
 
 

 

  

Abstract—A high order sliding mode control algorithm for 
uncertain nonlinear systems is presented. This problem can be 
considered as finite time stabilization of higher order in-
put-output dynamic systems with bounded uncertainties. The 
algorithm developed is based on the concept of integral sliding 
mode and includes two steps. One is the controller for nominal 
system using geometric homogeneity. The other is one com-
pensating for uncertainties utilizing sliding mode control. In 
addition, to overcome the difficulty in determining the bounda-
ries of uncertainties, the adaptive radial basis function neural 
network is designed to estimate bounded uncertainties. The 
proposed procedure ensures establishment of high order sliding 
mode and provides easy implementation. An illustrative exam-
ple of a car control shows feasibility of the approach. 

I. INTRODUCTION 
LIDING mode control (SMC) is a main tool to deal with 
systems running under uncertainty conditions [1], [2]. 

The corresponding approach contains two aspects. First, a 
sliding manifold is designed according to the desired per-
formance index. Next, the design of a discontinuous control 
law is conducted such that the system trajectories reach and 
stay, in finite time, on the manifold by means of 
high-frequency control switching. Although insensitive to 
internal and eternal disturbance, the resulting controller has a 
disadvantage, known as chattering phenomenon. In addition, 
the conventional sliding mode demands that the relative de-
gree of system is 1 with respect to sliding variable, i.e., the 
control has to appear explicitly in its first total derivative of 
time [3]. 

Holding the primary advantages of the conventional SMC, 
a technique, called high order sliding mode control 
(HOSMC), has been proposed to reduce and (or) remove the 
chattering effect [4] –[6]. At the same time, the technique can 
achieve better accuracy than the standard SMC [7]. On sec-
ond order sliding mode, many scholars devote their attention 
to it and give various kinds of algorithm [8]–[10]. Arbitrary 
order sliding mode controllers have been proposed by Levant 
[11]–[13], Laghrouche [14], [15], Defoort [16]. In [11], the 
homogeneity properties of the known controller indicate that 
it can simplify the proof and develop new families of high 
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order sliding mode controllers (HOSMCs) based on homo-
geneity approach. The method called quasi-continuous 
HOSMC was presented in [12], which allowed the control 
practically continuous function of time with the relative de-
gree 1r > . In [13], integral sliding mode approach was used 
to design HOSMC, and the advantage of the approach en-
abled to prescribe transient dynamics. The algorithms pro-
posed by Levant allowed the tracking of reference signals by 
adjusting only one sufficiently large gain parameter with a 
known permanent relative degree. However, these algorithms 
didn’t provide constructive conditions on gain tuning. 
Laghrouche [14] combined standard SMC with linear quad-
ratic optimal control, which is over a finite time interval with 
a settled final value, to design a practical HOSMC and offer 
constructive conditions on gain’s adjustment. The controllers 
proposed in [15], [16] implied that the higher order sliding 
mode control was equivalent to finite time stabilization of 
higher order integrator chain system with bounded nonlinear 
uncertainties. The design was based on integral sliding mode 
control, that is to say, the controller contained two parts, the 
first one was the finite time convergence controller which 
guaranteed the finite time stabilization of nominal system at 
the origin, the second one was the discontinuous controller 
which enabled to reject the uncertainties and ensured that 
system trajectories stay on the sliding manifold. The resulting 
controller achieved robustness throughout the entire response. 
The difference between two methods was that the former 
used the approach of finite time convergence optimal control 
to design the continuous controller for single input single 
output (SISO) system which can choose convergence time 
dependent of initial conditions of the system in advance, the 
latter utilized the technique of geometric homogeneity to 
design the continuous controller for multi-input multi-output 
(MIMO) system which eliminated the requirement of the 
initial condition. However, the convergence time was not 
available in advance. 

