
Model-free iterative learning of time-optimal point-to-point motions for
LTI systems

Pieter Janssens, Goele Pipeleers and Jan Swevers
Department of Mechanical Engineering, Div. PMA, Katholieke Universiteit Leuven,

Celestijnenlaan 300B, Heverlee B3001, Belgium
email: Pieter.Janssens@mech.kuleuven.be

Abstract— This paper presents a model-free iterative learn-
ing control algorithm, which generates time-optimal point-to-
point motions for linear time-invariant systems. The proposed
optimization-based algorithm consists of two levels. At the first
level, a bisection algorithm determines the fastest possible point-
to-point motion, i.e. the motion time is minimized, subject to
actuator limitations. At the second level, an iterative learning
control algorithm for point-to-point motions learns the system
input that results in a point-to-point motion, with the minimal
motion time obtained by the bisection algorithm at the first
level. Simulation results show that the proposed model-free
method is able to learn the time-optimal system input for a given
point-to-point motion problem in the presence of measurement
noise and repeating disturbances.

I. INTRODUCTION

Iterative learning control (ILC) is an open-loop control strat-
egy that aims at improving the tracking performance of a
system executing the same task under the same operating
conditions. The system input is updated iteratively, i.e. from
trial to trial, to improve the accuracy of the desired motion
[1]. Using this technique, accurate tracking can be obtained
despite model uncertainty and repeating disturbances. Re-
ported applications in the field of motion control include
industrial robots [2] and wafer stage motion systems [3].

While ILC was originally developed for tracking control
problems, it has recently been adapted to suppress residual
vibrations of flexible systems executing point-to-point mo-
tion problems [4]. In this case, the exact trajectory from an
initial position to a desired end position is undefined. The
desired output is only defined at some time instants of the
trial, e.g. at the dwell of the point-to-point motion.

This paper presents a model-free ILC algorithm that learns
the fastest possible trajectory, subject to actuator constraints,
for a point-to-point motion problem. The algorithm consists
of two levels. At the first level, a bisection algorithm mini-
mizes the time required to reach the endpoint with a desired
accuracy. The result of the first level algorithm is then used
by a model-free ILC algorithm for point-to-point motions at
the second level. The basic idea behind this ILC algorithm
for point-to-point motion problems is adopted from a model-
free ILC algorithm for tracking control problems described
in previous papers by the authors [5], [6]. The ILC algorithm
for point-to-point motions learns the system input that results
in a point-to-point motion with the minimal motion time
calculated by the bisection algorithm at the first level.

P(q) +−
u j(k) y j(k) e j(k)

yd(k)

Fig. 1. Open-loop discrete-time LTI system P(q).

Another benefit, besides the minimal motion time, over
current ILC algorithms for point-to-point motions [4], is that
the presented method does not require a plant model, the only
requirements are linearity and time-invariance of the system.
Model-free ILC algorithms have the advantage of being
applicable to different machines without having to perform
an identification experiment on every single machine.

The outline of this paper is as follows. First, the applica-
tion of the ILC algorithm presented in [5], [6] to point-to-
point motion problems is described in section II. This is the
second level of the two-level time-optimal ILC algorithm.
Consequently, section III describes how this algorithm is
extended with a bisection algorithm such that time-optimal
point-to-point motions are learned. This is the first level of
the two-level time-optimal ILC algorithm. Section IV de-
scribes how these two algorithms are combined into a model-
free time-optimal ILC algorithm for point-to-point motions.
Section V presents simulation results on an accurate model of
a linear motor, which includes actuator limitations, cogging
disturbances and measurement noise. These results show that
the proposed algorithm is able to learn the time-optimal
system input for a given point-to-point motion problem.
Finally, section VI summarizes the conclusions.

II. MODEL-FREE ILC FOR POINT-TO-POINT MOTIONS

This section presents the model-free ILC algorithm for point-
to-point motion problems, which constitutes the second level
of the time-optimal ILC algorithm.

