
 
 

 

  

Abstract— Adaptation of twisting controller is performed in 
order to diminish the discontinuous control magnitude. The 
second-order real sliding mode is stably kept due to the instant 
multiplication of the gain by a chosen constant factor at the 
moments when the divergence is detected. Then the gain is 
gradually decreased. The resulting gain maxima are proved not 
to exceed the unknown equivalent control magnitude multiplied 
by a certain factor. Computer simulation confirms the 
theoretical results. 

I. INTRODUCTION 
ONTROL under heavy uncertainty conditions is one of the 
main subjects of the modern control theory, and the 

sliding-mode control is one of the most popular approaches 
to the problem. The idea is to keep some properly chosen 
function (sliding variable) at zero by means of high-
frequency control switching. Sliding mode (SM) is accurate 
and insensitive to disturbances [4, 5, 22, 23]. While standard 
SMs are applicable to nullify sliding variables of the relative 
degree 1, higher order sliding modes (HOSMs) [2, 3, 6, 11, 
12, 16, 17, 18, 21] are used to keep constraints of higher 
relative degree. One of the main reasons for their application 
is the possibility [2, 3, 15] to effectively attenuate the so-
called chattering effect [1, 7, 8, 9, 22] caused by the high 
control-switching frequency.  
 The main idea of the SM application is to suppress the 
proprietary uncertain dynamics of the sliding variable σ by 
sufficiently energetic discontinuous control effort. The 
resulting control magnitude is usually determined by a 
constant gain, which is to be taken “sufficiently large”. In 
particular, with the relative degree 1 the controller is just a 
relay of the form u = – K sign σ of the corresponding 
amplitude K.  High order sliding modes are applied with 
higher relative degrees and sometimes have a complicated 
structure, but there is always present some gain K 
determining the discontinuity magnitude.  
 Since the size of uncertain terms is mostly unknown, the 
gain K is inevitably taken redundantly large, which leads to 
excessive system chattering and energy losses. On the other 
hand, if the uncertainty terms are smoothly changing, one 
can try to adjust the gain K in real time, so as to diminish the 
chattering. The idea is to get SM with sufficiently large gain, 
and then to gradually adjust it, so that the SM is not lost. The 
approach has been already realized for the first-order sliding 
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modes [20]. Second-order SM (2-SM) are considered in this 
paper.  
 The realization of the approach requires a criterion for the 
detection of the real (i.e. approximate) SM. One may just 
require the sliding variable to be less than some threshold. 
The resulting algorithm will be robust in that case, but one 
cannot expect for better accuracy than the predefined 
threshold. On the other hand it is known that the 
characteristic accuracy of r-SM is of the order τr, if τ is the 
sampling period [11], and the sampling errors are of the 
order of τ

r as well [13]. Obviously, if one requires such 
accuracy in r-SM adaptation, then also the noise should be at 
most of the order of τ

r. This approach is adopted in this 
paper with r = 2. The robust algorithm with a predefined 
accuracy will be considered in a separate paper. 
  There are still two other options for the problem 
statement. The first option is that the uncertain equivalent 
control (the control value which nullifies the rth derivative of 
the sliding variable) does not have explicit bounds and can 
be even unbounded. In that case one needs some estimation 
of the highest rate of its change, so that the adjusting gain K 
could change faster in order to cope with the uncertainty. 
This option is considered in another paper of the authors.  
 The second option is that the uncertainty is bounded, so 
that one knows in advance the value of K which is sufficient 
to establish and keep the sliding mode. The problem then is 
to change the gain with respect to the unknown actual size of 
the uncertainty. The rate of the uncertainty changing is still 
supposed to be bounded, but the bound is unknown.  We 
show in this paper that in this case one only needs to know 
the above-mentioned sufficient maximal value of K to 
effectively adjust its value. Since the method realization 
considerably depends on the type of the HOSM controller, 
this paper deals with the well-known twisting controller and 
the relative degree r = 2.  

