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Abstract— The robust L2-gain estimation is investigated for
general uncertain systems with structured uncertainties. A new
estimation structure is introduced: the Augmented-Gain Ob-
server which encompasses both filters and observers and allows
robust estimation even for some classes of unstable systems.
Our approach is based on a separation of graphs theorem
using frequency dependent Integral Quadratic Constraints. We
prove that the design of an Augmented-Gain Observer ensuring
a robust L2-gain performance can be expressed as a convex
optimization problem. This problem involves Linear Matrix
Inequalities constraints and can be solved using an efficient
algorithm. A numerical example illustrates the interest of the
method.

I. INTRODUCTION

In many applications, it is often useful to measure some
state vector components of a system for diagnosis, control,
or supervision. If the necessary state vector components are
not measured, they have to be estimated from the measure
of other components of this vector, based on a model of the
system. If this model is assumed to be linear time invariant
and to perfectly represent the real system, computing an
estimator has been largely investigated [8].

Two structures are mainly designed for the estimation. In
this paper, these structures are referred to as the observer
structure and the filter structure. An observer explicitly
contains a model of the system whose dynamical evolution
is driven through a gain by the error between the measured
output and the estimated one [13]. A filter is defined as a
(matrix of) transfer function(s) between the measured output
and the estimation of the state components. Many approaches
were proposed, for different puroposes: unknown initial con-
ditions (Luenberger Observer [13]), stochastic perturbations
(Kalman observer [10]), minimization of a norm of the
estimation error (H2 or H∞ [23], [12]) The approaches
proposed for the direct synthesis of a filter cannot be applied
in the case of unstable systems.

These approaches do not take into account the modeling
error, which can have a strong impact on the performance
level achieved on the real system [2]. To deal with this
difference the modeling error is represented with uncertain-
ties [27]. The robust estimation problem is to find a robust
estimator which ensures a guaranteed performance for all the
systems represented by the uncertain model.

In the case of linear systems, two classes of uncertain-
ties are in general represented: uncertainties on the model
parameters (parametric uncertainties) and uncertainties on
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the model dynamics (dynamical uncertainties). Results were
proposed for a non structured parametric uncertainty: the
state space matrices are assumed to be affine [5], [18] or
rational [12], [3] functions of a unique uncertain matrix.
Unfortunately, in general, there are several (scalar) parameter
uncertainties in a model. A first simple case is when the
state space matrices are affine in the uncertain parameters.
In this case, referred to as polytopic systems [9], [26], [1],
[7], [11], [17], the matrices of state-space representations lie
in polytopes.

A more general interesting case is the case when matrices
of state-space representations are rational functions of several
parametric or dynamic uncertainties [25]. These systems can
be represented as Linear Fractional Transformations (LFT) of
a structured uncertainty ∆ block by a nominal system G [27].
The advantageous feature is that general linear systems with
both parameter and dynamical uncertainties (including e.g.
delays) can be represented as LFT [22], [21], [3]. This
representation is actually one of the most general kind of
representation [27].

In the LFT framework, the uncertain block is related
to the nominal system using Integral Quadratic Constraints
(IQCs) [14]. These IQCs allow to characterize a system
using its input signals and its output signals. These IQCs
provide us general analysis tools for the uncertain systems,
such as stability tools, or performance analysis tools, using
a Separation of Graph argument [20]. In [12], [25], the
H2 and H∞ filtering problems are considered for parametric
time-varying uncertainties. The proposed approach can be
interpreted in terms of static (constant) IQCs. In [22], [21],
the filtering problem is tackled using dynamic (frequency-
dependent) IQCs in order to reduce the conservatism for
time invariant parametric uncertainties with respect to the
use of static IQCs. The problem is recast as an optimization
problem involving LMIs using the Kalman-Yakubovitch-
Popov Lemma [19]. The discrete time H2 case has been
solved with FIR filters [3]. In addition to be a more general
approach of the robust filtering (due to rational parametric
uncertainty dependence and the dynamical uncertainties),
less conservative conditions are possibly obtained in the case
of time-invariant uncertainties.

The major issue with all the previous approaches to the
robust estimation problem is that the designed estimator is a
filter. The proposed approach cannot be applied in the case
of unstable systems. In some cases, this assumption is not
satisfied as in [24]: it is then necessary to design an observer.

