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Abstract— This contribution addresses the development of a
Linear Quadratic regulator (LQ) for controlling concentration
profiles along a catalytic distillation column which is modelled
by a set of coupled hyperbolic Partial Differential and Algebraic
Equations (PDAEs). The methodology is based on an infinite-
dimensional representation of the system and solving the
related Operator Riccati Equation (ORE). The performance
of the designed control policy is assessed through a numerical
simulation.

I. INTRODUCTION

Reactive distillation (RD) has received much attention
in the literature over recent years due to its advantages
and inherent complexities. This process is a combination
of chemical reaction and multi-component distillation in a
counter-current column. When solid catalyst is used to accel-
erate the reaction, the process is called catalytic distillation
(CD). The most important advantages in use of RD are;
reduced downstream processing, using the heat of reaction
for distillation, overcoming chemical equilibria by removing
products from the reaction zone and etc.; however, the
interaction between the simultaneous reaction and distillation
introduces challenging problems in controlling the column
such as steady-state multiplicity, strong interactions between
process variables and process sign change [1].
Despite the complexities in control aspects of RD, a rela-
tively small amount of research work has been reported in
this area and most of the publications deal with modelling,
simulation, process design and the analysis of steady-state
multiplicity (e.g., [2], [3] and [4]). A significant portion
of the literature on the area of control of RD concerns
the effectiveness of different control structures including
conventional proportional integral (PI) controllers (e.g., [5],
[6] and [7]). Linear model predictive control (MPC) has also
been investigated based on simplified dynamic models of
RD (e.g., [8], [1] and [9]). In addition, a limited number
of papers in the literature have dealt with the advanced
nonlinear control of RD process (e.g., [10], [11] and [12]).
The reactive distillation process can take place either in a
trayed or a packed column [2]. In the case of packed column,
the process is a distributed parameter system, meaning that
the process variables are function of both time and spatial
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coordinate. Such a system is modelled by a set of coupled
PDAEs in which partial differential equations (PDEs) de-
scribe the mass and energy balances and algebraic equations
represent the equilibrium condition. Lumping assumptions
are often used [2] to convert the PDEs to sets of ordinary
differential equations (ODEs), which allows the use of stan-
dard control methods applicable to ODEs systems; however,
this approximation results in some mismatches in the dynam-
ical properties of the original distributed parameter and the
lumped parameter models, which affects the performance of
the designed model-based controller. A more rigorous way
to deal with distributed parameter processes is to exploit the
infinite-dimensional characteristic of the system [13]. This
approach has been ignored in the literature dealing with
control of reactive distillation columns which the present
work tries to address for the first time with the flavor of
optimal control.
Classical methods in the optimal feedback controller synthe-
sis is the well known Linear Quadratic regulator (LQ). The
main objective of this control policy is to regulate a linear
system by minimizing a quadratic performance index. An
important advantage of LQ control is that it uses a state feed-
back law, in which the state feedback gain is calculated off-
line by using LTI system’s dynamic and thereby the amount
of on-line calculations is reduced, significantly. In solving an
LQ problem for an infinite-dimensional (distributed) system,
two common methods are available in the literature. The
first approach is based on frequency domain description
and is known as spectral factorization. In this method the
control law is obtained via solving an operator Diophantine
equation [14]. This technique is applied in [15] to control the
temperature and the concentration in a plug flow reactor. The
second methodology involves solving an operator Riccati
equation (ORE) for a given state-space model [16]. This
method was used in [17] for a particular class of hyperbolic
PDEs. The methodology was then extended to a more general
class of hyperbolic system by using an infinite-dimensional
Hilbert state-space setting with distributed input and output
[18]. When a state-space model is available, solving the
optimal control problem with the ORE method requires less
computational effort in comparison to the spectral factoriza-
tion approach which is more convenient for transfer function
models.
In this work, an ORE-based infinite-dimensional LQ control
is used to control the mole fraction profiles in a DME
packed catalytic distillation column through manipulating
the liquid and the gas flowrates. Such a system is modelled
by a set of hyperbolic PDAEs. In order to solve the LQ
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control problem, the PDAEs system is converted to a system
of pure PDEs by solving the algebraic equations and a
linear system is calculated through linearizing the nonlinear
PDEs around the desired steady-state profiles. In contrast
to the previous work ([17] and [18]), the resulted linear
model involves a velocity term which is not a diagonal
matrix and in addition its elements are function of the states.
First, a state transformation is used to make the velocity
term diagonal. The related ORE is then formulated and
its equivalent matrix Riccati equation is found when the
velocity term is a space-varying and diagonal matrix. Finally,
a numerical simulation is done to evaluate the performance
of the designed controller.