 

II. PROBLEM STATEMENT AND CONTROL DESIGN 

A. Problem statement 
Consider a dynamic system of the form 

     ( , ) ( , )x a t x b t x u= +& , σ = σ(t,x).     (1) 

Here x ∈ Rn, a, b and σ: Rn+1 → R are unknown smooth 
functions, u ∈ R, n can be also uncertain (its value is not 
used), t ≥ 0. Control can be discontinuous, and solutions are 
understood in the Filippov sense [5]. Trajectories of (1) are 
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assumed infinitely extendible in time for any uniformly 
bounded control. The output σ is available in real time. The 
task is to provide in finite time for accurately keeping σ = 0 
by means of output-feedback control. 
 The relative degree of the system is assumed to be equal 
to 2. In other words [10], for the first time the control 
explicitly appears in the 2nd total time derivative of σ and 

      σ&&  = ψ(t,x) + ϕ(t,x)u,       (2) 

where ψ(t,x) and ϕ(t,x) are some unknown smooth functions. 
It is supposed that for some positive constants ψd, ϕm,  ϕM, 
ϕd, ueqM > 0 the following inequalities hold: 

 | ψ& | ≤ ψd, | ϕ& | ≤ ϕd;    ϕm ≤ ϕ ≤ ϕM,  |ψ/ϕ|  ≤  ueqM.     (3) 

Only ueqM is assumed known. Note that the function ueq =     
– ψ/ϕ is the so-called equivalent control [22], i.e. the control 
value which nullifies σ&& . Since no bound of ψ&  is available, 
the problem cannot be solved by standard 3-sliding control 
methods after the artificial increase of the relative degree to 
3. Moreover, such a control would require calculation of σ&&  
or of the divided second finite differences, which might be 
troublesome in the presence of noises.  

B. Control design and results 
 Let τ > 0 be the sampling period. Choose the control in 
the form 

      u = - K(sign σ + β sign σ& ),   0.5 < β < 1     (4) 

where β is a constant control parameter. With a constant K 
the standard twisting controller [11, 14] is obtained. Here σ&  
is supposed available, the control value remains constant 
between the measurements. Alternatively σ&  can be 
calculated in real time by standard exact robust SM 
differentiator [12], since with bounded control under the 
considered conditions σ&&  has an available upper bound. 
Another option is to use sign ∆σ instead of  sign σ&  [14]. 
  Since the bound of ψ/ϕ is available, any constant value K 
= KM solves the stated problem of keeping σ ≡ 0, provided 

        KM > 1
1−β  ueqM.         (5) 

Fix a constant KM satisfying (5). We will provide for K ≤ KM. 
 Since equ&  is bounded according to (3), the variable value 

K = 1
γ
−β  ueq , γ = const > 1, would solve the problem after 

the 2-SM is obtained. Indeed, with small σ and σ&  the 
twisting dynamics is so fast that ueq = – ψ/ϕ could be 
considered constant. Unfortunately ueq is not available.  
 Assume that the sliding variable σ is measured at the 
sampling instants ti with the sampling period τ > 0. Introduce 
a criterion for the detection of the real 2-sliding mode with 
respect to σ. Take a natural number Nt and some µ > 0. Let t 
∈ [ti, ti+1), and define 

α(t) = 
2

2

1    if [ , ] :  | ( ) | ( ) ,
1  if [ , ] :  | ( ) | ( ) ,

j t j j

j t j j

t t N t t K t
t t N t t K t

 ∀ ∈ − τ σ ≤ µ τ
− ∃ ∈ − τ σ > µ τ

   (6) 

where tj are the sampling instants. The 2-sliding mode 
criterion is considered satisfied if α = 1. 
 Introduce some constants λ, Km, q satisfying 

     λ > 0, 0 < Km  ≤ KM > 0,  q > 1
1

+β
−β .    (7) 

Note that there are no other restrictions on λ, and Km. Let the 
gradual adaptation law be  

K&  = 
 if ,

 if < ,
 if ,

M

m M

m

K K K
K K K
K K

−λ ≥
−αλ <
 λ ≤

   Km ≤ K(0) ≤ KM.          (8) 

