In this paper, we focus on the stability property
of a control structure shared by a large number of metabolic
pathways in the cell and which integrates two levels of
control: (i) enzymatic control through an allosteric effect by a
metabolite, (ii) genetic control through a transcription factor.

In order to emphasize the interest of such a study, it is
important to note that such a control structure is present in
the two well studied model bacteria B. subtilis and E. Coli.
In the sequel, we consider an irreversible metabolic pathway
where both the genetic control and the allosteric control
involve the end product of the pathway. Although this control
structure often appears in biosynthesis pathways of various
amino acids [1], [2], [3], it is also used in other biosynthesis
pathways such as the ones of purine and pyrimidine [4].

Even if the stability property of bacterial metabolic path-
ways is central in the cell physiology, most of the various
works in the literature focus on the stability analysis of
structures having only the enzymatic control. The genetic
control was hardly considered. For instance, in [5], [6]
and [7] the authors studied the stability issue for control
structures where the enzymatic reactions are represented by
a linear dynamical system closed by a nonlinear negative
feedback corresponding to the enzymatic control. The work
of Arcak and Sontag [8] considers the same structure but the
enzymatic reactions are presented by a nonlinear dynamical
system. Recently, based on the systematic characterization of
system equilibrium provided in [3], technical conditions are
established in [9] to ensure the global attractivity for more
realistic nonlinear models of the linear metabolic pathways,
which incorporate genetic and allosteric regulation. In the
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previous work, monotone system theory [10] allows us to
conclude the global attractiveness of the controlled metabolic
pathway. In the present study, we will provide conditions
establishing the global asymptotic stability of the considered
system. By contrast to our previous results, we will explicitly
build a Lyapunov function for such biological systems using
the composite-system method for analyzing stability of large-
scale dynamical systems [11].

This note is organized as follows. Section II introduces a
more realistic nonlinear dynamical model of the irreversible
linear metabolic pathways integrating both genetic and al-
losteric regulation. Section III recalls some known results
about the boundedness of the state trajectories generated by
the kind of nonlinear dynamical systems and the existence
of steady state regime. The main contribution of this paper
is stated in Section IV as proposition and then proved
in Section V. In order to show that our global stability
conditions are not restrictive, we demonstrate in Section VI
that similar conditions are required in order to guarantee the
local stability.

II. IRREVERSIBLE LINEAR METABOLIC
PATHWAYS

Let us consider irreversible linear metabolic pathways with
the allosteric and genetic regulations depicted in Figure 1.
This specific control structure is shared by many metabolic
pathways in bacteria, especially the ones associated to most
amino acid synthesis pathways. Hereafter, we show how to
build a mathematical model for such a set of biochemical
reactions.

Irreversible linear metabolic pathway
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Fig. 1. Genetic and allosteric regulations by the end product. v1 and vn
represent respectively the input and the output flux. Xi and Ei, i = 1, . . . ,n,
denote respectively the metabolites and the enzymes.
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A. Enzymatic reactions and allosteric regulation

Let us assume that the concentration x1(t) of the first
metabolite X1 is maintained by the input flux v1 which
corresponds to the supply flux. Then, we denote by x1 the
constant concentration of X1. The output flux vn represents
the cell demand needed for the cell growth. Then, let us
consider the first enzymatic reaction,

v1−→ X1
E1−→ X2

E2−→ . . .

In the literature, the dynamics of the biochemical reaction is
described by the following nonlinear differential equation

ẋ2 = E1 f1
(
x1,xn

)
−E2 f2

(
x2
)

(1)

where x2 and xn represent the concentrations of the second
and the final metabolite X2 and Xn respectively. By E1 and
E2, we denote respectively the strictly positive concentrations
of the enzymes E1 and E2. The nonlinear functions f1(., .)
and f2(.) describe the reaction rates of the enzymes E1 and
E2, and have the following properties:
• f1(., .) is positive and strictly increasing with respect to

x1 and strictly decreasing with respect to xn, viz. The
final metabolite Xn is able to inhibit the factivity of the
first enzyme E1. This represents the allosteric effect by
the end product. Moreover, f1(., .) is bounded with the
known bound M1.

• f2(.) is positive strictly increasing with respect to x2
and bounded with the known bound M2.