A. Basic model-free ILC algorithm

Consider the open-loop, single-input single-output (SISO),
discrete-time, LTI system P(q) with relative degree τ in
Fig. 1. P(q) has input:

u j(k), k ∈ {1,2, . . . ,N},

and output:

y j(k), k ∈ {τ +1,τ +2, . . . ,τ +N},

where subscript j ∈ {0,1,2, . . .} denotes the trial number,
k refers to the discrete time instants kTs, Ts denotes the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6031

sampling period, q is the one-sample advance operator, and
N denotes the number of samples per trial. Let yd(k) and
Kd respectively denote the desired output and the set of
all time instants at which the desired output is specified.
For point-to-point motion problems, only the time instants at
which standstill at a certain position is desired are included
in Kd. The bisection algorithm at the first level determines
the set Kd that corresponds with the minimal motion time
(see section III). The positioning error is given by:

e j(k) = yd(k)− y j(k), k ∈Kd. (1)

Contrary to traditional model-based ILC methods, the pro-
posed ILC method relies on the linearity and time-invariance
of the system only; a plant model is not required. The system
input is updated using a linear combination of previous
system inputs convoluted with a trial-varying, but linear
time-invariant, causal finite impulse response filter (FIR-filter)
α j(q) of length N:

u j+1(k) = u j(k)+ulc(k)∗α j(k). (2)

In this formula α j(k) denotes the impulse response of
α j(q), ulc(k) represents a linear combination of the previous
trials’ input signals u0(k),u1(k), . . . ,u j(k), and ∗ denotes the
discrete-time convolution operator.

When updating the input signal u j(k) using (2), the
corresponding output y j+1(k) is predicted by relying on the
system’s linearity and time-invariance only:

ŷ j+1(k) = y j(k)+ ylc(k)∗α j(k), (3)

where ylc(k) denotes a linear combination of previous trials’
output signals y0(k),y1(k), . . . ,y j(k) that is composed in the
same way as the linear combination ulc(k) used in (2). At
every iteration, the FIR-filter α j(q) is computed by solving
a convex optimization problem as explained below.

Using the lifted system representation [7], which is used
in the remainder of this paper, the update law (2) is rewritten
as:

u j+1(1)
u j+1(2)

...
u j+1(N)

︸ ︷︷ ︸

u j+1

=

u j(1)
u j(2)

...
u j(N)

︸ ︷︷ ︸

u j

+

ulc(1) 0 · · · 0

ulc(2) ulc(1)
. . .

...
...

. 0
ulc(N) · · · ulc(2) ulc(1)

︸ ︷︷ ︸

Ulc

α j(1)
α j(2)

...
α j(N)

︸ ︷︷ ︸

α j

, (4)

where Ulc denotes the lower-triangular Toeplitz matrix of
ulc(k). Analogous to (4), the predicted output of trial j+ 1
is rewritten as:

ŷ j+1 = y j +Ylcα j = y j +A jylc, (5)

where Ylc and A j respectively denote the lower-triangular
Toeplitz matrix of ylc(k) and α j(k).

Between two trials the trial-varying FIR-filter α j(q) is
computed by solving the following convex optimization
problem:

minimize
α j∈RN

∥∥yd(Kd)− ŷ j+1(Kd)
∥∥

2

subject to ŷ j+1 = y j +Ylcα j,

u j+1 = u j +Ulcα j,∣∣u j+1
∣∣≤ u, ∣∣δu j+1

∣∣≤ δu.
(6)

The `2-norm of the predicted next trial’s positioning error
yd(Kd)− ŷ j+1(Kd) is minimized taking into account linear
inequality constraints on u j+1(k) and δu j+1(k) = u j+1(k)−
u j+1(k−1) to avoid saturation of the actuators. When convex
optimization problem (6) is solved and thus the optimal FIR-
filter α j(q) is known, the next trial’s input signal is computed
using (4).

Although any update law of the form (4) allows the output
of an LTI system to be predicted without the use of a
system model, some particular choices for ulc(k) result in
update laws with important advantages. For now, consider
the following simple update laws:

ulc(k) = u0(k) : u j+1 = u j +U0α j, (7)

ulc(k) = u j(k) : u j+1 = u j +U jα j. (8)

After the first trial, when computing u1, both update laws
are equivalent and make use of the initial input signal u0.
The proposed method, using update law (7) or (8), can be
shown to converge in only one iteration to the minimal value
of the objective function, provided that (i) U0 is a full-rank
matrix, and (ii) no measurement noise or disturbances are
present. The first condition is sufficient to ensure that the
required change in system input u∗−u0, where u∗ denotes
the time-optimal system input, is in the column range of
U0. The lower-triangular Toeplitz matrix U0 is of full rank
if and only if u0(1) 6= 0. This way, the condition on the
rank of U0 restricts the choice of the first trial’s input signal
u0(k). The second condition ensures that the predicted output
ŷ1 = y0 +Y0α0 is exactly equal to the true output of trial
j = 1, and hence the minimum of optimization problem (6)
equals the true minimal value of the considered objective
function for the imposed bounds on the actuator input. This
global optimum is found since optimization problem (6) is
convex.

