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Abstract— In this paper we explore the extent to which a
group of N wind power producers can exploit the statistical
benefits of aggregation and quantity risk sharing by forming a
willing coalition to pool their variable power to jointly offer
their aggregate power output as single entity into a forward
energy market. We prove that wind power generators will
always improve their expected profit when they aggregate their
generated power and use tools from coalitional game theory to
design fair sharing mechanisms to allocate the payoff among
the coalition participants. We show that the corresponding
coalitional game is super-additive and has a nonempty core.
Hence, there always exists a mechanism for profit-sharing that
makes the coalition stable. However, the game is not convex and
the celebrated Shapley value may not belong to the core of the
game. An allocation mechanism that minimizes the worst-case
dissatisfaction is proposed.

I. INTRODUCTION

Motivated by concerns over global warming, there are
worldwide efforts to increase the penetration of renewable
energy resources serving electrical loads. Wind and solar
electric energy resources posses tremendous potential to
reduce the use of carbon emitting fuel sources such as coal,
oil, and natural gas [3]. However, wind and solar power
generation differ from these traditional sources of electric
power, because they are inherently variable. Due to natural
variations in wind speed, wind power output from a wind
turbine exhibits major fluctuations (over various time scales).
Additionally, wind resources have limited dispatchability and
are extremely difficult to forecast. Because of the need to
maintain instantaneous balance between load and generation,
this inherent variability presents a central challenge to large-
scale integration of renewable energy into the electric grid.
The interested reader is referred to [12], [5], [7], [8] for a
thorough review of the challenges facing the integration of
variable renewable generation into the electric grid.

It is generally believed [5], [12] that the aggregation of
geographically diverse wind energy resources has significant
potential to mitigate wind power variability. Indeed, this
approach has been successfully monetized by aggregators
such as Iberdrola Renewables [9]. Also, the EWITS report
[5] states, “Both variability and uncertainty of aggregate
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wind decrease percentage wise with more wind and larger ge-
ographic areas.” This attenuation of output variability of wind
resources aggregated over large spatial regions is derived
from the the tendency of wind speed at different geographic
locations to decorrelate with increasing spatial separation.
In this paper, we analyze and quantify the financial benefit
of wind power aggregation through coalitional bidding in a
competitive two-settlement market setting. The central idea
is that a set of independent wind power producers (WPP)
can exploit the statistical benefits of aggregation by forming
a willing coalition to pool their variable power to jointly offer
their aggregate output as single entity into a forward energy
market. As deviations from offered contracts are penalized,
this amounts to an act of quantity risk sharing among the
members of the coalition. Assuming that coalitional bidding
results in profit increase beyond that achievable through
individual market participation, a central question arises in
this setting. What are fair sharing mechanisms to allocate the
additional profit among the coalition to ensure its stability?

We formalize this question in the setting of cooperative
games using tools from coalitional game theory [14]. We
define the value of a coalition of WPPs as the maximum
expected profit achievable through joint bidding of the ag-
gregate wind power in a two-settlement market. Using this
value function, it can be shown that, except for degenerate
cases, coalition formation always results in a net increase in
expected profit and that there always exist stabilizing rules
for sharing the profit. Moreover, via a counterexample, we
show that this game is not convex and that the famous Shap-
ley mechanism is not stabilizing. We propose the use of the
imputation, which minimizes the worst-case dissatisfaction
(excess), as a profit sharing mechanism and show that it
is stabilizing for every coalition member in that it satisfies
certain fairness axioms.

As the value function, associated with our coalitional
game for wind energy aggregation, is defined in the metric
of optimal expected profit, an imputation belonging to the
corresponding core, represents the payment that each wind
power producer should receive in expectation. In practice,
however, the realized profit for will vary day to day, as
the profit is inherently a random variable given its explicit
dependence on the stochastic wind power production and
imbalance prices. To account for this issue, in Section IV-C
we propose a daily payoff allocation mechanism to distribute
the realized profit among the coalition members, such that
the payment that each member receives – averaged over an
increasing number of days – approaches an imputation in the
core, almost surely.