Thus, Km ≤ K(t) ≤ KM is kept, while Km can be taken 
arbitrarily small.  
 The parameter K is not able to track ueq, if λ is not large 
enough. Instead of it an instant increment is implemented at 
each sampling instant ti, if the 2-sliding criterion is violated, 
i.e. passes from “true” to “false”: 

K(ti) = 1

1

( 0) if ( ) 1& ( ) 1,
( 0) if ( ) 1 or ( ) 1.

i i i

i i i

qK t t t
K t t t

−

−

− α = α = −
 − α ≠ α ≠ −

            (9) 

Here K(ti - 0) is the limit of  K(t) as t → ti from the left. We 
will show that actually it is the leaping procedure (9) which 
keeps the 2-SM.  
Theorem 1. For any sufficiently large µ and sufficiently 
large Nt ≥ 4 (chosen after µ) with sufficiently small τ, 
starting from some moment, the parameter K(t) satisfies  
K(t) ∈ [q

*
,q*] |ψ(t,x(t))/ϕ(t,x(t))| ∩ {K |K ≥ Km} for some        

q*> q/(1 - β), q
*
 < 1/(1 - β). Respectively the accuracy        

|σ| ≤ η1τ
2 K(t), | σ& | ≤ η2τ K(t) is established in finite time. 

Parameters µ and Nt can be chosen in advance 
independently of the actual system. The constants η1, η2 only 
depend on the parameters of the algorithm and parameters 
of the assumptions.  
 Obviously, as follows from [11], with µ too small and       
K ≡ KM the accuracy |σ| ≤ µτ

2 KM is unsustainable, which 
imposes the lower restriction on µ. The larger the number Nt 
is the closer are q* to q/(1 - β) and q

*
 to 1/(1 - β), resulting in  

K oscillating in a more narrow vicinity of |ueq|. 
 It can be proved that with sufficiently large λ the gain K(t) 
directly approximates max{|ueq|, Km}, but the choice of λ 
would require the knowledge of ψd, ϕd.  
Theorem 2. The statement of Theorem 1 remains true, if the 
sampling noise magnitude does not exceed ξτ

2,  ξ > 0, and 
the derivative σ&  is estimated by the differentiator [12], or it 
is replaced in (4) by the increment of σ between the 
measurements. Parameters ξ, µ and Nt can be chosen in 
advance. The constants η1, η2 only depend on ξ and on the 
parameters of the algorithm and the assumptions.  
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 Obviously µ > ξ is necessary. The proof of Theorem 2 is 
obtained by simply taking measurement errors into account 
[13] in the following proof.  
Proof of Theorem 1. Let the control have the form (4), i.e. 
the exact derivative σ&  be used. Introduce a new variable Σ = 
σ/K. Using relations  

 K
K K
σ

Σ = − Σ
&&& ,   

2

2
2 2K K K

K K K KK
 σ σ

Σ = − + Σ − 
 

& & &&&& &&&     

obtain that  

sign sign 2K K K
K K K K

   ψ
Σ = −ϕ Σ + β Σ + Σ + − Σ − Σ     

& & &&
&& & & .(10)

 The condition 2| | Kσ ≤ µ τ  from (6) takes the form |Σ| ≤ 
µτ

2. Thus the problem can be reformulated in the terms of Σ.  

 Following is the plan of the proof. First we show that if 
|Σ| ≤ µτ

2 holds at four successive sampling instants, then on 
this time interval Σ = O(τ2) and Σ&  = O(τ) (Lemma 1). 
Further we show that if K > 1

1−β−ε |ψ|/ϕ, with some small ε > 

0, then (10) is locally uniformly finite-time stable 
independently of the K variation (8), (9) (Lemma 2).  
Moreover, with discrete measurements the accuracy Σ = 
O(τ2) and Σ&  = O(τ) is established (Lemma 3). 
 Furthermore, eventually the 2-sliding criterion α = 1 is 
satisfied, for otherwise K increases until its maximal value is 
attained and then 2-SM is inevitably established. Therefore, 
in finite time we get α = 1 and  Σ = O(τ2), Σ&  = O(τ). From 
that moment K starts to decrease, which means that (10) 
might cease to be stable at some moment. We show that if at 
some moment α = 1 is got, then K > 1