 High order sliding mode control method is a robust control 
technique, suitable to the control of uncertain systems. The 
algorithms mentioned above, in the application, are under the 
assumption that the boundaries of uncertainty exist and are 
available. However, in many cases, it is very difficult or even 
impossible to determine the uncertain boundaries in many 
practical applications. Neural networks are capable of learn-
ing and reconstructing complex nonlinear mappings and have 
been widely studied in control community in the identifica-
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tion analysis and design of control systems [17]. The RBF 
network is developed to estimate the uncertainties in on-line 
way and the weight adaptation law is derived by utilizing 
Lyapunov synthesis approach. 

The rest of this paper is organized as follows. Section 2 
states the problem and corresponding hypotheses. In section 3, 
the proposed high order sliding mode control is derived. To 
verify effectiveness of the developed algorithm, a simulation 
of a car control is carried out in section 4. 

I. PROBLEM  FORMULATION 
Consider a dynamic system of the form 

 
( , ) ( , )
( , )

x f x t g x t u
y s x t

= +
=

  (1) 

where nx R∈ , u R∈  are the state variable and the control 
input, respectively. ( , ), ( , )f x t g x t  are uncertain smooth 
functions, and y  is a smooth measurable output. The control 
objective is to make the output y  vanish in finite time and to 

keep 0y ≡  thereafter. 
Assumption 1. The relative degree r  of system (1) with 
respect to ( , )s x t  is constant and known, and the associated 
zero dynamics are stable. 
Definition 1 ([18]). Consider a smooth dynamic system with a 
smooth output function ( , )s x t , and let the system be closed 
by some possibly dynamical discontinuous feedback. Then, 
provided that the successive total time derivatives ( , ),s x t  

( 1)( , ),..., ( , )rs x t s x t−  are continuous functions of the 

closed system state space variables, and the set { |xΘ =  

( , )s x t ( 1)0, ( , ) 0,..., ( , ) 0}rs x t s x t−= = =  is non-empty 
and consists locally of Filippov trajectories [19], the motion 
on the set Θ  is said to exist in r -sliding mode ( thr -order 

sliding mode). The thr  derivative ( 1) ( , )rs x t−  is mostly 
supposed to be discontinuous or nonexistent. 

The r -order SMC allows the finite time stabilization to 
zero of the sliding variable ( , )s x t  and its ( 1)r −  first time 
derivatives by defining a suitable discontinuous control 
function. Calculating the thr  total time derivative of ( , )s x t  
along the trajectories of the system (1) gets the under equa-
tion 
                          ( ) ( , ) ( , ) ( , )rs x t x t x t uϕ γ= +                  (2) 

with 1
( , ) ( , ) ( , )( , ) ( , ), ( , ) ( , )r r

f x t g x t f x tx t L s x t x t L L s x tϕ γ −= =  

being uncertain functions. 
Assumption 2. The solutions are understood in the Filippov 
sense [19], and system trajectories are supposed to be infinite 
extendible in time for any bounded Lebesgue measurable 
input. In practice it means that the system is weakly minimum 
phase. 

Assumption 3. There exist ,mK R+∈  ,MK R+∈  C R+∈  
such that the following inequalities hold at least locally. 
                     ( , ) , ( , )m MK x t K x t Cγ ϕ≤ ≤ ≤               (3) 

The problem of r -order SMC of system (1) with respect to 
the sliding variable ( , )s x t  is equivalent to the finite time 
stabilization of [15], [16] 

                                 

1 2

1

( , ) ( , )
r r

r

z z

z z
z x t x t uϕ γ

−

=

=
= +

                      (4) 

in which z is the vector T
1 2[ , ,..., ] [ ( , ), ( , ),rz z z s x t s x t=   

..., ( 1) T( , )]rs x t− . 