In this paper, we propose a new method for designing
an L2-gain sub-optimal observer in the case of uncertain
systems in the LFT framework using the IQC/Separation of
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Graph approach. The proposed results pertain to our long-
standing effort for investigating the robust filtering problem:
in [16] with the desensitivity problem, in [22], [3] where
this approach is applied to the design of some robust filters
and in [15] where the benefits of new observer structures
were emphasized. To our best knowledge, results on robust
estimation using observers for such general uncertain models
do not exist.

To this purpose, we propose a new structure for robust
estimation with structured uncertainties. This new structure,
referred to as the Augmented-Gain Observer (AGO), can be
interpreted as the combination of an observer structure and
a filter one. It contains the nominal model of the system,
and a frequency-dependent gain to tackle the sensitivity
problem. With this structure, it is then possible to make
robust estimation for some classes of unstable systems.

The structured representation of uncertainties is very
general and we use dynamics IQCs used only in [22],
[21] to reduce the conservatism. Restricting ourselves to
parametric/dynamic Linear Time Variant/Invariant uncertain-
ties, we present a theorem to synthesize a L2-gain sub-
optimal Augmented-Gain Observer as a finite dimensional,
convex optimization problem. Nevertheless, the result can be
obtained for more general uncertainties (such as nonlinear
ones).

Notations

‖∆‖i2 is the induced norm by the L2 space of signals.
A∗ denotes the transpose conjugate of the complex matrix
function A. AT is its transpose. The ? denotes the Redheffer
star product. Tw→e denotes the operator from w to e. The
Kronecker product is noted ⊗. The identity matrix is written
I . The dimensions are appropriate in the equations. G =[
A B
C D

]
denotes the state space representation of G(s) =

C(sI−A)−1B+D. Finally, diag(A,B) is a diagonal block

matrix
[
A 0
0 B

]
. • is a term of no importance, and ♦

denotes a symmetric element in a symmetric matrix. We
also define the following expression W (A,B,C,D, P,X, T )

=

[
ATP + PA PB

BTP T

]
+

[
CT

DT

]
X

[
CT

DT

]T
.

II. THE ROBUST L2-GAIN OBSERVATION PROBLEM

A. Problem Definition

The uncertainty set is defined by :

Γ∆ =

∆

∣∣∣∣∣∣

‖∆‖i2 < 1
∆ = diag(diag(δTVi ), diag(∆TV

j ), . . .
. . . , diag(δTIk ), diag(∆TI

l ))


(1)

• δTVi is a time-variant real scalar
• ∆TV

j is a time-variant Multi-Inputs Multi-Outputs
(MIMO) operator

• δTIk is a time-invariant real scalar
• ∆TI

l is a time-invariant MIMO transfer function
The structure of the problem is presented in figure 1. The

plant G is interconnected with the ∆ operator. The output to

∆

G

L
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z +
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w
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-

System to be observed

Augmented-Gain Observer

Fig. 1. The robust observation problem

be estimated is z ∈ Rnz , the measured output is y ∈ Rny and
p ∈ Rnp and q ∈ Rnq are respectively the outputs and the
inputs of the uncertainty bloc. The state space representation
of the plant is:

G =


Ã B̃p B̃w
C̃q D̃qp D̃qw

C̃z D̃zp D̃zw

C̃y D̃yp D̃yw

 . (2)

The purpose of the observer is to estimate the output z from
the measure of the input y. The minimal representation of

the nominal system (for ∆ = 0) is Gn =

 A Bw
Cz Dzw

Cy Dyw

. The

state-space representations of the estimator blocks are given

by Go =

 A I
Cz 0
Cy 0

 and L =

 AL BL
Cd Dd

CL DL

.

The observer contains the nominal dynamics Go of the
plant and a comparison between the measured output and its
estimation. This innovation term ey is transmitted through the
Augmented-Gain L. The original structure of Kalman [10]
or Luenberger [13] can be retrieved by choosing AL, BL,
CL, Cd, Dd as empty matrices. The filter structure can be
recovered by choosing CL, DL as zeros matrices and by
withdrawing Go the central model from the estimator and
the corresponding output of the augmented gain [22].

The L2-gain observation problem is defined as follows:
For a given γ > 0, find if there exist an augmented gain L
such that

∀∆ ∈ Γ∆, ‖Tw→e‖i2 < γ (3)

and compute it.