1−β+ε |ψ|/ϕ for some 

small ε. Otherwise the inequality |Σ| ≤ µτ
2 could not be kept 

during Nt measurements (Lemma 4). Thus, at the moment 
when the criterion α = 1 is violated the inequality K > 

1
1−β |ψ|/ϕ still holds. Therefore the instant increase (9) of K 

and its gradual increase (8) immediately reestablish the local 
finite-time stable dynamics of (10). As a result Σ = O(τ2) and 
Σ&  = O(τ) are kept all the time, while K varies in the range 

[ )1
1 1, / ,q

mmK−β+ε −β−ε
  ψ ϕ ∩ ∞   (Lemma 5), which 

corresponds to the statement of the Theorem. 
  The following Lemmas realize the above plan. 
Lemma 1. Under the conditions of the Theorem there exist 
such ϖ1 and ϖ2 that for any sufficiently small τ for some 
value of µ keeping  |Σ| ≤ µτ

2at 4 successive sampling instants 
implies that during these three sampling intervals |Σ| ≤ ϖ1τ

2, 
| Σ& | ≤ ϖ2τ. Here ϖ1, ϖ2 depend only on µ, the parameters of 
the problem and the algorithm. 
Proof. The criterion means that at the ends of the three last 
sampling periods the condition |Σ| ≤ µτ

2 holds. Thus, due to 
the Lagrange Theorem at some moments t∗, t∗∗  during the 

first and the third period the inequality | Σ& | ≤ µτ holds. Since 
Σ&&  is uniformly bounded, integrating obtain that | Σ& | remains 
of the order of τ during the three last sampling periods. 
Therefore also |Σ| remains of the order of τ2. n 
Lemma 2.  Let K > 1

1−β−ε |ψ|/ϕ, where ε > 0 and β + ε < 1, 

and let |Σ| < δ1, | Σ& | < δ2 , where δ1, δ2 are sufficiently small. 
Then solutions Σ and Σ&  of (10) uniformly converge to zero 
in finite time.   
Proof.  Due to Lemma 1 after a finite-time transient the 
inequalities |Σ| < δ1, | Σ& | < δ2 are kept for any sufficiently 
small δ1, δ2 > 0. Rewrite the condition K > 1

1−β−ε |ψ|/ϕ as  

|ψ|/K < (1 - β - ε)ϕ. Choose δ1, δ2 so that 

    ( )2 | |2 | | | |
K
ψ

λ Σ +λ Σ + ≤& (1 – β - 2
3 ε)ϕ,      (11) 

which is possible, since ϕ ≥ ϕm.  
 Show now that ϕ can be practically considered constant. 
Obviously there is a moment t∗ when Σ = 0, since Σ&& sign Σ < 
- 2

3 εϕ < - 2
3 εϕm. Let ∗Σ = Σ& &  at that moment, and | ∗Σ& | < δ2. 

Therefore the time needed to get to Σ& = 0 does not exceed 
δ2/(

2
3 εϕm). It is easy to see that the same time is needed to 

get once more to Σ = 0, Σ& = ∗∗Σ&  at the time t∗∗. During the 
time ∆t∗ = t∗∗ - t∗ the function ϕ cannot increase or decrease 
by a factor larger than /d mte ∗ϕ ∆ ϕ .  Obviously taking δ2 small 

enough, one can make /d mte ∗ϕ ∆ ϕ  as close to 1 as needed. 
 The convergence condition is | ∗∗Σ& / ∗Σ& | ≤ const < 1. Check 

it. Let for simplicity ∗Σ& > 0. Taking the initial conditions Σ = 

0, Σ& = ∗Σ&  construct the majorant curve [11], such that all real 
trajectories for sure lie between the axis Σ = 0 and the 
majorant. Let γ > 0 be any small number. With sufficiently 
small δ1 > 0 obtain that λ|Σ| ≤ γ|Σ|1/2 whenever |Σ| < δ1. The 
majorant is obtained, when remaining negative, Σ&&  takes on 
the minimal possible absolute value with Σ& > 0, and the least 
possible absolute value with Σ& < 0. Taking into account (11) 
obtain that 

( ) ( ) ( )22 2
3 32 1 2 2

K
ψ

− − ε ϕ ≤ − + β ϕ + − λΣ − λ Σ ≤ − β + ε ϕ& , 

( ) ( ) 22 2
3 32 2 1 2

K
ψ

− − β − ε ≤ − − β ϕ + − λΣ − λ Σ ≤ − εϕ& . 