Although different in application and formulation, our
problem has significant connections with the classical
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newsvendor problem [21] in operations research. In both
cases, the optimal contract offering is given in terms of a
probabilistic quantile. Moreover, coalitional game theory has
also been applied in the newsvendor setting [6] where it has
been shown that the core is nonempty [10].

The paper is organized as follows. In Section II, we begin
with a formulation of the WPP coalitional bidding problem
in a two-settlement market setting. We follow this, in Section
III with a brief review of certain key results from coalitional
game theory. Finally, in Section IV, we state our main results
and provide illustrations with some numerical examples. Due
to space constraints, we omit statement of proofs.

II. PROBLEM FORMULATION

A. Aggregate Wind Power Model

Consider a group of N independent wind power producers
(WPP) indexed by i ∈ N := {1, 2, . . . , N}. The power
wi(t) ∈ [0,Wi] produced at wind farm i is modeled as
a scalar valued random process. Denote the collection of
wind power production as a vector-valued random process,
w(t) = [ w1(t), · · · , wN (t) ]T , whose cumulative distribu-
tion function (CDF) at each time t is given by

Φ(w; t) = P{w(t) ≤ w}. (1)

The distribution Φ(w; t) has support on a subset of RN+ where
Wi denotes the nameplate capacity of wind power plant i.
The corresponding probability density function is denoted by
φ(w; t). We assume that
A1 the group N of WPPs are connected to a common bus

in the power network.
Consequently, the group N of WPPs face common market
prices and can directly aggregate their power without regard
to transmission capacity constraints. Accordingly, it is natural
to consider scenarios in which individual wind power produc-
ers form willing coalitions S ⊆ N to aggregate their wind
power production and jointly bid into electricity markets for
energy. The aggregate output corresponding to a coalition
S ⊆ N is denoted by

wS(t) =
∑
i∈S

wi(t). (2)

The stochastic process corresponding to the aggregate power
output of a coalition S ⊆ N is denoted by

wS = {wS(t) | t ∈ [t0, tf ] }.

Similarly, the CDF corresponding to the aggregate wind
power wS(t) at time t is defined as

ΦS(w; t) = P {wS(t) ≤ w} . (3)

with support [0,
∑
i∈SWi]. Throughout the paper, we will

work with wind power processes defined on the interval
[t0, tf ] of width T = tf − t0. Of importance is the time-
averaged CDF corresponding to the coalition S ⊆ N .

FS(w) =
1

T

∫ tf

t0

ΦS(w; t)dt (4)

Also, define F−1S : [0, 1] → [0,
∑
i∈SWi] as the quantile

function corresponding to the coalitional CDF FS . More
precisely, for β ∈ [0, 1], the β-quantile of FS is given by

F−1S (β) = inf {x ∈ [0, 1] : β ≤ FS(x)} . (5)

B. Market Model and Metrics

We assume that the coalition S ⊆ N of wind power pro-
ducers (WPP) is participating in a competitive two-settlement
market system operated as a power exchange. See [19] for
a detailed description of such markets. Generally, the two-
settlement system consists of two ex-ante markets (a day-
ahead (DA) forward market and a real-time (RT) spot market)
and an ex-post imbalance settlement mechanism to penalize
uninstructed deviations from contracts scheduled ex-ante.
The pricing scheme for penalizing contract deviations reflects
the energy imbalance of the control area as a whole and the
spot price of balancing energy in the RT market. Hence,
the imbalance prices are assumed unknown during the DA
forward market and are not revealed until the RT spot market,
on which they are based, is cleared.