In practice, however, measurement noise and disturbances
are present and more iterations are needed to converge to
the optimal system input. At iterations j > 1, update law
(7) and (8) and hence the corresponding ILC algorithms are
different. In the case of update law (7), Ulc =U0 is of full
rank at every trial along the learning process as long as the
initial input signal u0(k) satisfies u0(1) 6= 0. In the case of
update law (8), this condition to converge to the time-optimal
system input might not be satisfied further on in the learning
process since Ulc = U j results from a previous iteration’s

6032

optimization problem and is not free to choose. For this
reason, update law (7) is preferred.

B. Dealing with measurement noise

This subsection discusses the influence of measurement noise
on the model-free ILC algorithm and proposes an essential
modification to the algorithm.

Consider an open-loop LTI system P(q) with input u j(k),
true output y j(k), and measured output ym

j (k)= y j(k)+n j(k),
which is corrupted by zero-mean measurement noise n j(k)
with standard deviation σn.

Since the true noise-free output y j is unknown, the pre-
dicted plant output ŷ j+1 is computed from the measured
output signals ym

j and ym
0 in correspondence with update

law (7):
ŷ j+1 = y

m
j +Y m

0 α j,

= y j +n j +Y0α j +N0α j,
(9)

where N0 and Y m
0 respectively denote the lower-triangular

Toeplitz matrices of n0(k) and ym
0 (k). The difference between

the true output y j+1 and the predicted output ŷ j+1 is called
the prediction error of trial j + 1 and is denoted by epr

j+1.
The update relation (7) still yields

y j+1 = y j +Y0α j, (10)

whereby the prediction error of trial j+1 is given by:

e
pr
j+1 = y j+1− ŷ j+1 =−n j−N0α j. (11)

Consequently, the objective function of optimization program
(6) amounts to ∥∥yd(Kd)− ŷ j+1(Kd)

∥∥
2 = (12)∥∥∥yd(Kd)−y j+1(Kd)+e

pr
j+1(Kd)

∥∥∥
2
, (13)

and hence the prediction error impedes the model-free ILC
algorithm from minimizing the true positioning error. There-
fore it is necessary to constrain the prediction error.

From (11) the standard deviation of the prediction error
of trial j + 1 can easily be derived. The largest standard
deviation of the prediction error is found at the last sample
of the trial, k = N:

σepr
j+1(N) = σn

√
1+
∥∥α j

∥∥
2. (14)

This analysis shows that adding the convex constraint∥∥α j
∥∥

2 ≤ t (15)

to optimization program (6) limits the standard deviation of
the prediction error and therefore also the influence of the
prediction error on the objective function.

Hence, in the presence of measurement noise, the fol-
lowing convex optimization program is solved between two
trials to obtain the optimal FIR-filter α j(q) and thus also the

updated input signal u j+1(k):

minimize
α j∈RN

∥∥yd(Kd)− ŷ j+1(Kd)
∥∥

2

subject to ŷ j+1 = y
m
j +Y m

0 α j,

u j+1 = u j +U0α j,∣∣u j+1
∣∣≤ u, ∣∣δu j+1

∣∣≤ δu∥∥α j
∥∥

2 ≤ t.

(16)

In addition to the beneficial effect on the prediction error,
the constraint on

∥∥α j
∥∥

2 also limits the change in input signal
U0α j between two trials. Consequently, the constraint on∥∥α j

∥∥
2 influences the convergence speed of the ILC algorithm

and regulates the trade-off between convergence speed and
accuracy of the output prediction.

Towards the end of the learning process, when the output
motion converges to the desired one, the accuracy of the
output prediction gets more important whereas the required
change in input signal decreases. For this reason, it is advan-
tageous to lower the value of t towards the end of the learning
process resulting in fast convergence in the beginning of
the learning process and accurate output prediction when
necessary, i.e. at the end of the learning process.