Thus, with Σ > 0 define the majorant by the equations 

  
( )

2
3

1/22
3

1/22
3

(2 ) ( , ( ))  if 0, 
(2 ) ( , ( ))  if 0> - ,
2 2 ( , ( ))  if - .

d

d

d

t

t

t

t x t e
t x t e

t x t e

∗

∗

∗

−ϕ ∆
∗ ∗

ϕ ∆
∗ ∗

ϕ ∆
∗ ∗

 − β + ε ϕ Σ ≥


Σ = − − ε ϕ Σ ≥ γΣ
− − β − ε ϕ Σ < γΣ

&

&& &

&
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 Obviously, the fraction | M ∗∗Σ& / ∗Σ& | of the real trajectory does 
not exceed the corresponding value calculated for the 
majorant curve. The calculation shows that with  γ = 0 

   
1/2 1/ 22 2

3 3
22
33

(2 2 ) 2 2
2(2 )

d

d

d

t
tM

t

e
e

e

∗

∗

∗

ϕ ∆
ϕ ∆∗∗

−ϕ ∆
∗

   − β − ε − β − εΣ
= ≤      β + εΣ β + ε   

&

&
. 

Obviously 
2
3

2
3

2 2
1

2
− β − ε

<
β + ε

 since β > 0.5. Hence, | M ∗∗Σ& / ∗Σ& | 

≤ const < 1, if ∆t∗ and γ are small enough. The further proof 
follows [11].n 
Lemma 3. Under the conditions of Lemma 2 solutions Σ and 
Σ& of  (10) uniformly and in finite time converge to the region 
of the form |Σ| ≤ ϖ1 τ

2, | Σ& | ≤ ϖ2 τ, where   ϖ1, ϖ2 depend 
only on the parameters of the problem and the algorithm. 
Proof.  In a small vicinity of the origin the trajectories satisfy 
the finite-time-stable homogeneous differential inclusion 

 

( ) 1 1
2 2[ , ] sign sign 1 ,1m MΣ ∈ − ϕ ϕ Σ + β Σ + − + β − ε − β + ε  && &  

                      (12) 
with the weights deg Σ = 2, deg Σ&  = 1 and the homogeneity 
degree -1. The Lemma follows now from the general features 
of finite-time stable homogeneous inclusions [13].n 
Lemma 4. Let ε > 0 be any small number. Let the criterion  
|Σ| ≤ µτ

2 be satisfied for some value of µ at 4 successive 
sampling instants for some values of µ, and let K < 

1
1+β+ε |ψ|/ϕ hold at the last instant.  Then there exists such 

natural N that the 2-sliding criterion is violated in N 
sampling intervals.  
Proof. Due to Lemma 1 at the sampling moment  |Σ| ≤ ϖ1τ

2, 
| Σ& | ≤ ϖ2τ is kept.  In a few sampling intervals at some 
moment t∗ the trajectory enters the quarter Σ Σ& > 0 and 
already cannot leave it. During that time |ψ|/(Kϕ) practically 
does not change. From that moment on the approximate 
formula |Σ| ≥ ( )21

2 t t∗ε −  holds. The number N is now easily 
evaluated.n 
 The following Lemma finishes the proof of the Theorem. 
Lemma 5. There exists θ > 0, such that under conditions of 
the Theorem from some moment on the local maxima of K 
do not exceed ( 1

q
−β +θ)|ψ|/ϕ  whenever K > Kmm.  Also the 

inequalities |Σ| ≤ 2
1ϖ τ% , | Σ& | ≤ 2ϖ τ%  hold for some  1ϖ% , 2ϖ%  

which only depend on the parameters of the algorithm and 
the Assumptions. 
Proof.  At some moment the 2-sliding criterion is inevitably 
satisfied. Indeed, suppose it is not right, then eventually K 
stabilizes at KM, and the dynamics (2), (4) turns out to be 
finite-time stable and homogeneous with the homogeneity 
degree -1, and weights 2 and 1 of σ and σ&  respectively. 