In order to identify conditions under which coalitions form
and fair profit sharing mechanisms, we first analyze the prob-
lem of optimizing the offering of a coalition constant power
contract C in a single ex-ante DA forward market, scheduled
to be delivered continuously over a single time interval
[t0, tf ] (typically of length one hour). The clearing price in
the DA forward market is denoted by p ∈ R+ ($/MWh). As
the WPP has no energy storage capabilities for possible price
arbitrage, the decision of how much constant power to offer
over any individual hour-long time interval is independent
of the decision for every other time interval. Hence, the
problems decouple with respect to contract intervals. We
assume that deviations from said contract C are penalized
ex-post at a price q ∈ R ($/MWh) for negative deviations
and a price λ ∈ R ($/MWh) for positive deviations.

We make the following assumptions regarding prices and
production costs.

A2 The WPPs are assumed to be price takers in the forward
market, as the individual WPP capacity is assumed
small relative to the whole market. As such, the forward
settlement price p is assumed fixed and known.

A3 The WPPs are assumed to have a zero marginal cost of
production.

A4 As imbalance prices (q, λ) ∈ R2 tend to exhibit volatil-
ity and are difficult to forecast, they are modeled as
random variables, with expectations denoted by

µq = E[ q ], µλ = E[ λ ]

The imbalance prices (q, λ) are assumed to be statisti-
cally independent of the wind w(t).

A5 The imbalance prices are assumed to be non-negative,
i.e., (q, λ) ∈ R2

+. Hence, it is never profitable to deviate
from offered contracts.
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Profit Metric: In accordance with the preceding market
rules, the profit acquired by a coalition S ⊆ N for an offered
contract C on the time interval [t0, tf ] is defined as

Π(C,wS , q, λ) = (6)∫ tf

t0

pC − q [C − wS(t)]
+ − λ [wS(t)− C]

+
dt

where x+ := max{x, 0} for all x ∈ R. Define the expected
profit

JS(C) = E Π(C,wS , q, λ). (7)

C. Initial Results

The profit maximizing contract C∗S corresponding to a
coalition S ⊆ N can be obtained by solving the following
optimization problem

C∗S = arg max
C≥0

JS(C). (8)

The solution to this problem is explored in depth in [1].
For completeness, the main result is restated below for the
important case of µq ≥ p.

Theorem 2.1 ([1]): Define the time-averaged distribution
FS(w) as in (4). An optimal contract C∗S is given by

C∗S = F−1S (γ), where γ =
p+ µλ
µq + µλ

. (9)

The optimal expected profit is given by

JS (C∗)

T
= µq

∫ γ

0

F−1S (x) dx − µλ

∫ 1

γ

F−1S (x) dx.

(10)
In this paper, one of our objectives is to quantify the

financial benefit of coalitional bidding in two-settlement
markets. As a motivating result, it is straightforward to show
that the act of risk sharing through coalitional bidding leads
to an increase in collective profit almost surely.

Theorem 2.2: Let {C1, · · · , CN} be a set of N individual
contracts. For CN =

∑N
i=1 Ci we have almost surely that

Π (CN , wN , q, λ) ≥
N∑
i=1

Π (Ci, wi, q, λ). (11)

It follows from Theorem 2.2 that coalitional bidding will
always result in a net profit increase that can be shared
between the coalition participants. Unfortunately, the expres-
sion for optimal expected profit (10) does not provide any
clue as to how the added income should be shared among
the coalition participants. Naı̈ve sharing mechanisms, such as
equal distribution of the profit among the participants, are not
satisfactory, because certain members of the coalition may
obtain a greater profit if they were to break up the coalition
and form a smaller one. Thus, our primary objective is to
identify stabilizing payoff allocation mechanisms for wind
farm coalitions. This is the subject of the remainder of the
paper.

The problem of sharing collective profits has been exten-
sively studied in cooperative game theory [13]. We will show
that our problem can be modeled as a coalitional game and
we will study its properties and identify sharing mechanisms

that are fair from an axiomatic perspective. In the next
section we review some basic concepts and results of the
coalitional game theory. The interested reader may see [13],
[11], [14] for a more detailed exposition on the topic.