II. HIGH ORDER SLIDING MODE CONTROL DESIGN 
In practice, the system (4) can be divided into the nominal 

part, known a priori, and uncertain part, so it can be rewritten 
as 

                    

1 2

1

0 0( , ) ( , ) ( , )
r r

r

z z

z z
z x t x t u F x tϕ γ

−

=

=
= + +

              (5) 

where 0 0( , ), ( , )x t x tϕ γ are determinate terms, and ( , )F x t  

( , ) ( , )x t x t uϕ γ= Δ + Δ  represents the whole perturbation. 
Furthermore, design the following control law 

                          0
0

1 ( ( , ) )
( , )

u x t w
x t

ϕ
γ

= − +                    (6) 

with w  being a auxiliary control input. Thus, the system (5) 
can be expressed as follows 

                                       

1 2

1

( , )
r r

r

z z

z z
z w F x t

−

=

=
= +

                           (7) 

For system (7), the control law is composed of two parts [20], 
like 
                                          0 1w w w= +                                  (8) 

where 0w  is the ideal control stabilizing the nominal system 

(7) in finite time at the origin and 1w  is design to be discon-

tinuous for rejecting the perturbation term ( , )F x t . 

A. Ideal Control Design 
A constructive feedback control law which renders the 

closed-loop system asymptotically stable and homogeneous 
of negative degree with respect to a suitable dilatation for 
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finite time stabilization of arbitrary-order integrator chain 
system without uncertainty has been proposed in [21]. One 
can see it for further details. 
Theorem 1 ([16]). Let the positive constants 1 2, ,..., rk k k  be 

such that polynomial 1
2 1

r r
rp k p k p k−+ + + +  is Hur-

witz. There is (0,1)ε ∈  such that for every (1 ,1)ν ε∈ −  
the nominal system is stabilized at the origin in finite time 
under the feedback 

              
1

2

0 1 1 1 2 2

2

sign( ) sign( )

sign( ) r

v

v v
r r r

w k z z k z

z k z z

= − −

⋅ − −
               (9) 

in which the notation sign( )⋅  denotes the signum function 

and 1 2, ,..., rv v v  satisfy 

                                    1
1

12
j j

j
j j

v v
v

v v
+

−
+

=
−

                           (10) 

with 1 1, (2,3,..., )jv j r+ = = . 

B. Discontinuous Control Design 

The discontinuous control law 1w  is designed to make 

sure that the sliding motion on the set { | ( , )x s x tΩ =  

0}=  is reached in the presence of uncertainties. In the case 
of the boundaries of uncertainties available, the controller can 
be designed easily to some extent (see [15] for more details). 
In fact, these boundaries are difficult to be obtained exactly, 
sometimes even impossible, so this results in increasing the 
complexity in designing. One way to solve this problem is to 
identify the uncertainties. Here, the RBF neural network with 
an adaptive rule adjusting the weights by using the reaching 
condition of SMC is used to model the uncertainties of the 
system. The Gaussian function is employed as the activation 
function of each neuron in the hidden layer. The excitation 
values of these Gaussian functions are distances between the 
input values of z , and the central positions of Gaussian 
functions, described as 

                                        j jd z c= −                                (11) 

where jc  denotes the central position vector of neuron j , 

⋅  indicates Euclidean norm. The weightings, jw , between 

input layer neurons and hidden layer neurons are specified as 
constant 1. The weightings, kw , between hidden layer neu-
rons and output layer neurons are adjusted based on an 
adaptive rule. Then the output of the network is [22–24] 

             T

1

ˆ ( , ) ( ) ( )
n

k k k
k

F x t z c zω φ ω φ
=

= − =∑           (12) 

in which 
2

2( ) exp k
k

k

z c
zφ

σ

⎛ ⎞−
= ⎜ − ⎟

⎜ ⎟
⎝ ⎠

 is Gaussian function 

and k  is the thk  neuron of the hidden layer. ,k kcσ  are the 
spread factor and central position of the Gaussian function, 
respectively. n  is the number of neurons and z  is the input 
value [25]. 
Assumption 4 ([26]). For a given positive numberς , there 

exist an optimal weight *ω and an integer n  such that 
ˆ ( , )F x t  can arbitrarily approximate ( , )F x t , i.e. 