II. PROCESS MODEL

The process under consideration is shown in Fig. 1. This
catalytic distillation column is used for producing DME
through liquid phase dehydration of methanol. The column
has an effective packing height of 4 m including four sections
of 1 m each. The rectifying zone at the top and the stripping
zone at the bottom are filled with packing in which separation
is taking place. The two middle sections are catalytically
packed reactive zones in which the following reaction is
taking place:

2Methanol⇐⇒ DME +Water (1)

The kinetic of the above reaction is given by [19]:

rD =
ksx2

M

(xM + KW
KM

(xW ))2
(2)

where rD is the rate of the reaction in mol
kgcat.sec ; xD, xM and

xW are the mole fractions of DME, methanol and water in
the liquid phase, respectively; and:

ks = 6.12×107exp(
−98(kJ/mol)

RT
)

KW

KM
= exp(−6.46+

2964
T

)

where T is the temperature in K; and R is the gas universal
constant.
Methanol feed, with flowrate F , enters the column at the top
of the reaction zone and the liquid and gas with flowrates
L and G, enter the column at the top and the bottom,
respectively. Due to the difference between vapor pressures
of methanol, DME and water, the gas and liquid leaving
the column mainly contain DME and water, receptively. For
the sake of simplicity, the condenser and reboiler are not
considered here.
Various types of models, involving different levels of com-
plexity, can be used to simulate the dynamics of reactive
distillation column. In this work, we consider the simple and
generic reactive distillation model studied by [20]. It should
be noted that in [20] gas and liquid rates through stripping
and rectifying zones are constant and these rates change in
the reactive zone because the heat of reaction vaporizes some
liquid. Since the heat of reaction (1) is negligible [19], we
assume constant liquid and gas rates all through the column.

Fig. 1. Catalytic distillation column

Therefore, the model structure of the catalytic distillation
column is developed based on the following assumptions:

• Negligible gas hold-up
• Constant liquid hold-up
• Constant gas and liquid rates
• Gas-liquid equilibrium
• No chemical reaction in the gas phase
• Perfect mixing in radial direction
• Fast energy dynamics
• Constant operating pressure
• Raoult’s law for the gas-liquid equilibrium
• Constant relative volatilities

It should be noted that a more rigorous model will most
likely give quantitatively different but qualitatively similar
results. Regarding the above assumptions, the nonlinear pro-
cess models describing the system under study are presented
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as follows:

UL
∂xD

∂ t
=−L

∂xD

∂ z
+G

∂yD

∂ z
+ rDφ (3)

UL
∂xM

∂ t
=−L

∂xM

∂ z
+G

∂yM

∂ z
−2rDφ (4)

xD + xM + xW = 1 (5)

yD =
αDxD

αDxD +αMxM +αW xW
(6)

yM =
αMxM

αDxD +αMxM +αW xW
(7)

yD + yM + yW = 1 (8)

T =
Bvp,D

Avp.D− log10(
αDP

αDxD+αMxM+αW xW
)
−Cvp,D (9)

subject to the boundary and initial conditions:

xD(0, t) = xD,in, xM(0, t) = xM,in, xW (0, t) = xW,in (10)
xD(z,0) = xD,0, xM(z,0) = xM,0, xW (z,0) = xW,0 (11)

where t is the time; z is the spatial coordinate; xD, xM and
xW are the mole fractions of DME, methanol and water in
the liquid phase, respectively; yD, yM and yW are the mole
fractions of DME, methanol and water in the gas phase,
respectively; UL is the liquid hold-up; φ is the catalyst
loading; P is the pressure; αD, αM and αW are the relative
volatilities of DME, methanol and water with respect to
water (heaviest component), respectively; and Avp,D, Bvp,D
and Cvp,D are the Antoine equation parameters for DME.
It should be noted that the reaction terms in (3) and (4) for
the rectifying and stripping zones are zero as there is no
reaction is taking place in these sections.
The model parameters that are used in this work are give in
Table I. In the table, subscripts ”ss” denote the steady-state
condition.
The model equations (3) to (10) are solved at steady-state
condition in gPROMS R© [21]. A finite difference method is
used to solve the system of coupled differential and algebraic
equations. The steady-state mole fraction profiles and also
the temperature profile are shown in Fig. 2 to 4.