Finally, we close this section by introducing a functional
Ψ that will be vital in analyzing the properties of the
coalitional game associated with wind power aggregation.
Let x = {x(t) | t ∈ R} be a scalar stochastic process
that takes nonnegative values on the interval [t0, tf ] and
define the functional Ψ[x] as a mapping from the space of
square integrable stochastic processes to the positive reals.
The functional Ψ[x] represents the maximal expected profit
achievable under the random process x. Specifically,

Ψ[x] := max
C≥0

E Π(C,x, q, λ) (12)

where Π is defined in equation (6). The following lemma
establishes certain properties of the functional Ψ that will be
used to characterize the coalitional game in the sequel.

Lemma 2.3: The functional Ψ as defined in (12) is posi-
tively homogeneous (of degree one) and superadditive in the
underlying random process. For any pair of random processes
x = {x(t) | t ∈ R} and y = {y(t) | t ∈ R}, we have
(i) (positive homogeneity) Ψ[αx] = αΨ[x] ∀ α ≥ 0

(ii) (superadditivity) Ψ[x] + Ψ[y] ≤ Ψ[x + y]

where αx = {αx(t) | t ∈ R} and x+y = {x(t)+y(t) | t ∈
R}.

III. BACKGROUND: RESULTS FROM COALITIONAL GAME
THEORY

Game theory deals with rational behavior of economic
agents in a mutually interactive setting. In a game, several
interacting agents aim to maximize certain expected utility by
making particular decisions. The final payoff of each agent
depends on the decisions taken by all the agents. The game
is specified by the set of participants, the possible decisions
taken by each agent and the set of all possible payoffs. The
agents in the game are called the players. A game is called
cooperative if the players are allowed to form alliances or
teams. Cooperative games [13] are also known as coalitional
games and have been used extensively in diverse disciplines
such as social science, economics, philosophy, psychology
[11] and more recently in engineering and communication
networks [15].

Let N := {1, 2, . . . , N} denote a finite collection of
players.

Definition 3.1 (Coalition): A coalition is any subset S ⊆
N . The cardinality of the coalition S is its number of players
and is denoted by |S|. The set of all possible coalitions is
defined as the power set 2N of N . The grand coalition N
is the coalition that comprises every player in the game.

Definition 3.2 (Coalitional game and value): A
coalitional game is defined by a pair (N , v) where
v : 2N → R is the value function that assigns a real value to
each possible coalition S ⊆ N . The value of the coalition
S is defined as v(S).

Definition 3.3 (Superadditive game): A coalitional game
(N , v) is superadditive if its value function is superadditive,
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i.e., for any pair of disjoint coalitions S, T ⊂ N with S ∩
T = ∅,

v(S) + v(T ) ≤ v(S ∪ T ) (13)

Remark 3.4: Superadditivity implies that the value of a
coalition cannot be improved by splitting it up into two
smaller coalitions. �

A central problem in coalitional game theory is the iden-
tification of payoff allocation mechanisms that fairly share
the coalition value v(S) among all of the members of the
coalition S. The use of payoff allocation mechanisms that
do not fairly share the coalition value among the members
may result in certain members exiting the coalition to form
more profitable sub-coalitions. We make this more precise by
presenting an axiomatic formulation of fairness in definition
3.8. Additionally, we are interested in the class of coalitional
games with transferable payoff.

Definition 3.5 (Transferable payoff): A coaltional game
with transferable payoff is characterized by the property
that there is no restriction on the sharing of coalition value
between members of the coalition.

Definition 3.6 (Payoff allocation): A payoff allocation for
the coalition S ⊆ N is a vector x ∈ R|S| whose entries
represent payoffs to each member of the coalition.

1) (Efficiency) An allocation x is said to be efficient if the
payoffs add up to the value of the coalition,

xT1 =
∑
i∈S

xi = v(S).