C. Dealing with trial-invariant disturbances

In the previous subsection the model-free ILC algorithm was
adapted for problems where measurement noise is present.
In many applications, however, the output also suffers from
trial-invariant disturbances. In this case, convergence speed
can be increased by choosing an appropriate update law.

Consider again an LTI system P(q) with a trial-invariant
output disturbance d j(k) = d(k), ∀ j = 0,1,2, Using the
lifted-system representation, the system dynamics, including
the trial-invariant disturbance d(k), are written as follows:

y j = Pu j +d, (17)

where P denotes the lower-triangular Toeplitz matrix of the
impulse response of the system P(q).

Since the model-free ILC algorithm assumes the system
dynamics to be LTI, again a prediction error arises in the
objective function of the optimization program when update
law (7) is used. Combining (7), (10) and (17) results in the
following prediction error:

e
pr
j+1 = y j+1− ŷ j+1 =−Dα j, (18)

where D denotes the lower-triangular Toeplitz matrix of
d(k). Constraining the `2-norm of α j again reduces the
prediction error at the cost of convergence speed.

In the presence of trial-invariant disturbances, however,
more appropriate choices of the update law, resulting in
more accurate output predictions and therefore also faster
convergence, can be made. Consider the following specific
case of (4):

u j+1 = u j +A j(u j−u j−1 + γu0), (19)

6033

−+ C(q)
|u| ≤ u
|δu| ≤ δu

P(q) +
+

r j(k) u j(k) y j(k)

n j(k)

ym
j (k)

Fig. 2. Closed-loop discrete-time system with actuator constraints.

where γ determines the relative weight of u0 with respect to
u j−u j−1. The predicted output of trial j+1 for the system
described by (17) is:

ŷ j+1 = y j +A j(y j−y j−1 + γy0),

= Pu j +d+A j(P (u j−u j−1 + γu0)+ γd),
(20)

whereas the actual output is:

y j+1 = P (u j +A j(u j−u j−1 + γu0))+d. (21)

Consequently, the resulting prediction error is:

e
pr
j+1 = y j+1− ŷ j+1 =−γA jd. (22)

This analysis shows that an appropriate choice of γ in
update law (19) leads to a reduced prediction error due to
trial-invariant disturbances (for |γ|< 1), and still allows Ulc
to be of full rank at every trial of the learning process (for
γ 6= 0), under the assumption that u1(k) satisfies u1(0) 6= 0.
The tuning parameter γ regulates the trade-off between the
prediction error due to trial-invariant disturbances and the
ability to reduce the next trial’s positioning error.

To summarize, in the presence of measurement noise and
trial-invariant disturbances the following convex optimization
problem is solved to obtain the optimal FIR-filter and hence
also the updated input signal u j+1(k):

minimize
α j∈RN

∥∥yd(Kd)− ŷ j+1(Kd)
∥∥

2

subject to ŷ j+1 = y
m
j +(Y m

j −Y m
j−1 + γY m

0)α j

u j+1 = u j +(U j−U j−1 + γU0)α j∣∣u j+1
∣∣≤ u, ∣∣δu j+1

∣∣≤ δu∥∥α j
∥∥

2 ≤ t.

(23)

D. Applications to closed-loop systems with actuator con-
straints

In many applications, ILC is combined with feedback control
since an iterative learning controller cannot compensate for
nonrepeating disturbances. Consider the closed-loop system
in Fig. 2 with actuator constraints u and δu, controller
C(q), plant P(q), reference signal r j(k), actuator input u j(k),
output y j(k) and measured output ym

j (k) = y j(k)+n j(k). The
difference with the aforementioned open-loop systems is that
in the closed-loop case the reference signal r j(k) is updated
in order to track a given desired output yd(k), taking into
account the constraints on the actuator input u j(k), whereas
in the open-loop case the actuator input itself is updated.