                        *T( , ) ( )F F x t zω φ ς= − <             (13) 

with F  implying approximation error. 
Design the sliding variable ( )z Rσ ∈ , associated with 1w  

and adaptive law as follows 

0

1

( )

ˆ sign( ),

ˆ ( )

rz z

w

w F h h

z

σ ξ

ξ

σ ς

ω γσφ

= +

= −

= − − ⋅ >

=

           (14) 

where ξ  is an auxiliary variable and induces the integral 
term, and ⋅  represents the first derivative. 
Theorem  2. Consider the nonlinear system (1) with a relative 
degree r  with respect to the sliding variable ( , )s x t  and 
suppose that hypotheses 1 – 4 are fulfilled. Then the control 
law 

                  0 0 1
0

1 ( ( , ) )
( , )

u x t w w
x t

ϕ
γ

= − + +              (15) 

in which 0 1,w w  are given by Eqs. (9) and (14), respectively. 
The control law allows the establishment of an r -order slid-
ing mode with respect to the sliding variable ( , )s x t  in finite 
time. 
Proof: Choose the Lyapunov function as 

2 T1 1 , 0
2 2

V σ ω ω γ
γ

= + >  

with * ˆ ˆ,ω ω ω ω ω= − = − . The time derivative of V  
along the system trajectories is expressed as 

T1V σσ ω ω
γ

= −  

Substituting Eqs. (12) and (14) into the above equation 
achieves 

T

T

*T T

1ˆ ˆ( sign( ) )

1ˆ ˆ( )

ˆ( ( ) ( ))

V F h F

h F F

h z F z

σ σ ω ω
γ

σ σ ω ω
γ

σ σ ω φ ω φ

= − − ⋅ + −

= − + − −

= − + + −
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*T T

*T T

*T T

*T T

*T T

*T T

1 ˆ ˆ( )

ˆ( ) ( )
1 ˆ ˆ( )

1ˆ ˆ( )[ ( ) ]

1ˆ ˆ( )[ ( ) ]

1ˆ ˆ( ) ( )[ ( ) ]

0,

h F z

h F z

h z

h z

h

ω ω ω
γ
σ σ σ ω ω φ

ω ω ω
γ

σ σ ω ω σφ ω
γ

σ σ ς ω ω σφ ω
γ

σ ς ω ω σφ ω
γ

η σ η ς

− −

= − + + −

− −

≤ − + + − −

< − + + − −

= − − + − −

= − ≤ = −

 

Remark 1. As mentioned above, the implementation of con-
troller requires real-time robust estimation of the higher order 
total output derivatives. The problem is solved by arbitrary 
order robust exact finite time convergent differentiators. The 
r -order sliding controller combined with the ( 1)r − -order 
differentiator produces an output feedback universal con-
troller for SISO processes [3], [11]. 

III. SIMULAITON 
This part displays the control of a car (see Fig. 1). It has 

been used to verify the control strategy of HOSMC in [11], 
[15]. Here, the effectiveness of the proposed controller is 
proved by using the car control. The mathematical model of 
car is formulated as 

                                   

1 3

2 3

3 4

4

cos( )
sin( )
/ tan( )

x v x
x v x
x v L x
x u

=
=
= ⋅
=

                         (16) 

with 1x and 2x being the Cartesian coordinates of the rear-axle 

middle point, 3x the orientation angle, 4x the steering angle, 

v  the longitudinal velocity, L  the length between the two 
axles ( 5mL = ), u  the control input. The control objective 
is to steer the car from a given initial position to the trajectory 

2 110sin(0.05 ) 5dx x= + . The variables 3x  and 4x  are 
constrained to take their values in  

2x

1x

3x

4x

 
Fig. 1. Kinematic car model 

4 3{ | / 4,X x x xπ= ≤ / 4}π≤ . Design the following 

sliding variable 2s x= −  2dx , so the relative degree of the 

system is 3  and a 3rd  order controller with 2nd  differ-
entiator is needed. The state is initialized at 

T(0) [0,0,0,0]x = , which indicates (0)z =  T[ 5, 5,0]− − . 