B. About the Augmented-Gain Observer

The choice of the estimation structure is developed in this
part, to present how the AGO allows to take into account
some classes of uncertain systems. Basically, the observer
structure allows us to work on a minimal system for a
observation problem. The states of this system represent the
error between the states of the nominal plant and the states
simulated in the observer. This form is obtained using the
following lemma:

4950



Lemma 1 (System reduction Lemma for observers):
Given G a matrix of transfer functions defined by the
following state space representation:

G =


A1 0 0 0 B1

0 A2 0 0 B2

0 C2 A2 − C2 C3 B3

0 C4 −C4 A3 B4

C1 0 0 0 D1

0 C5 −C5 C6 D2

.

Then G also admits the following state space representation:

Gmin =


A1 0 0 B1

0 A2 − C2 C3 B2 −B3

0 C4 A3 B4

C1 0 0 D1

0 C5 C6 D2

.

Proof: The state-space transformation T is used:

T = diag(I,

[
I 0
I −I

]
, I).

The state space representation obtained is a Kalman form
of observability, and can therefore be reduced from an
observability point of view. The complete proof can be found
in [13].

This lemma is applied on the robust observation
problem (figure 1). The plant G defined equation
(2) is separated in two minimal parts H and GN ,

such that

 q(jω)
z(jω)
y(jω)

 =

[
H(jω)
GN (jω)

] [
p(jω)
w(jω)

]
The state-space representations are as follows:

H =

[
AH BHp BHw

CH DHp DHw

]
GN =

 A Bp Bw

Cz Dzp Dzw

Cy Dyp Dyw


H is the part that acts on the uncertainty bloc. When

H = 0 or ∆ = 0 there is no uncertainty on the model.
GN represents the nominal model augmented with the uncer-
tainty entry p. This case recovers the nominal case, without
uncertainties. A complete representation Gtot of the system
withdrawing the uncertain block is:

AH 0 0 0 BH

0 A 0 0 BG

0 DLCy A−DLCy CL DLDy

0 BLCy −BLCy AL BLDy

CH 0 0 0 DH

0 Cz −DdCy −Cz +DdCy −Cd Dz −DdDy




BH

BG

DLDy

BLDy

DH

Dz −DdDy

 =


BHp BHw

Bp Bw

DLDyp DLDyw

BLDyp BLDyw

DHp DHw

Dzp −DdDyp Dzw −DdDyw


Applying lemma 1, a minimal state space representation

of Gr is:

[
H(jω)
Gm(jω)

]
=


AH 0 0 BH

0 A−DLCy CL BG −DLDy

0 BLCy AL BLDy

CH 0 0 DH

0 Cz −DdCy −Cd Dz −DdDy

 (4)

This minimal system is used to compute the augmented-gain.

III. UNCERTAIN SYSTEMS ANALYSIS

In order to synthesize the observer gain, analysis tools
for the uncertain systems are needed. Those are given by
the IQCs framework which allows to characterize a system
through constraints over its inputs and its outputs. The
constraints for LTV and LTI uncertainties are now presented.
Associated to the set of uncertainties, the set of hermitian
bounded matrices of transfer functions Π̄(Γ∆) is presented.

Π(jω) =

[
Πs(jω) Πas(jω)

Πas(jω)∗ −Πs(jω)

]
with the following definitions:
Πs(jω) = diag (diag(Si), diag(dj), diag(Sk(jω))diag(sl(jω)))

Πas(jω) = diag (diag(Yi), 0, diag [Yk(jω)] , 0) where Si =
STi > 0, Yi = −Y Ti , dj > 0, Sk(jω) = Sk(jω)∗ > 0,
Yk(jω) = −Yk(jω)∗, sl(jω) = sl(jω)∗ > 0.

From [14], we get the following analysis result:

Theorem 2: Robust L2-Gain analysis
Let M(jω) be LTI, for all ∆ ∈ Γ∆, ∆ ?M is stable with

an L2-Gain less than γ if there exists Π ∈ Π̄(Γ∆) and ε > 0
such that for all ω:[

M(jω)
I

]∗
Φ

[
M(jω)
I

]
≤ −εI (5)

Φ =


Πs(jω) 0 Πas(jω) 0

0 I 0 0
Π∗as(jω) 0 −Πs(jω) 0

0 0 0 −γ2I


For a given system and a given γ, to find Π(jω) such

that the condition (5) is satisfied is an optimization problem.
But it is an infinite dimensional one, as all the possible
transfer functions of every order are candidates. In order
to get a finite-dimension optimization problem, the matrix
of transfer function Π(jω) is restricted to rational transfer
function matrices with a fixed order in numerator and a fixed
denominator f(jω), a Hurwitz polynomial.