III. LQ CONTROL SYNTHESIS

In this section we are interested in an LQ control policy for
regulating the mole fraction and temperature profiles along
the catalytic distillation column according to the infinite
dimensional model (3) to (11). Let us define x1 = xD, x2 =
xM , x = [x1,x2], u1 = L, u2 = G and u = [u1,u2]. By taking
the derivatives of yD and yM in (6) and (7) with respect to
the spatial coordinate and substituting them into (3) and (4)
we get:

∂x1

∂ t
= f11(x,u)

∂x1

∂ z
+ f12(x,u)

∂x2

∂ z
+

rDφ

UL
(12)

∂x2

∂ t
= f21(x,u)

∂x1

∂ z
+ f22(x,u)

∂x2

∂ z
− 2rDφ

UL
(13)

TABLE I
MODEL PARAMETERS

Parameter Value
l 4 m

UL 10 mol/m
P 8×105 Pa
φ 50 kg/m
F 0.017 mol/sec

Lss 0.07 mol/sec
Gss 0.0645 mol/sec
xD,in 0.9
xM,in 0.1
xW,in 0.0
yD,in 0.0
yM,in 0.1
yW,in 0.9
αD 21.3
αM 3.13
αW 1

Avp,D 4.441
Bvp,D 1025.560
Cvp,D −17.1
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Fig. 2. Steady-state liquid phase mole fraction profiles

with the following boundary and initial conditions:

x1(0, t) = x1,in, x2(0, t) = x2,in (14)
x1(z,0) = x1,e(z), x2(z,0) = x2,e(z) (15)

where f11(x,u), f12(x,u), f21(x,u) and f22(x,u) are nonlinear
functions of x and u and x1,e(z) and x2,e(z) are equilibrium
profiles of x1 and x2 obtained from steady-state solution of
(3) to (10). The matrix form of the above equations is:

∂x
∂ t

= f (x,u)
∂x
∂ z

+R(x) (16)

x(0, t) = xin, x(z,0) = xe(z)

where ∂x
∂ t = [ ∂x1

∂ t , ∂x2
∂ t ], ∂x

∂ z = [ ∂x1
∂ z , ∂x2

∂ z ], R(x) = [ rDφ

UL
,− 2rDφ

UL
],

xin = [x1,in,x2,in], xe(z) = [x1,e(z),x2,e(z)] and:

f (x,u) =
[

f11(x,u) f12(x,u)
f21(x,u) f22(x,u)

]
(17)

In order to make the boundary conditions (14) homogenous,
let us consider the following state transformation:

x̃1 =
x1− x1,in

x1,in
, x̃2 =

x2− x2,in

x2,in
(18)

2772



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z (m)

M
o

le
 f

rc
ti

o
n

 (
d

im
en

si
o

n
le

ss
)

 

 

y
D

y
M

y
W

Fig. 3. Steady-state gas phase mole fraction profiles
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Fig. 4. Steady-state temperature profile

Then we obtain the following equivalent representation of
model (16):

∂ x̃
∂ t

= f̃ (x̃,u)
∂ x̃
∂ z

+ R̃(x̃) (19)

x̃(0, t) = 0

Linearizing model (19) about its equilibrium profile by using
the Taylor series expansion leads to the following linear
model on the Hilbert space H = L2(0, l)2:

∂ x̄
∂ t

= V (z)
∂ x̄
∂ z

+M(z)x̄+B(z)ū

y = C(z)x̄ (20)
x̄(0, t) = 0

where x̄∈H = L2(0, l)2 is deviation state variable, ū∈R2 is
deviation input variable, y ∈Y = L2(0, l)2 denote the output
variable, V (z), M(z) and B(z) are continuous matrices whose
entries are functions in L∞(0, l).
Model (20) can be stated in an infinite-dimensional state-
space in the Hilbert space H = L2(0, l)2 [16]:

˙̄x(t) = A x̄(t)+Bū(t) (21)
y = C x̄(t)

Here A is a linear operator defined as:

A h(z) = V (z)
dh(z)

dz
+M(z)h(z) (22)

with the following domain:

D(A ) = {h(z) ∈H : h(z) and
dh(z)

dz
are

a.c., and
dh(z)

dz
∈H }

(23)

where a.c. means absolutely continuous.
B ∈ (R2,H ) is given by B = B(·)I; and C ∈ (H ,Y ) is
given by C = C(·)I where I is the identity operator.
The LQ control design for system (20) is based on the
minimization of an infinite-time horizon, quadratic objective
function that requires the solution of an ORE (see [16]
and [22]). The solution of the ORE can be achieved by
converting it to an equivalent matrix Riccati equation. The
optimal feedback operator can then be found by solving
the resulting matrix Riccati equation. Let us consider the
following infinite-time horizon quadratic objective function:

J(x̄0, ū) =
∫

∞

0
(〈C x(t),PC x̄(t)〉+ 〈u(t),Rū(t)〉)dt (24)

where P = PI ∈L (Y ) with P ∈ R2×2 is a positive semi-
definite and symmetric matrix; and R ∈ R2×2 is a positive
definite symmetric matrix. The minimization of the above
objective function subject to system (20) results in solving
the following ORE (see [16] and the references therein):

[A ∗Q +QA +C ∗PC −QBR−1B∗Q]x̄ = 0 (25)

According to Theorem 6.2.7 in [16], ORE (25) has a unique,
non-negative, and self-adjoint solution Q ∈L (H ), if sys-
tem (20) is exponentially optimizable (stabilizable) and ex-
ponentially detectable. Under these conditions, the minimum
cost function is given by J(x̄0, ūopt) = 〈x̄0,Qx̄0〉 and for any
initial condition x̄0 ∈H the unique optimal control variable
ūopt , which minimizes the objective function (24), is obtained
on t ≥ 0 as:

ūopt(t) = Kx̄(t) (26)

where
K =−R−1B∗Q (27)

In addition, A + BK generates an exponentially stable
C0−semigroup [16].
In [18] it is proven that if the matrix V < 0, then operator
A given by (22) and (23) generates an exponentially stable
C0−semigroup. Therefore, ORE (25) has a unique, non-
negative, and self-adjoint solution Q ∈L (H ).
In order to solve the ORE it should be converted to an
equivalent matrix Riccati equation. In [18] it is proven that
when matrix V is a constant diagonal matrix, by choosing
Q = diag(φ1(z),φ2(z))I, ORE (24) can be converted to the
following matrix Riccati equation:

V
dφ

dz
= M∗φ +φM +C∗PC−φBR−1B∗φ

φ(l) = 0 (28)

However, matrix V (z) in (20) is not diagonal and in addition
its elements are space-varying. Therefore, in order to find the
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equivalent matrix Riccati equation, first, we use the following
state transformation to make V (z) a diagonal matrix:

x̄ = T (z)x̂ (29)

where matrix T (z) is the transformation matrix whose
columns are eigenvectors of V (z). By applying this state
transformation to (20) we have:

∂ x̂
∂ t

= V̄ (z)
∂ x̂
∂ z

+ M̄(z)x̂+ B̄(z)ū

y = C̄(z)x̂ (30)
x̂(0, t) = 0

where:
V̄ (z) = T (z)−1V (z)T (z)

is a diagonal matrix whose elements are the eigenvalues of
V (z); and M̄(z), B̄(z) and C̄(z) are given by:

M̄(z) = T (z)−1V (z)
∂T (z)

∂ z
+T (z)−1M(z)T (z)

B̄(z) = T (z)−1B(z)
C̄(z) = C(z)T (z)

The infinite-dimensional state-space representation of (30) is:

˙̂x(t) = ¯A x̂(t)+ B̄ū(t) (31)

y = C̄ x̂(t)

where ¯A is a linear operator defined as:

¯A h(z) = V̄ (z)
dh(z)

dz
+ M̄(z)h(z) (32)

with the same domain defined in (23); B̄ ∈ (R2,H ) is given
by B̄ = B̄(·)I; and C̄ ∈ (H ,Y ) is given by C̄ = C̄(·)I.
The ORE for system (30) is the same as (25) with new oper-
ators ¯A , B̄, and C̄ . By assuming Q = diag(φ1(z),φ2(z))I,
with the same argument used in the proof of Theorem 5
in [18], it can be proven that the equivalent matrix Riccati
equation for (30) is:

d(V̄ φ)
dz

= M̄∗φ +φM̄ +C̄∗PC̄−φ B̄R−1B̄∗φ

φ(l) = 0 (33)

The above matrix Riccati equation can be solve numerically
and the feedback operator can be found from:

K =−R−1B̄∗Q (34)