Now, let us consider the remainder enzymatic reactions

. . .Xi−1
Ei−1−−→ Xi

Ei−→ . . .

which can be modeled by nonlinear differential equations.
For i = 3, . . . ,n, one has

ẋi = Ei−1 fi−1
(
xi−1

)
−Ei fi

(
xi
)

(2)

where the concentrations Ei, xi and the reaction rates fi(xi)
have the same properties as those of E2, x2 and f2(x2)
respectively.

B. Genetic regulation by the end product

Here we assume that only the first enzyme E1 of ir-
reversible linear pathway is genetically controlled (by a
transcription factor for instance). The variation of its con-
centration during the exponential growth phase is mostly
the result of two phenomena: (i) the de novo production
controlled by the concentration of the end product xn (ii) the
dilution effect caused by the increase of the cell volume. The
dynamics of the first enzyme concentration is then governed
by the following differential equation,

Ė1 = g
(
xn
)
−µE1 (3)

where µ is the growth rate of the bacterium assumed to be in
the exponential growth phase. The term g(xn) corresponds to
the instantaneous production of the enzyme E1 modulated by
the end product (typically through a transcription factor). The
function g(.) is positive strictly decreasing with respect to

xn with g(0) = gmax and limx→+∞ g(x) = 0. The first enzyme
E1 is more produced when the concentration of the final
metabolite Xn is decreasing.

Finally, the irreversible linear metabolic pathway with
genetic and allosteric regulation, as depicted in Figure 1,
is described by the following set of coupled nonlinear
differential equations:

• The dynamics of the metabolite concentrations (linked
to enzymatic reactions)

ẋ2 = E1 f1(x1,xn)−E2 f2(x2)
ẋ3 = E2 f2(x2)−E3 f3(x3)
...

...
...

...
ẋn = En−1 fn−1(xn−1)−En fn(xn)

(4)

• The dynamics of the concentration of the first enzyme

Ė1 = g
(
xn
)
−µE1 (5)

Prior to stating our main result about the global stability
for such nonlinear systems, we give in the following section
the conditions ensuring the boundedness and the existence
of the steady state.

III. BOUNDEDNESS AND EXISTENCE OF STEADY
STATE REGIMEN

A. Boundedness

We start our demonstration by showing the boundedness
of the first enzyme concentration E1, which is governed by
(5). Since, by definition g(.) is positive and bounded, viz.

∀xn ≥ 0, g(xn) ∈ (0,gmax]

then for any xn ≥ 0 the solution E1(t) of (5) is framed
between

Ě1(t)≤ E1(t)≤ Ê1(t),

where Ě1(t) and Ê1(t) are respectively the solutions of the
following stable first-order linear systems with the initial
conditions Ě1(t0) = Ê1(t0) = E1(t0)

˙̌E1 =−µĚ1,
˙̂E1 =−µÊ1 +gmax.

Thus, there exists E1 > 0 | ∀t ≥ 0, E1(t)≤ E1.

Once the boundedness of the first enzyme concentration
has been proved, the following proposition gives sufficient
conditions, which guarantee the boundedness of all state
trajectories generated by (4).

Proposition 1: If for each i ∈ {2, . . . ,n} the following
inequality E1M1 < EiMi is verified, then all the state tra-
jectories generated by (4) are bounded for any initial state.
Here Mi represents the upper bound of the function fi(xi).
�

Proof : see [9].
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B. Existence of the steady state

The steady state (x∗,E∗1 )
T of the nonlinear system (4)-(5)

is obtained when all the time derivatives vanish. Then, by
direct computation we obtain:

E∗1 =
g(x∗n)

µ
, (6)

x∗n = k−1
n
( 1

µEn

)
(7)

where kn(xn) =
fn(xn)

f1(x1,xn)g(xn)
and for all i ∈ {2, . . . ,n−1}

x∗i = f−1
i
(E∗1

Ei
f1(x1,x∗n)

)
. (8)

As the functions fi(.), i = 1, . . . ,n are bounded and strictly
monotone, the existence of (6), (7) and (8) are guar-
anteed if the following inequalities are satisfied: ∀i =
2, . . . ,n E1 f1(x1,0) < EiMi, which exactly correspond to
the conditions of Proposition 1.

IV. MAIN RESULT

Now, we state the main contribution of the paper about
the global stability of the equilibrium point of the coupled
nonlinear system (4)-(5).