Thus Σ, Σ&  become small and according to Lemma 3 the 2-
sliding criterion gets satisfied with some µ1, µ2.  
 Once 2-sliding criterion is established the inequality 

1
1+β+ε |ψ|/ϕ < K is kept, otherwise it is violated in 

infinitesimal time (Lemma 4). 
 Choose any small ε > 0. Once 2-sliding criterion is 
established K starts to decrease until the criterion is indeed 
violated (or K stabilizes at Km).  It means that the condition 
|Σ| ≤ µτ

2 is violated only at the last sampling and that N 
sampling periods earlier K > 1

1+β+ε |ψ|/ϕ was held, otherwise 

the criterion were violated one step earlier. On the other 
hand at the last but one step K < 1

1−β−ε |ψ|/ϕ, for otherwise 

the condition |Σ| ≤ µτ
2 would not be violated at the last 

measurement.  
 Calculation shows that  

( )
( )2

sign | || | | | sign
| |

K K Kd K
dt K K KK

ϕψ ψ− ψ ϕ + ϕ  ψ ψ ψ ψ ϕ
= = − − ϕ ϕ ψ ϕϕ  

&& & && &  

Thus during N sampling steps |ψ|/(Kϕ) practically does not 
change, and after the instant increment (9) get 1 2

q
−β− ε |ψ|/ϕ > 

K > 1 2
q

+β+ ε |ψ|/ϕ > 1
1−β−ε |ψ|/ϕ, if ε is sufficiently small.  

 After the instant increment (9) the conditions |Σ| ≤ 2
1ϖ τ% ,  

| Σ& | ≤ 2ϖ τ% are still valid with somewhat increased 
coefficients 1ϖ% , 2ϖ% . As a result the conditions of Lemma 3 
are satisfied. The convergence time to the invariant set |Σ| ≤ 
ϖ1τ

2, | Σ& | ≤ ϖ2τ takes a number of sampling steps only, since, 
as follows from [13], the convergence time is proportional to 
the homogeneous norm |Σ|1/2 + | Σ& |. The 2-sliding criterion is 
satisfied, and K once more starts to decrease until |ψ|/(Kϕ) 
approaches 1

1+β+ε . If K decreases until the value Km, it stops 

to change until the 2-sliding criterion is violated, which 
happens when 1

1+β+ε |ψ|/ϕ < K < 1
1−β−ε |ψ|/ϕ.  

 Since K is a priory bounded by the maximal possible value 
of ( 1

q
−β +θ)|ψ|/ϕ ≤ ( 1

q
−β +θ)|ψM|/ϕm, get that |Σ|, | Σ& | are of the 

order of τ2 and τ respectively. n n 

III. SIMULATION 
 The presented academic example has already appeared in 
the literature [14, 19].  Performance of various second order 
sliding-mode controllers combined with sliding-mode 
differentiators is analyzed in [14]. A second-order sliding 
mode output-feedback control has been proposed in [19], 
which only requires the measurement of the position, and 
does not use the velocity. However, all the previous results 
required the knowledge of the bounds for the uncertainties 
and perturbations. 
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The considered system [14] (Fig. 1) is a variable-length 
pendulum evolving in a vertical plane. A load of a known 
mass m moves without friction along the pendulum rod. Its 
distance from O equals R(t) and is not measured. An engine 
transmits a torque u, which is considered as control. The task 
is to track some function xc given in real time by the angular 
coordinate x of the rod. 
 The system is described by the equation 

      x&& = - 2 
R
R& x& - g

R
1 sin x + 2

1
mR

u,            (13) 

where m = 1 and g = 9.81 is the gravitational constant. Let  

0 < Rm ≤ R ≤ RM, 

R& , R&& , cx&  and cx&&  be bounded, σ = x-xc be available. 
Following are the "unknown" functions R and xc considered 
in the simulation: 

   R = 0.8 + 0.1 sin 8t + 0.3 cos 4t,     
   xc = 0.5 sin 0.5t + 0.5 cos t .  