Π(jω) = diag (K(jω),K(jω))
∗
Xdiag (K(jω),K(jω))

The quadratic condition (5) can be recast as K
∗(jω) 0 0 0
0 I 0 0
0 0 K∗(jω) 0
0 0 0 I

ΦX

 K(jω) 0 0 0
0 I 0 0
0 0 K(jω) 0
0 0 0 I

 . (6)

with

K(jω) = diag(diag(Ii), diag(Ij), . . .

. . . diag
(
E(jω)
f(jω) ⊗ Ik

)
, diag

(
E(jω)
f(jω) ⊗ Il

)
)

(7)

defined as :

ΦX =


Xs 0 Xas 0
0 I 0 0
XT
as 0 −Xs 0
0 0 0 −γ2I

.

E(jω) is a basis for the possible transfer functions:

E(jω) =
[

(jω)n (jω)n−1 . . . 1
]T

.
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We define the set of matrices X ∈ X̄(Π̄), which generates
the transfer functions

• X =

[
Xs Xas

XT
as −Xs

]
• Xs = diag [diag(Si), diag(dj), ...

. . . , diag(XS
k ), diag(I ⊗ xl)

]
• Xas = diag

[
diag(Gi), 0j , diag(XG

k ), 0
]

With this representation, the problem has a semi-finite
dimension: the decision variables are no longer the Π(jω)
transfer functions, but the finite-dimensional matrices XS

k

and XG
k . The number of constraints is still infinite as all the

frequencies have to be tested. For the particular structure of
XS
k and XG

k , an economical parametrization can be chosen,
see [22].

As the quadratic condition is now defined, the analysis
problem can be recast as a finite dimensional optimiza-
tion problem under LMIs constraints using the Kalman-
Yakubovitch-Popov Lemma [19].

In this part the fundamental analysis tools for uncertain
systems have been presented with the steps to transform the
analysis condition in a convex finite-dimensional optimiza-
tion problem.

IV. MAIN RESULT

In this section, we present the theorem which allows to
test the existence of an Augmented-Gain Observer (AGO)
solution of the L2-gain observation problem presented sec-
tion II-A. The proof is develloped using the tools presented
in section II-B and section III.

Theorem 3: For a given γ > 0, the robust observation
problem has a solution if there exists PK = PTK , R = RT ,
Z = ZT > 0, X ∈ X̄ of appropriate dimensions such that
the following conditions are satisfied.

1) R− diag(Z, 0) > 0
2)

UTR⊥

 W (AR, BR, C∆, . . .
. . . , D∆, R,X, T (γ))

[
CTR
DT
R

]
[
CR DR

]
−I

UR⊥ < 0

(8)
with UTR⊥ = diag

(
I, I, I,

[
NT

1 NT
2 NT

3

]
, I
)
.[

NT
1 NT

2 NT
3

]
=
[
Cy Dyp Dy

]⊥
(9)

and T (γ) = diag(0,−γ2I)
3) W (AZ , BZ , C∆Z , D∆, Z,X, T (γ)) < 0
4) W (AK , BK , CK , DK , PK , Xs, 0)) > 0

with the following matrices:
[
AZ BZ
C∆Z

D∆

]
=


AH 0 0

BKCH AK 0
0 0 AK

BHp BHw
BKDHp BKDHw
BK 0

DKCH CK 0
0 0 CK

DKDHp DKDHw
DK 0


 AR BR
C∆ D∆

CR DR

 =


AZ 0
0 A

BZ
Bp Bw

C∆Z
0 D∆

0 Cz Dzp Dzw


K =

[
AK BK
CK DK

]
is the state space representation used

for the IQC factorization presented equation (7).

These 4 conditions define a convex feasibility problem
under LMI constraints. If they are satisfied, an observer
with an Augmented-Gain exists such that the L2 gain of
the estimation error is less than γ. Minimizing over γ
under these conditions gives an upper bound on the best
performance reachable for the estimation error. Basically, the
second condition can be interpreted as a generalization of the
observability condition on the system. The third condition of
the theorem ensures the stability of the block H ?∆ which
is necessary for the whole system to be stable. This can
be proven by applying the KYP lemma on this condition.
The first condition with Z > 0 ensures that the P matrix
introduced with the KYP lemma is defined positive, which
is a condition for the system to be stable [6]. The augmented
gain has yet to be reconstructed.