Proposition 2: Let

γn = max
xn

{
− E1 f ′1(x1,xn)

En f ′n(xn)

}
(9)

where f ′1 (resp. f ′n) is the derivative of f1 (resp. fn) with
respect to xn. If

γn < sec(π/(n−1))n−1 (10)

then there exists a diagonal and positive matrix P = diag(pi)
with order (n−1)× (n−1) such that

PA+AT P≤−2εI (11)

where

A =



−1 0 . . . 0 −1

1 −1
. . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 − 1

γn


, (12)

I is the identity matrix of suitable dimension and ε is a
positive real number. Then, the steady state of the irreversible
metabolic pathway (4)-(5) is globally asymptotically stable
if the following condition is satisfied:

λn = max
xn

{ g′n(xn)

f ′1(x1,xn)

}
<

εµE∗1
p f1(x1,0)

(13)

where p = maxi(pi). �
To prove our main result let us recall briefly the Lyapunov

stability analysis via the composite systems method devel-
oped in [11].

A. Outline of the method

Let us consider a dynamical system given by

ẋ = f(x, t) x ∈ Rn, t ∈ R (14)

where f(x, t) is assumed uniformly Lipschitz wrt x and
satisfies

f(0, t) = 0 t ∈ R (15)

In order to show the global stability of the equilibrium x= 0,
one assumes that (14) can be decomposed as follows,

f(x, t) =


ẋ1 = f1(x1, t)+g1(x, t)
...

...
ẋm = fm(xm, t)+gm(x, t)

(16)

where x j ∈ Rn j , n1 + · · ·+nm = n, x = (x1, . . . ,xm)
T . More-

over, one assumes also that the vector functions f j(x j, t) and
g j(x, t) satisfy

f j(0, t) = 0 j = 1, . . . ,m; t ∈ R (17)

g j(0, t) = 0 j = 1, . . . ,m; t ∈ R. (18)

Hence, the large-scale nonlinear system (14) is viewed as
an interconnection of m dynamical subsystems with input y j
and output x j

ẋ j = f j(x j, t)+y j (19)

where
y j = g j(x, t) (20)

Thus, it is of great interest to be able to show the Lyapunov
stability of the equilibrium point x = 0 of the composite
system (14) from the Lyapunov stability of the equilibrium
points x j = 0 of the isolated systems described by

ẋ j = f j(x j, t) j = 1, . . . ,m (21)

In other terms, one expects that the building of Lyapunov
functions v j(x j, t) for the isolated systems is easy and one
attempts to use their weighted sum

v(x, t) = d1v1(x1, t)+ · · ·+dmvm(xm, t) (22)

as a candidate Lyapunov function for the composite system
(14), where d1, . . . ,dm are positive constants. Theorem 1 in
reference [11] gives sufficient conditions, which assure that
v(x, t) inherits all the properties of the Lyapunov functions
v j(x j, t).

Theorem 1: System (14) is uniformly asymptotically sta-
ble if the next three conditions are satisfied,

1) For each isolated system (20), there is a positive-
definite and radially unbounded function v j(x j, t) with
continuous partial derivatives such that

v̇ j(x j, t)≤−α j{u j(x j)}2 x j ∈ Rm j ; t ∈ R (23)

|5x j v j(x j, t)| ≤ u j(x j) x j ∈ Rm j ; t ∈ R (24)

where α j is a positive constant and u j(x j) a positive-
definite function and the single bars |.| denote the
Euclidean norm.
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2) There are nonnegative constants β jk such that

|g j(x, t)| ≤
m

∑
k=1

β jkuk(xk) x ∈ Rm; t ∈ R. (25)

3) The m×m matrix C = (c jk) given by

c j j = α j−β j j; c jk =−β jk ( j 6= k) (26)

is an M-matrix, i.e. all its off diagonal entries are
nonpositive and all its eigenvalues have nonnegative
real part [12]. �

Proof : see [11].
So, the next section is devoted to show that for the non-

linear system (4)-(5) Proposition 2 is a direct consequence
of Theorem 1.

V. PROOF OF THE MAIN RESULT

Let us check all the conditions needed to apply Theorem 1
for the irreversible linear metabolic pathway (4)-(5). To this
purpose, first, we make the following change of variables:

∀ i = 2, . . . ,n, δxi = xi− x∗i and δE1 = E1−E∗1 .