2) (Individually rational) An allocation is said to be
individually rational if each player gets a payoff that
is at least as good as that obtained by playing alone,

xi ≥ v({i}), ∀ i ∈ S.
Definition 3.7 (Imputation): A payoff allocation x for the

grand coalition N is said to be an imputation if it is
simultaneously efficient and individually rational. The set of
all imputations I for the game (N , v) is defined as follows

I :=

{
x ∈ RN

∣∣∣∣∣∑
i∈N

xi = v(N ), xi ≥ v({i}), ∀ i ∈ N
}

We next define a fundamental solution concept for coalitional
games known as the core. It can be interpreted as being
analogous to Nash equilibria for non-cooperative games [13].

Definition 3.8 (The Core): Consider a coalitional game
(N , v) with transferable payoff. The core is defined to be the
set of imputations such that no coalition can obtain a payoff
which is better than the sum of the members current payoffs.
Consequently, for an imputation in the core, no subgroup of
players has an incentive to leave the grand coalition to form
another coalition S ⊂ N . A mathematical expression for the
core is given by:

C :=

{
x ∈ RN

∣∣∣∣∣∑
i∈N

xi = v(N ),
∑
i∈S

xi ≥ v(S),∀S ⊆ N
}

(14)
Definition 3.9: A payoff allocation x ∈ RN is said to be

stabilizing if if belongs to the core C.

A. Existence of a Nonempty Core

Certain coalitional games have a empty cores. Two im-
portant classes of games with a nonempty core are convex
games and balanced games.

Definition 3.10 (Convex game): A coalitional game
(N , v) is convex if its value function is supermodular, i.e.

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for all S, T ⊂ N
(15)

Lemma 3.11 (Supermodularity): A value function v is su-
permodular ⇐⇒ for all i ∈ N and every set of coalitions
S ⊂ T ⊂ N such that S ∩{i} = T ∩{i} = ∅, the following
inequality holds:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) (16)
Generally speaking, a game is convex if an individual’s

marginal contribution to a coalition increases if he joins a
larger coalition.

Theorem 3.12 ([17]): A convex coalitional game has a
nonempty core.

Convexity of a coalitional game is a strong condition and
many real-world games are not convex. A weaker condition
is balancedness of a coalitional game. In order to define a
balanced coalitional game, we need to introduce the concept
of a balanced map.

Definition 3.13 (Balanced map): A map α : 2N → [0, 1]
is said to be balanced if for any i ∈ N ,∑

S∈2N
α(S)1{i ∈ S} = 1 (17)

where 1{·} denotes the indicator function.
Thus, a balanced map provides a weight for each coalition

in the game such that for each player i ∈ N , the sum of the
weights corresponding to all coalitions that contain the player
i equals one.

Definition 3.14 (Balanced game): A game (N , v) is bal-
anced if for any balanced map α,∑

S∈2N
α(S)v(S) ≤ v(N ). (18)

A balanced coalitional game always has a nonempty core.
In fact, [2] and [18] independently proved, using duality in
linear programming, the following result.

Theorem 3.15: (Bondareva-Shapley Theorem) A coali-
tional game has a nonempty core ⇐⇒ it is balanced.

However, not every coalitional game is balanced. For such
games, alternative solution concepts have been introduced.
The most important among these are the Shapley value and
the nucleolus.

B. Shapley Value and Nucleolus

1) The Shapley Value: The Shapley value takes an ax-
iomatic approach to value allocation in a coalitional game.
For a coalitional game (N , v), the Shapley value χi(v)
denotes the payoff to each player i ∈ N . The Shapley value
must satisfy five basic axioms.

1) (Individual rationality) χi(v) ≥ v ({i}) for all i ∈ N .
2) (Efficiency)

∑
i∈N χi(v) = v(N ).
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3) (Symmetry) Let S ∩ {i, j} = ∅, if v(S ∪ {i}) = v(S ∪
{j}) then χi(v) = χj(v).

4) (Dummy action) Let S∩{i} = ∅, if v(S∪{i}) = v(S)
then χi(v) = 0.