The 3rd  time derivative of  ( , )s x t  read as 
(3) 3 2( , ) ( , ) ( , ) ( , ) ( , )s x t x t x t u a x t v b x t v uϕ γ= + = + ⋅  

with 
21 1

3

1
3 4 3

4 1
3 3 3

4
3

1 1( , ) [ cos( )(cos( )) sin( )
800 20 40 20

1sin( ) tan( )]cos( ) [ sin( )
20 20

tan( ) 1cos( )sin( ) ( cos( )cos( )
2 20

tan( )sin( ))]

x xa x t x
L

xx x x

x xx x x
L

xx
L

= − ⋅

+ − ⋅

+

−

21
3 3 4

1 1( , ) [ cos( )sin( ) cos( )][1 tan ( )]
2 20

xb x t x x x
L

= + +

Suppose that the velocity v  is an uncertain variable with a 
nominal value 0v of 10m / s , that is 0v v v= + Δ  and there 

is no knowledge of vΔ . Therefore, 0 0( , ), ( , )x t x tϕ γ  and  

( , )F x t  are given by 
3

0 0
2

0 0

2 2 3
0 0

2
0

( , ) ( , ) ,

( , ) ( , )

( , ) ( , )(3 3 ) ( , )

(2 )

x t a x t v

x t b x t v u

F x t a x t v v v v v b x t

v v v u

ϕ

γ

=

= ⋅

= Δ + Δ + Δ + ⋅

Δ + Δ ⋅

 

The following 2 -order differentiator originates from [12], 
which provides the time derivative calculation of ( , )s x t . 

2/3
0 0 0 0 0 1

1/2
1 1 1 1 0 1 0 2

2 2 1

, 14.7361 sign( )

, 30 sign( )
440sign( )

z v v z s z s z

z v v z v z v z
z z v

= = − − − +

= = − − − +

= − −
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The weight ω̂  is initialized as Tˆ 0.5 rand(1,5)ω = +  
( rand( , )  denotes uniform distribution) at 0t = , which 

implies 5  neurons in hidden layer.  Let 1 240, 40,k k= =  
T 4

3 15, [0,0,0] ( 1,2,3), 10, 5, 10ik c i h γ τ −= = = = = =
 (τ  is the sampling interval). A simulation is conducted and 
the following results have been achieved. 

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

15

20

25

time (s)

z 1, z
2, z

3

 

 
z1

z2
z3

 
Fig. 2. ( , ), ( , ), ( , )s x t s x t s x t versus time 
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Fig. 3. 2 2, dx x versus time 
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Fig. 4. 3x versus time 
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Fig. 5. 4x versus time 
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      Fig. 6. The estimation of ( , )F x t  versus time 

In order to highlight the advantages of the proposed con-
troller, a comparative study is made of two controllers. The 
following simulation results Fig. 7 and Fig. 8 are achieved 
using the controller given in [12]. 
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Fig. 7. ( , ), ( , ), ( , )s x t s x t s x t versus time 

Fig. 2 and Fig. 7 show the convergence of ( , ),s x t  

( , ), ( , )s x t s x t   and 3 -order sliding mode can be estab-
lished in finite time. A conclusion is easily obtained that the 
proposed controller has faster transient process than the con- 
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troller given in [12]. The tracking performance of the desired 
trajectory by 2x  under unknown perturbation is displayed in 
Fig. 3 and Fig. 8. The conclusion is made that the output of 
the system can track the reference signal, but the former has 
great advantage over the latter. Fig. 4 and Fig. 5 display the 
evolvement of 3x  and 4x  with respect to time, obviously, 
they are in the range of the constraint. Fig. 6 describes the 
identification result of the perturbation tern ( , )F x t with 

0.5vΔ = .It should be paid attention to the fact that the 
estimated value may not be in accordance with its real one. As 
the persistent excitation condition should be satisfied for the 
estimated value to converge to its real value [27]. 
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Fig. 8. 2 2, dx x versus time 

IV. CONCLUSION 
Many systems operate in uncertain environment. The 

available control model constantly includes uncertainties, for 
example, parameters variation and external disturbance. 
During the design of robust control, it is supposed that the 
boundaries of uncertainties are available in advance, but it 
may be an intractable problem in reality. So, the identification 
plays a very important role in design. In this paper, adaptive 
RBF neural network is used to estimate the uncertain term, 
aiding the design of the control. In next investigation, other 
approximation approaches can be developed to identify the 
unknown terms. 
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