When the actuator constraints are active, the relation
between the reference signal r j(k) and the output y j(k) of
the closed-loop system in Fig. 2 becomes nonlinear. To avoid
this nonlinearity, optimization program (23) is solved first
to compute the optimal FIR-filter α j(q), and herewith the
optimal next trial’s input signal u j+1(k) that satisfies the

actuator constraints. However, since the actuator signal can
no longer be accessed directly, it is aimed for by applying
the following reference signal:

r j+1 =C
−1u j+1 + ŷ j+1, (24)

where C denotes the lower-triangular Toeplitz matrix of the
impulse response of controller C(q), while u j+1 and ŷ j+1
result from the solution of (23). To ensure that the rank
condition on Ulc is satisfied (section II-A), the first trial’s
reference signal must satisfy r0(1) 6= 0.

III. MINIMIZING MOTION TIME USING A BISECTION
ALGORITHM

This section discusses the bisection algorithm that calculates
the minimal motion time and thus also the time-optimal set
of time instants Kd at which standstill can be imposed. This
set is used by the model-free ILC algorithm at the second
level to learn a system input that results in the time-optimal
point-to-point motion.

Consider a point-to-point motion where a system has to
reach the endpoint yend in m time samples starting from
position y(0) = 0. The desired system output yd(k) = yend
is only defined from time sample m to the end of the trial,
that is for k ∈ Kd = {m,m + 1, . . . ,N}. At every iteration
of the learning process, the value of m is minimized using a
bisection method [8]. This involves solving a series of convex
optimization problems of the following form:

minimize
α j∈RN

∥∥α j
∥∥

2

subject to
∥∥yd(Kd)− ŷ j+1(Kd)

∥∥
2 ≤ edes

√
N−m+1

ŷ j+1 = y
m
j +(Y m

j −Y m
j−1 + γY m

0)α j

u j+1 = u j +(U j−U j−1 + γU0)α j∣∣u j+1
∣∣≤ u, ∣∣δu j+1

∣∣≤ δu.
(25)

In this optimization problem, edes denotes the desired rms
value of the positioning error and N−m+1 denotes the num-
ber of samples in Kd . The output prediction is again based
on the LTI property of the system as in section II. The aim
of solving this optimization problem is determining whether
it is possible to achieve the desired positioning accuracy edes
for a certain motion time of m time samples, taking into
account the actuator constraints. For this reason, the contraint
on
∥∥α j

∥∥
2, which limits the update to the actuator input, is

removed. The `2-norm of α j is now minimized to avoid that
the uncertainty on the predicted output becomes too large.

Depending on the feasibility of optimization problem (25),
the value of m, the motion time of the point-to-point mo-
tion, is reduced or increased until the minimal value m∗

is found. The bisection method finds the time-optimal set
Kd = {m∗,m∗+1, . . . ,N} for the desired endpoint yend, the
desired positioning error edes, and the actuator limitations
u and δu. At iterations j ≥ 1, an estimate of the minimal
value m∗ is known from a previous iteration. This allows the
number of steps of the bisection algorithm, and thus also
the computation time, to be reduced by limiting the search
interval of m∗.

6034

Closed-loop system

Time-optimal ILC

−
+ C(q) P(q)

r j(k) u j(k) y j(k)

Memory

Level 1: Update Kd

Level 2: Calculate r j+1(k)
r j+1(k)

Fig. 3. Schematic representation of the two-level time-optimal ILC
algorithm for a closed-loop system.

IV. LEARNING TIME-OPTIMAL POINT-TO-POINT MOTIONS

Fig.3 shows a schematic representation of the two-level time-
optimal ILC algorithm for a closed-loop system with plant
P(q) and feedback controller C(q). At every iteration j, the
following steps are taken:
• First, a reference signal r j(k) is applied to the closed-

loop system. For the first iteration, the reference signal
r0(k) must satisfy r0(1) 6= 0 (see section II).

• The actuator input u j(k) and the output y j(k) are stored
in a memory.

• Level 1: The bisection algorithm estimates the minimal
motion time taking into account the actuator bounds and
the desired positioning error.

• Level 2: The ILC algorithm for point-to-point motions
calculates the next iteration’s reference signal r j+1(k).

As the learning process proceeds, the measured output
ym

j converges to the desired time-optimal trajectory, and the
required update Ulcα j to the actuator input decreases from
trial to trial. As a result, the `2-norm of α j, which is in
the objective function of optimization problem (25), also
decreases from from trial to trial, resulting in more accurate
estimates of the minimal motion time and therefore also
convergence of the estimated minimal motion time.