Then, in the new base of the state variables, system (4)-(5)
is equivalent to (27)-(28):

• The dynamics of the metabolite concentrations

δ ẋ2 = δE1 f1(x1,δxn + x∗n)−E∗1 δ f ∗1 (x1,δxn)−E2δ f2(δx2)
δ ẋ3 = E2δ f2(δx2)−E3δ f3(δx3)
...

...
...

...
δ ẋn = En−1δ fn−1(δxn−1)−Enδ fn(δxn)

(27)

• The dynamics of the first enzyme concentration

δ Ė1(t) = δg
(
δxn
)
−µδE1 (28)

where

• δ f ∗1 (x1,δxn) = f1(x1,x∗n)− f1(x1,δxn + x∗n),
• δ fi(δxi) = fi(δxi + x∗i )− fi(x∗i ) i = 2, . . . ,n and
• δg(δxn) = g(δxn + x∗n)−g(x∗n).

To be in conformity with the decomposition (16), we rewrite
(27)-(28) as below{

δ ẋ = f1(δx)+g1(δx,δE1)
δ Ė1 = f2(δE1)+g2(δx) (29)

where

f1(δx) =


−E∗1 δ f ∗1 (x1,δxn)−E2δ f2(δx2)
E2δ f2(δx2)−E3δ f3(δx3)

...
...

En−1δ fn−1(δxn−1)−Enδ fn(δxn),

g1(δx,δE1) = δE1 f1(x1,δxn + x∗n), f2(δE1) = −µδE1, and
g2(δx)= δg

(
δxn
)

that satisfy f1(0)= 0, g1(0,0)= 0, f2(0)=
0 and g2(0) = 0. Then, we build hereafter Lyapunov func-
tions for each isolated systems.

A. Lyapunov function for the first isolated system

Consider the first isolated system

δ ẋ = f1(δx) (30)

Inspired by the results about the diagonal stability given
in [13] and [8], we propose for the autonomous dynamical
system (30) the following Lyapunov function

v1(δx) =
n−1

∑
i=2

piEi

∫
δxi

0
δ fi(σ)dσ + pnE∗1

∫
δxn

0
δ f ∗1 (σ)dσ

(31)
where for all i ∈ {2, . . . ,n} pi > 0. By construction, the
Lyapunov function has the following properties

1) v1(0) = 0 since ∀i = 1, . . .n−1, δ fi(0) = 0,
2) v1(δx)> 0 because by definition

∀i = 1, . . .n−1, δ fi(δxi)δxi > 0

3) lim|δx|−→∞ v1(δx) = +∞ since for all i ∈ {1, . . .n−1},
fi(.) is strictly increasing and bounded, and thus

lim
|δxi|−→∞

∫
δxi

0
δ fi(σ)dσ =+∞

Hence, the only condition we have to examine is the
negative-definiteness of v̇1(δx). To this purpose, we first set

h(δx,E)T = [E2δ f2(δx2), . . . ,En−1δ fn−1(δxn−1),E∗1 δ f ∗1 (x1,δxn)].

Then by definition we get h(0,E)T = 0 and by direct
computation we obtain

v̇1(δx) = h(δx,E)T f1(δx) (32)

In line with the definition of γn given in Proposition 2 we
have

−E∗1 δ f ∗1 (x1,δxn)Enδ fn(δxn)≤−
1
γn

E∗21 δ f ∗21 (x1,δxn)

and then we can uppermost bound (32) as follows

v̇1(δx)≤ h(δx,E)T PAh(δx,E) (33)

where the matrix A as defined by equation (12) is diagonally
stable if condition (10) of Proposition 2 is satisfied [5], [6].
That means there exist some diagonal positive matrix P and
some positive real number ε such that

PA+AT P≤−2εI (34)

Therefore, we rewrite (33) as follows

v̇1(δx) ≤ 1
2 h(δx,E)T [PA+AT P]h(δx,E)

≤ −εh(δx,E)T Ih(δx,E) (35)

which proves the negative-definiteness of v̇(δx). Moreover,
to apply Theorem 1, the Lyapunov function v1(δx) has to
satisfy (23) and (24). To check that, let us set

γ1 = supδx
{ |5δxv1(δx)|√

εh(δx,E)T Ih(δx,E)

}
= supδx

{√
∑

n
i=2 p2

i h2
i√

ε ∑
n
i=2 h2

i

}
= supδx

{ p
√

∑
n
i=2 h2

i√
ε

√
∑

n
i=2 h2

i

}
= p√

ε
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where p is the largest entry of the diagonal matrix P. Then,
we take