5) (Additivity) If v1 and v2 are two value functions then
χi(v1 + v2) = χi(v1) + χi(v2).

Theorem 3.16: Consider a coalitional game (N , v). An
analytical expression for the corresponding Shapley value is
given by

χi(v) =
∑

S⊂N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i})− v(S)] .

(19)
The Shapley value χi(v) can be interpreted as the expected

marginal contribution of player i to the grand coalition N
when it joins at a uniformly at random order. The weight is
the probability that player i enters right after every player in
the coalition S.

Remark 3.17: (Relation to the core) The Shapley value
always exists but is not necessarily in the core. If a coalitional
game has a nonempty core and if in addition the imputation
defined by the Shapley value lies in the core, then this
imputation shares the stability properties of the core and
the fairness established by the axioms of the Shapley value.
As a matter of fact, for a convex game, the imputation
corresponding to the Shapley value is always in the core
[17]. However, this is not true, in general, for a balanced
game. �

2) The Nucleolus: The nucleolus of a coalitional game
(N , v) is an imputation that minimizes the dissatisfaction of
the players. Let x ∈ RN be an imputation associated with the
coalitional game (N , v). The dissatisfaction of a coalition S
with respect to the imputation x is measured by the excess
defined as follows:

e(x,S) = v(S)−
∑
i∈S

xi. (20)

For a given imputation x, define the associated excess vector,
θ(x) ∈ R2N−2, as a vector whose entries are the excesses
for all coalitions (excluding the grand coalition) arranged in
nonincreasing order, i.e.

θi(x) ≤ θj(x) for all i, j ∈ N such that i ≥ j.
Let Θ denote the set of excess vectors associated with each
imputation x ∈ I for a coalitional game (N , v).

Θ = {θ(x) : x ∈ I} (21)

Definition 3.18 (Lexicographic order): Define a lexico-
graphic order on the elements of Θ as follows: θ(x) ≤lex
θ(y) if there exists an index k ∈ N such that for all i < k,
θi(x) = θi(y) and θk(x) ≤ θk(y).

Definition 3.19 (Nucleolus): The nucleolus of the game
(N , v) is the lexicographically minimal imputation based on
this ordering.

Remark 3.20: (Relation to the core) The core can be
easily related to the nucleolus solution concept [4]. The nu-
cleolus always exists and is unique. Moreover, the nucleolus
belongs to the core, if the core is non-empty, as the the core

is the set of all imputations with negative or zero excesses.
�

IV. A COALITIONAL GAME FOR WIND ENERGY
AGGREGATION

Let N = {1, · · · , N} denote the set of N wind power
producers (WPP) connected to a common bus in the network.
Using tools from coalitional game theory, we aim to (i)
prove that a collection of wind power producers (WPP)
can improve their expected optimal profit, in aggregate, by
forming a coalition to jointly offer their aggregate power
as a single entity and (ii) identify stabilizing mechanisms
to allocate the additional profit among the members of the
coalition.

We model the formation of a willing coalition among wind
power producers to jointly offer a contract for energy in a
two-settlement market as a coalitional game (N , v), where
the value function v(S) is defined as the expected profit
corresponding to an optimal coalitional offer (Theorem 2.1)
of the aggregate wind power wS associated with the coalition
S ⊆ N .

v(S) = Ψ[wS ] = max
C≥0

E Π(C,wS , q, λ) (22)

In section IV-A, we prove that the corresponding coali-
tional game is superadditive, from which it follows that
the the formation of a grand coalition N is optimal from
the perspective of maximizing the WPPs collective expected
profit. We also prove that the coalitional game is balanced
and hence has a nonempty core (i.e., C 6= ∅). This guarantees
the existence of a fair payoff allocation in the core.