Using the presented time-optimal ILC algorithm, it is
also possible to trade off time-optimality with positioning
accuracy by adjusting the value of edes. In this case, however,
it might be a more natural choice to minimize the `∞-norm
of the positioning error instead of the `2-norm.

V. SIMULATION RESULTS

This section presents the results of a simulation test case on
an accurate model of a linear motor. These results demon-
strate the ability of the presented algorithm to learn time-
optimal motion trajectories in the presence of measurement
noise and cogging disturbances.

A. Motor model

The simulations make use of a discrete-time model (Ts =
0.0025s) of a current-controlled linear motor with a position
feedback controller. The model also includes cogging and
clipping due to actuator constraints. Fig. 4 shows a block
diagram of the closed-loop system, with cogging force d j(k).

Cogging is considered as the main disturbance in
permanent-magnet linear motors. It is modelled as a com-
bination of position ripple and force ripple. The position
ripple is the force required to keep the carriage of a linear

−+ C(q)
|u| ≤ u
|δu| ≤ δu

+
+ P(q) +

+
r j(k) u j(k)

d j(k)

y j(k)

n j(k)

ym
j (k)

Fig. 4. The closed-loop system with cogging force d j(k) and actuator
limitations u and δu.

0 0.3 0.6 0.9 1.2
-0.6
-0.3

0
0.3
0.6

time (s)

tr
ac

ki
ng

er
ro

r
(m

m
) with cogging without cogging

Fig. 5. Tracking error of the closed-loop system, with and without cogging
disturbances, to a smooth reference step of 20cm.

motor at a fixed position, with zero motor input current. This
disturbance force depends on the position only. The force
ripple is caused by the variation of the motor constant with
the position. Therefore this disturbance force is position-
dependent and proportional with the motor input current [9].
Since the input current is updated from trial to trial, the
cogging disturbance is not entirely trial-invariant. The more
the algorithm converges to the optimal solution, however, the
smaller the trial-to-trial variation of the cogging disturbance
will be. The system dynamics, including both force and
position ripple, are given by the following equations:

y j = PC(IN +PC)−1(r j−n j)

+P (IN +PC)−1

asin(ωyy j)+bsin(3ωyy j +φ1)︸ ︷︷ ︸
position ripple

+ u j(csin(ωyy j +φ2)+d sin(3ωyy j +φ3))︸ ︷︷ ︸
force ripple

 ,
u j = clip(C(r j−y j−n j)),

where clip(.) is a nonlinear function that represents the
clipping due to the actuator constraints, ωy is the spatial fre-
quency determined by the width of the permanent magnets,
and φ1, φ2, φ3, a, b, c and d are parameters that determine the
size and shape of the cogging force. Fig. 5 shows the tracking
error to a smooth reference step of 20cm with and without
cogging disturbance. This figure shows that a significant part
of the tracking error is due to the cogging disturbance.

B. Results

The linear motor is commanded to travel a distance of 20cm
time-optimally, satisfying the following actuator constraints:∣∣u j(k)

∣∣≤ 10A and
∣∣δu j(k)

∣∣≤ 5A. (27)

During the first trial of the learning process a reference
signal, satisfying r0(1) 6= 0, is applied to the system. When
calculating the second trial’s reference signal (trial j = 1),
update law (7) is used in optimization problems (23) and (25)

6035

TABLE I
ESTIMATED MINIMAL MOTION TIME m∗ (IN NUMBER OF SAMPLES) AS A

FUNCTION OF THE TRIAL NUMBER AND THE THEORETICAL OPTIMUM

FOR THE THREE CONSIDERED TEST CASES.

case trial 1 trial 2 . . .15 optimum

I 95 95 95
II 96 95 95
III 96 95 95

0 5 10 15

10−3

10−6

10−9

10−12

10−15

iteration (-)

e r
m

s
(m

m
)

I II III

Fig. 6. Rms value of the positioning error as a function of the iteration
number for the three considered test cases.

because experimental data from only one previous iteration
are available. From then on, both the first and second level
of the model-free time-optimal ILC algorithm use the update
law given by (19) with γ = 0.1. The upperbound t on

∥∥α j
∥∥

2
in optimization problem (23) is equal to 1.5.

Three cases are considered.

• Case I only considers the closed-loop system with
actuator constraints.

• Case II includes cogging disturbances, but the output
measurements are free of noise.