Proof: Applying theorem 2 to system defined equation
(4), we have:

H(jω)[
I 0

]
Gm(jω)[

0 I
]

∗  Π(jω) 0 0

0 I 0
0 0 −γ2I




H(jω)[
I 0

]
Gm(jω)[

0 I
]
 < −εI (10)

This constraint can be recast with the factorization pre-
sented section III, equation (6) as:
K(jω)H(jω)[
K(jω) 0

]
Gm(jω)[

0 I
]


∗  X 0 0

0 I 0
0 0 −γ2I



K(jω)H(jω)[
K(jω) 0

]
Gm(jω)[

0 I
]

 < −εI
(11)

The state space representation of the system is:
K(jω)H(jω)[
K(jω) 0

]
Gm(jω)[

0 I
]

 =

[
AT BT
CT DT

]
(12)

[
AT

CT

]
=



AH 0 0 0 0
BKCH AK 0 0 0

0 0 AK 0 0
0 0 0 A−DLCy CL

0 0 0 BLCy AL

DKCH CK 0 0 0
0 0 CK 0 0
0 0 0 Cz −DdCy −Cd
0 0 0 0 0



[
BT

DT

]
=



BHp BHw

BKDHp BKDHw

BK 0
Bp −DLDyp Bw −DLDyw

BLDyp BLDyw

DKDHp DKDHw

DK 0
Dzp −DdDyp Dzw −DdDy

0 I


Using the KYP lemma [19], the condition (11) is equiva-

lent to the existence of P = PT > 0 such that the condition
W (AT , BT , CT , DT , P,ΦT , 0) < 0 holds, with

ΦT = diag

([
Xs Xas

XT
as −Xs

]
, I,−γ2I

)
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Using a Schur complement ([4, page 7]), we have:
W (AT , BT ,

[
C∆

0

]
, . . .

. . . , D∆, P,X, T (γ))


(CR −DdC̄y)T

−CTd
(Dzp −DdDyp)

T

(Dzw −DdDy)T


♦ −I

 < 0

This condition is a Bilinear Matrix Inequality, and has to be
linearized. It could be written as:

ΦG︷ ︸︸ ︷
W

([
AT

R 0
0 0

]
,

[
BR

0

]
, , . . .[

CT
∆

0

]T
, D∆, P,X, T (γ)

)  CT
R

0
DT

R

T

♦ −I

+ . . .

+V

ΦL︷ ︸︸ ︷ AL BL

CL DL

Cd Dd

 U︷ ︸︸ ︷[
U1 U2 0

]
+ . . .

· · ·+ UT ΦT
L

V︷ ︸︸ ︷[
V1P 0 V2

]
< 0

(13)

with
[
V1 V2

]
=

 0 0 0 0 I 0
0 0 0 −I 0 0
0 0 0 0 0 −I

 and

[
U1 U2

]
=

[
0 0 0 0 I 0 0
0 0 0 Cy 0 Dyp Dy

]
.

We can apply the elimination lemma [4, page 22]. The
basis of the nullspaces of the matrices V and U presented
equation (13) are:

• V⊥ = diag(P−1, I, I)

 diag(I, I, I, 0)
0 0 0 I

0 0 0 0


• UT⊥ = diag

(
I, I, I,

[
NT

1 0 NT
2 NT

3

]
, I
)

The partitions of the P matrix and P−1 are introduced.

P =

[
R •T
• •

]
, P−1 =

[
R̂ •T
• •

]
, R̂ =

[
Z−1 R̂2

R̂T2 R̂3

]
The first constraint UT⊥ΦGU⊥ < 0 gives by applying the

elimination lemma and due of the line of zeros in U⊥ the
second condition of the theorem.

The second constraint V T⊥ ΦGV⊥ < 0 could be simplified
due to the zeros on the external terms to:
W (AZZ

−1, BZ , Z
−1C∆Z , D∆, I,X, T (γ)) < 0

Then, using a congruent multiplication by J = diag(Z, I)
we get the third condition of the theorem.

Finally, the use of the elimination lemma introduces a rank
constraint over the partitions of the Lyapunov matrix and its
inverse [6]:  R I

I
Z−1 R̂2

R̂T2 R̂3

 > 0 (14)

but as the partition R̂2 and R̂3 only appears in this con-
dition, R̂3 can be eliminated using the elimination lemma
once again, and then a Schur complement give us the first
condition of theorem R− diag(Z, 0) > 0.