IV. SIMULATION RESULTS

In order to assess the performance of the controller, the de-
signed feedback operator is used with the original nonlinear
system (3) to (11). Since we are interested in controlling both
state variables, matrix C(z) is the identity matrix. The weight-
ing matrices are chosen to be P = diag(17×10−6,17×10−6)
and R = diag(28× 103,20× 103). The set of coupled non-
linear PDAEs (3) to (11) along with the matrix Riccati
equation (33) are solved numerically in gPROMS. We use
an arbitrary initial condition x1(z,0) = 0.6 and x2(z,0) = 0.4
to measure the performance of the designed controller. The

Fig. 5. Control error profile for x1

control error profiles for DME and methanol liquid mole
fractions (x1(z, t)− x1,e(z) and x2(z, t)− x2,e(z)) are shown
in Fig. 5 and Fig. 6. These figures show how the error
between the states and their desired equilibrium profiles (Fig.
2) converges to zero when the system is initiated from the
selected initial condition. To have a measure of how fast the
designed controller is, the spatially averaged control error for
the closed-loop and the open-loop systems are compared in
Fig. 7. This figure shows that the closed-loop system is able
to reject the effect of the initial condition in about 4×103 sec
while for the open-loop system it takes near 8×104 sec to do
so. It means that the closed-loop system is more than 1000
times faster than the open-loop system with respect to the
residence time of the column which is 72.4 sec. Finally, the
control input profiles are shown in Fig. 8. The control efforts
are not particularly aggressive, and are physically realizable.

V. CONCLUSIONS

In this work an ORE-based infinite-dimensional LQ con-
trol policy is used to control mole fraction profiles along a
packed catalytic distillation column. The column is modelled
by a set of coupled hyperbolic partial differential and alge-
braic equations. The system of equations is converted to a set
of pure PDEs and a linear system is calculated through lin-
earizing the nonlinear PDEs around the desired steady-state
profiles which is stated in the form of infinite-dimensional
state-space. A state transformation is then applied to find
a system with diagonal velocity term. The ORE equation
for the new system is formulated and its equivalent matrix
Riccati equation is obtained. Finally, in order to assess the
performance of the designed controller it is implemented on
the column which resulted in a high performance closed-loop
system.
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[11] S. Grüner, K.D. Mohl, A. Kienle, E.D. Gilles, G. Fernholz, and
S. Friedrich. Nonlinear control of a reactive distillation column. Contr.
Eng. Pract., 11:915–925, 2003.

[12] R. Kawathekar and J. B. Riggs. Nonlinear model predictive control of
a reactive distillation column. Contr. Eng. Pract., 15:231–239, 2007.

[13] P. D. Christofides. Nonlinear and robust control of PDE sys-
tems: Methods and applications to transport-reaction processes.
Boston:Brikhauser, 2001.

[14] F. Callier and J.J. Winkin. Spectral factorization and LQ-optimal
regulation for multivariable distributed systems. International Journal
of Control, 52(1):55–57, 1990.

[15] I. Aksikas, J.J. Winkin, and D. Dochain. Asymptotic stability of
infinite-dimensional semi-linear systems: Application to a nonisother-
mal reactor. System and Control Letters, 56:122–132, 2007.

[16] R. F. Curtain and H. J. Zwart. An Introduction to Infinite Dimensional
Linear Systems. Springel-Verlag, 1995.

[17] I. Aksikas, J.J. Winkin, and D. Dochain. Optimal LQ-feedback
for a class of first-order hyperbolic distributed parameter systems.
ESAIM:COCV, 2008.

[18] I. Aksikas, A. Fuxman, J. F. Forbes, and J.J. Winkin. LQ control
design of a class of hyperbolic PDE systems: Application to fixed-
bed reactor. Automatica, 45:1542–1548, 2009.

[19] S. S. Hosseininejad. Catalytic and kinetic study of methanol de-
hydration to dimethyl ether. Master’s thesis, University of Alberta,
Edmonton, Alberta, Canada, Fall 2010.

[20] M. A. Al-Afraj and W. L. Luyben. Comparison of alternative control
structures for an ideal two-product reactive distillation column. Ind.
Eng. Chem. Res, 39:3298–3307, 2000.

[21] Process systems enterprise, gPROMS. www.psenterprise.com/gproms,
1997-2010.

[22] A. Bensoussan, G. Da Prato, and K. Mitter. Representation and
Control of Infinite Dimensional Systems. Systems and Control:
Foundations & Applications. Birkhäuser Boston, 2007.
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