• Case III considers both cogging disturbances and noise-
corrupted output measurements (σn = 0.01µm).

The desired positioning accuracy edes is chosen equal to
1nm for the three cases. A smaller value for edes results in
the same motion time, which can be explained by the finite
sampling time Ts = 0.0025s. For the third case, the minimal
positioning error after learning is greater than edes due to the
measurement noise.

Table I shows the estimated minimal motion time m∗ as
a function of the trial number for the three different test
cases. The theoretical minimal value of m∗ for the simulated
discrete-time system is also given. These results show that
the estimated minimal motion time m∗ converges to the true
minimal value in very few iterations.

Fig. 6 shows the rms value of the positioning error as a
function of the iteration number for these three situations.
The presented algorithm achieves a zero positioning error in
case of noise-free output measurements (case I & II). When
measurement noise is present (case III), the positioning error
after learning has a peak value of 0.033µm and an rms
value of 0.015µm. Further improvement is hardly possible
because of the noise level. Fig. 7 shows the learned time-
optimal output motion y15(k) of the 15th trial together with
the corresponding actuator input u15(k), which satisfies the
actuator limitations given by (27). These results show that
the presented algorithm is able to learn time-optimal point-
to-point motion trajectories in the presence of measurement
noise and cogging disturbances.

0 0.1 0.2 0.3 0.4
−10

0

10

u 1
5(

A
)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

time (s)

y 1
5(

m
)

Fig. 7. Actuator input and output motion after 15 trials of learning in case
of measurement noise and cogging disturbances (Case III).

VI. CONCLUSION

This paper presents a two-level model-free ILC method that
learns time-optimal point-to-point motions for LTI systems.
The bisection algorithm at the first level minimizes the
motion time subject to actuator limitations. At the second
level, a model-free ILC algorithm for point-to-point motions
learns the system input that results in a point-to-point motion
with the minimal motion time, calculated at the first level.
Simulation results using an accurate model of a linear motor
show that (i) the minimal motion time is learned in very few
iterations, (ii) the ILC algorithm for point-to-point motions
learns the optimal system input, even when measurement
noise and repeating disturbances are present.

REFERENCES

[1] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control: a learning based method for high-performance tracking
control,” IEEE Control Systems Magazine, vol. 26, pp. 96–114, June
2006.

[2] D. A. Bristow and A. G. Alleyne, “A manufacturing system for
microscale robotic deposition,” in Proceedings of the American Control
Conference, June 4-6 2003.

[3] M. Heertjes and T. Tso, “Nonlinear iterative learning control with
applications to lithographic machinery,” Control Engineering Practice,
vol. 15, pp. 1545–1555, 2007.

[4] J. van de Wijdeven and O. Bosgra, “Residual vibration suppression
using hankel iterative learning control,” in Proceedings of the American
Control Conference, 2006.

[5] P. Janssens, G. Pipeleers, and J. Swevers, “Model-free iterative learning
control for LTI systems with actuator constraints,” in Proceedings of the
18th IFAC World Congress, 2011.

[6] ——, “Model-free iterative learning control for LTI systems and exper-
imental validation on a linear motor test setup,” in Proceedings of the
American Control Conference, 2011.

[7] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Ro-
bustness and Monotonic Convergence for Interval Systems. Springer-
Verlag, 2007.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[9] P. Van den Braembussche, J. Swevers, H. Van Brussel, and P. Vanherck,
“Motion control of machine tool axes with linear motor,” in Proceedings
of the 27th CIRP International Seminar on Manufacturing Systems, Ann
Arbor, Michigan, USA, May 1995.

ACKNOWLEDGMENT
Goele Pipeleers is Postdoctoral Fellow of the Research Foundation -
Flanders. This work has been carried out within the framework of projects
IWT-SBO 80032 (LECOPRO) of the Institute for the Promotion of Inno-
vation through Science and Technology in Flanders (IWT-Vlaanderen) and
G.0422.08 and G.0377.09 of the Research Foundation - Flanders (FWO
- Flanders). This work also benefits from K.U.Leuven-BOF PFV/10/002
Center-of-Excellence Optimization in Engineering (OPTEC) and from the
Belgian Programme on Interuniversity Attraction Poles, initiated by the
Belgian Federal Science Policy Office.

6036