α1 =
1
γ2

1
=

ε

p2 (36)

and
u1(δx) = γ1

√
εh(δx,E)T Ih(δx,E) (37)

From (35), (36) and (37) it is straightforward to show that

v̇1(δx)≤−α1{u1(δx)}2 and

u1(δx) = γ1
√

εh(δx,E)T Ih(δx,E)
≥ |5δxv1(δx)|√

εh(δx,E)T Ih(δx,E)

√
εh(δx,E)T Ih(δx,E)

≥ |5δx v1(δx)|,
and so conditions (23) and (24) of Theorem 1 are satisfied.

B. Lyapunov function for the second isolated system

For the second isolated system

δ Ė1 = f2(δE1) =−µδE1 (38)

we can associate the following Lyapunov function

v2(δE1) =
1
2

δE2
1 (39)

with
v̇2(δE1) =−µδE2

1 (40)

Moreover, if we take

γ2 = max
δE1

{ |δE1|√
µδE2

1

}
=

1
√

µ
, α2 =

1
γ2

2
= µ (41)

and
u2(δE1) = γ2

√
µδE2

1 (42)

we can show that the conditions (23), (24) of Theorem 1
are also checked by the second isolated system, viz.

v̇2(δE1)≤−α2{u2(δE1)}2 and u2(δE1)≥
∣∣ dv2(δE1)

dδE1

∣∣= |δE1|

C. Checking the remainder conditions of Theorem 1

To finish the proof of Proposition 2 we must check the
two last conditions of Theorem 1. We start by condition (25)
with j = 1,2. Indeed, we have to determine the nonnegative
constants β11, β12, β21 and β22 such that:

|g1(δx,δE1)| ≤ β11u1(δx)+β12u2(δE1) (43)

|g2(δx)| ≤ β21u1(δx)+β22u2(δE1) (44)

To satisfy (43), we have by definition

|g1(δx,δE1)| ≤ f1(x1,0)|δE1|= β11×u1(δx)+β12u2(δE1)

Then, by identification we get β11 = 0 and β12 = f1(x1,0).
Now, to check the second inequality (44) we have to

compute β21 such that

|g2(δx)|= |δg(δxn)| ≤ β21u1(δx)+0×u2(δE1)

≤ β21
p√
ε

√
εh(δx,E)T Ih(δx,E)

≤ β21
p√
ε

√
ε ∑

n
i=2 h2

i
≤ β21 phn
≤ β21 pE∗1 |δ f ∗1 (x1,δxn)|

which implies that

β21 ≥
|δg(δxn)|

pE∗1 |δ f ∗1 (x1,δxn)|
Thus, according to the definition of λn given in Proposition
2, we can choose β22 = 0 and β21 =

λn
pE∗1

.

Finally, to complete the verification of the conditions
needed to apply Theorem 1 (and the proof of Proposition
2), it remains to show that the matrix

C =

(
α1−β11 −β12
−β21 α2−β22

)
=

(
ε

p2 − f1(x1,0)

− λn
pE∗1

µ

)
(45)

is an M-matrix. To this purpose, we can use the leading
principal minors criteria [12]. We then have to prove that all
the leading principal minors of C are positive. By construc-
tion we have obtained positive diagonal entries c11 and c22,
then it remains to show that det |C| is also positive. By direct
computation we obtain

det |C|= εµ

p2 −
λn f1(x1,0)

pE∗1
and so det |C| is strictly positive if and only if

λn <
εµE∗1

p f1(x1,0)

which is exactly the condition (13) stated in Proposition 2.
This completes the proof of our main result, namely under
conditions (10) and (13) there are two positive constants d1
and d2 such that the irreversible linear metabolic pathway
(4)-(5) admits the following weighted sum

v(δx,δE1) = d1v1(δx)+d2v2(δE1)

as a well defined Lyapunov function.

VI. CONDITIONS IMPLY EXPONENTIAL
STABILITY OF THE EQUILIBRIUM REGIMEN

In fact, the previous conditions (10) and (13) ensure
that the stability is actually locally exponential. Beyond
its practical interest, it allows us, by classical arguments,
to prove that the system is actually globally exponentially
stable. In order to prove such a claim, we have first to use the
boundedness of system trajectories which ensures that vector
field of (4)-(5) is Lipschitz continuous of its arguments (C1

function of a bounded domain). That allows us to use the
classical Gronwall Bellman lemma in order to easily show
that the local exponential stability is actually global.