 Let σ = x-xc. The relative degree of the system equals 2. 
Due to the unboundedness of x&  assumptions (3) are fulfilled 
here only locally, and the controller to be applied is effective 
only for some bounded set of initial conditions. Choosing the 
maximal acceptable value KM of the adjusted controller 
parameter K, the convergence region can be made arbitrarily 
large.  

 
Fig. 1. Variable length pendulum. 

 
Fig. 2. Top: sliding variable σ versus time (sec). Bottom: 
time derivative of sliding variable σ&  versus time (sec). 

 The sampling period is τ = 0.0001s. The control law 
corresponds to (4) with β = 2/3, and is 

         u = - K (sign σ + 2
3  sign σ& ). 

 
Fig. 3. Top: adjustment of the gain K. Bottom: zoom of the 
graph, maxima of K are proportional to the equivalent-
control absolute value |ueq| = |ψ|/ϕ presented by the dotted 
line. 

 

Fig. 4. Top: steady state dynamics of σ with t ∈ [3.3, 3.4]. 
Bottom: steady state dynamics of σ& . The accuracy is 
proportional to the variable gain K. 

According to (7) the inequality q > 5 is to hold. Respectively 
the controller parameters are chosen as 

   µ = 5, q = 6,  KM = 100,  Km = 0.1, λ = 100.        (14) 

The initial values K(0) = 0.1, x(0) = x& (0) = 0 are taken.  
 It appears that system trajectories converge in finite time 
to the desired trajectories, while the sliding variable σ and its 
derivative σ&  converge to 0 with the accuracy proportional to 
τ

2 and τ respectively (Fig. 2).  
 Figure 3 displays the time-varying gain K(t). The second 
order real sliding mode is detected at t = 0.6, when K starts 
to decrease. It is clearly seen that K(t) is dynamically adapted 
with respect to the ratio |ψ|/ϕ, i.e. with respect to the 
equivalent-control magnitude. Starting from t = 1.2 its 
maxima do not exceed six absolute values of the equivalent 
control. As a result, while at t = 0.6 the accuracy was |σ| ≤ 
3⋅10-6, the higher accuracy |σ| ≤ 5⋅10-8 is kept near the end of 
the simulation interval at t = 3. Without adaptation the 
accuracy would remain at about 3⋅10-6. One can see in Fig. 4 
that the fluctuation of σ and σ&  follows the dynamics of K 
with t ∈ [3.3, 3.4].  
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IV. CONCLUSIONS 
 Adjustment of the sliding-mode control magnitude, when 
no a priory upper bounds are known neither for the 
uncertainties nor for their derivatives is a challenging 
problem of adaptation, which is currently solved only for the 
first-order sliding modes. An adaptation sliding-mode 
strategy is proposed in this paper for the relative degree 2 
and the twisting controller. 
 The adaptation idea is very simple: the gain is to be 
increased until the sliding mode is attained, then it is 
decreased until the sliding mode is lost. The sliding mode is 
detected basing on the sliding mode accuracy checked at a 
fixed number of sampling instants. The accuracy should be 
proportional to the squared sampling period and the 
adaptation gain. Also the noise should be of the order of 
squared sampling period, in order to apply the algorithm. In 
practice it means that in the presence of noise one needs to 
increase the sampling period in order to provide for the 
better robustness of the system.  
 From the moment when the second order sliding mode is 
detected, it is actually kept due to the instant increments of 
the gain by a specially chosen factor at the very moments 
when it is about to be lost. As a result the maximal values of 
the gain remain proportional to the current magnitude of the 
equivalent control.  
 Unfortunately the chosen strategy (especially the above 
multiplication factor) and the corresponding proofs 
significantly use the concrete controller form (the twisting 
controller). Therefore the extension of the results to higher 
orders and other sliding-mode controllers is not a simple 
task. 
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