The transfer function Πs is defined positive:

K(jω)∗XsK(jω) > εI

The application of the KYP lemma gives the fourth condi-
tion [19].

V. OBSERVER RECONSTRUCTION

Reconstructing the augmented-gain of the observer from
the equation (13) is an optimization problem under LMI
constraints. But the original P matrix introduced by the
KYP lemma of this problem has to be reconstructed first.
As Z−1 is a partition of R̂, itself a partition of P−1, find
R̂ is a feasibility problem under LMI constraints, and the
constraint is given by the equation (14). P is obtained using
the following parametrization:

P =

[
I 0
0 MT

] [
R I

I (R− R̂−1)−1

] [
I 0
0 M

]
Once P is obtained, to find the state-space representation

of the augmented gain can be done solving an optimization
problem given by the constraint (13). As P , X are known,
this constraint is an LMI constraint and the reconstruction
can be made as a feasibility problem.

VI. EXAMPLE

In this section, we present two numerical applications of
the AGO. We first compare it with the other methods using
dynamic IQCs, on an example of the literature. We then
present an example of random walk [24], where the previous
methods do not lead to feasible conditions.

We first consider the application presented in [21], for the
synthesis of an L2-Gain estimator. We compare the methods
presented in [22], [21], which gives equivalent results with
different conditions, and our method, with the same basis
for the dynamic IQCs. The denominator is chosen as f =
(s + 0.01)n, with n varying from 0 (static IQCs) to 5. The
results are presented table I. The results proves that the AGO,
recovers the methods presented in the same framework.

Method n = 0 n = 1 n = 3 n = 5
[22], [21] 4.54 3.08 2.64 2.64

AGO 4.54 3.08 2.64 2.64

TABLE I
COMPARISON OF METHODS

We present an example of uncertain random walk. The
system is defined ad follows:[

z
y

]
=

 (
aδ

s2+baδs+aδ

)
(

1
s

) (
aδ

s2+baδs+aδ

) w.
We want to estimate z, from the output y. This is a first
differentiation of y. A white noise v(t) is added on the
output, with a factor 0.1. The second order transfer function
is dependent from the parameter aδ which nominal value an
is set to 1. This parameter present a variation of agab%. This
variation acts on the natural frequency of the second order
filter. Note that as the systems contains a non-strictly stable
pole, methods for synthesis of robust filters do not lead to
feasible conditions.
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The state space representation of the uncertain random
walk, as an LFT representation is presented equation (15).


ẋ1(t)
ẋ2(t)
ẋ3(t)
q(t)
z(t)
y(t)

 =


−ban −1 0 −b 1 0
an 0 0 1 0 0
0 1 0 0 0 0

agab 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 d




x1(t)
x2(t)
x3(t)
p(t)
w(t)
v(t)

 (15)

This example is tractable with our method. In order to
illustrate the interest of dynamic IQCs, we apply theorem 3
on this system with static and dynamic IQCs. For the dy-
namic IQCs, the denominator is chosen as f(s) = (s+0.1)n,
for n = 1, 2, 3. We compare the upper-bounds on the L2-
gain performance reached with those four cases (static IQCs,
dynamic IQCs with n = 1, 2, 3) versus agab.
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Fig. 2. Upper-bound on the performance versus rgab

Without uncertainties, we recover performance reached by
the nominal H∞observer. When the uncertainty grows, the
constraints become infeasible depending on the conservatism
of the method. The use of static IQC (n = 0) allows
to take into account uncertainties on the parameter about
10%. The use of dynamic IQCs allows to take into account
uncertainties 9 times larger. These two examples prove
that our observer gives the same performance as methods
previously presented in this framework, but also allows to
take into account cases non tractable with these methods.

VII. CONCLUSION

In this paper, we present a new structure: the Augmented-
Gain Observer, which allows to observe uncertain systems
such as systems with LTV/LTI uncertainties, or some un-
stable uncertain systems. This structure is very general, and
encompasses most of the previous structures. We have pre-
sented the solution of the L2-gain sub-optimal Augmented-
Gain Observer based on finite dimensional optimization, and
a separation of graphs theorem. It has also been proved that
the resolution presented could be used for other structures,
such as static-gain observers. This solution is still conserva-
tive, but the conservatism could be reduced by increasing the
order of the dynamic IQCs Π(jω) at the cost of the number
of variables. This resolution paves the way to a general
approach of robust estimation for uncertain LFT systems.
One of the closest perspectives is to compute an H2 sub-
optimal augmented-gain observer.
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