Let us consider the linearized system (46) for the nonlinear
system (4)-(5)[

δ ẋ
δ Ė1

]
=

[
A11 A12
A21 A22

][
δx

δE1

]
(46)

where

A11 =



−E2 f ′2(x
∗
2) 0 . . . 0 E∗1 f ′1(x1,x∗n)

E2 f ′2(x
∗
2) −E3 f ′3(x

∗
3)

. . . 0

0 E3 f ′3(x
∗
3) −E4 f ′4(x

∗
4)

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 En−1 f ′n−1(x
∗
n−1) −En f ′n(x

∗
n)
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AT
12 = [ f1(x1,x∗n),0, . . . ,0], A21 = [0, . . . ,0,g′(x∗n)] and A22 =
−µ and let us denote by P some diagonal positive matrix
and by p2 a positive constant. If the following mathematical
expression is negative for all (δxT ,δE1) 6= (0T ,0)

C = (δxT ,δE1)

[(
P 0
0 p2

)(
A11 A12
A21 A22

)
+(

AT
11 AT

21
AT

12 A22

)(
P 0
0 p2

)](
δx

δE1

)
then the equilibrium point of the linear system (46) is stable.
Moreover, one can rewrite C as follows

C = δxT (PA11 +AT
11P)δx+δE1(p2A22 +A22 p2)δE1

+2δxT (PA12 +AT
21 p2)δE1.

(47)
In line with the result about the diagonal stability given in
[5], [8], we can state that if

−E∗1 f ′1(x1,x∗n)
En f ′n(x∗n)

< sec(π/(n−1))n−1 (48)

then there exist some positive diagonal matrix P and some
positive real number ε such that

PA11 +AT
11P≤−2εI (49)

Thanks to (49) we can obtain the following upper bound for

C ≤ 2
(
− εδx2

2− εδx2
n−µ p2δE2

1+
p f1(x1,x∗n)δE1δx2 +g′(x∗n)p2δE1δxn

)
.

where p is the largest entry of P. Note that the previous
inequality is of the quadratic form

C ≤ (δx2,δxn,δE1)M(δx2,δxn,δE1)
T

where M is a symmetric matrix,

M =

 −2ε 0 p f1(x1,x∗n)
0 −2ε p2g′1(xn)

p f1(x1,x∗n) p2g′(x∗n) −2µ p2


Thus, we can claim that if M is negative definite then C is
negative. Furthermore, M is negative definite if its principal
minors m1, m2 and m3 alternate in sign starting with m1 < 0.
Hereafter, we check these conditions,
• m1 =−2ε < 0, m2 = 4ε2 > 0 and
• m3 = 2ε[−4p2µε + p2

2g(x∗n)
2 + p2 f1(x1,x∗n)

2]

Then, m3 < 0 if the inequality is satisfied

µε >
p2

2g′(x∗n)
2 + p2 f1(x1,x∗n)

2

4p2
= H(p2). (50)

It is of great interest to replace H(p2) in (50) by its minimum
H(p∗2) with respect to p2. To do that, first, we compute p∗2
such that the derivative H ′(p2) = 0. By direct computation
we obtain

H ′(p2) = 0⇐⇒ p∗2 =
p f1(x1,x∗n)
|g′(x∗n)|

.

and so
H(p∗2) =

1
2

p f1(x1,x∗n)|g′(x∗n)|.

Consequently condition (50) becomes

µε >
1
2

p f1(x1,x∗n)|g′(x∗n)| (51)

Finally, the local stability of the equilibrium point of the
nonlinear system (4)-(5) is guaranteed under the conditions
(48) and (51). These conditions are similar to the conditions
(10) and (13), which allows us to claim that the equilibrium
is actually exponentially stable.

VII. CONCLUSIONS AND FUTURE WORKS

In this work we have shown that under some conditions
it is possible to build for the irreversible linear metabolic
pathway a well defined Lyapunov function, which proves
the global asymptotic stability of its equilibrium point. For
future works, we try to extend this result to reversible
linear metabolic pathways and then to deal with the stability
issue for complex metabolic networks viewed as large-scale
interconnected linear metabolic pathways.
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