The challenge is to find an imputation x∗ ∈ RN in the
core C. Through counterexample, we show in section IV-B
that the coalitional game for wind energy aggregation is not
convex and that the Shapley value does not necessarily belong
to the core. Although the nucleolus belongs to the core
for a balanced game, its calculation can be computationally
demanding, as it requires the solution of a sequence of o(2N )
linear programs [16]. As an alternative, we propose the use of
a candidate imputation that minimizes the worst-case excess
for every coalition.

Finally, as the coalitional value function v (22) is defined
in the metric of optimal expected profit, an imputation x∗ ∈
RN belonging to the corresponding core C, represents the
payment that each WPP (coalition member) should receive
in expectation. In practice, the realized profit will vary day
by day, as the profit (6) is a random variable. Hence, given
any realization of the profit, we propose, in section IV-C, a
payoff allocation mechanism to distribute the realized profit
among the coalition members, such that the payment that
each member receives – averaged over an increasing number
of days – approaches the imputation x∗ ∈ C.

A. Properties of the Coalitional Game

Theorem 4.1: The coalitional game (N , v) for wind en-
ergy aggregation is superadditive.

Remark 4.2: (Positively Correlated Wind Processes) Su-
peradditivity of the game (N , v) guarantees that coalition
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formation will never detract from the members’ expected
profit in aggregate. However, in the worst case of perfectly
positively correlated wind power process, the coalition op-
timal expected profit equals the sum of the individuals’
optimal expected profits if they were to participate in the
market independently – i.e., v(N ) =

∑N
i=1 v({i}). �

Theorem 4.1 guarantees that wind power producers can
improve their expected profit by forming coalitions with
other producers to jointly offer a contract for their aggregate
power. Moreover, the larger the coalition the greater the
improvement in the aggregate expected profit – indicating
that the most profitable coalition is the grand coalition.
Superadditivity, however, does not guarantee the existence
of a stabilizing payoff allocation – i.e., the existence of a
non-empty core. In Theorem 4.3, we prove nonemptiness of
the core corresponding to the game (N , v). Homogeneity
and superadditivity of the functional Ψ, as in Lemma 2.3,
are instrumental in the proof of this theorem.

Theorem 4.3: The coalitional game (N , v) for wind en-
ergy aggregation is balanced and thus has a nonempty core.

B. Sharing of Expected Coalition Profit

As the coalitional game for wind energy aggregation has
a nonempty core, there exists an imputation in the core that
guarantees that no wind power producer can improve its
expected profit by defecting from the grand coalition.

1) The Shapley Value Is Not in the Core: For convex
games, the Shapley value provides a closed-form expression
for an imputation that belongs to the core. It can be shown
through a counterexample, however, that our coalitional
games is not convex and that the Shapley value does not
necessarily specify an imputation belonging to the core.

Example 4.4 (Counterexample): Consider a coalitional
game involving three independent wind power producers,
N = {1, 2, 3}, offering contracts on the time interval [t0, tf ]
of length one hour. Each wind power process wi (i = 1, 2, 3)
is assumed to be stationary in the strict sense with discrete
marginal distributions. The wind power processes w1 and w2

are assumed to be independent and have identical marginal
distributions defined by

wi(t) =

{
1, w.p. 0.5

2, w.p. 0.5
i = 1, 2 for all t.

The wind power process w3 is assumed to be perfectly
positively correlated to w2, i.e., w3(t) = w2(t) for all t.
The forward market clearing price and expected imbalance
prices are set at p = 0.5, µq = 1, and µλ = 0.

Consider the coalitional game (N , v). The time-averaged
cumulative distribution function FS(w) and value v(S) as-
sociated with each coalition S ⊆ N are depicted in Figure
1. The shaded blue area depicts the value v(S) for each
coalition. The numerical values are given by the following:

v({i}) = Ψ[wi] = 0.5, i ∈ {1, 2, 3}
v({1, i}) = Ψ[w1 + wi] = 1.25, i ∈ {2, 3}
v({2, 3}) = Ψ[w2 + w3] = 2v({2}) = 1

v({1, 2, 3}) = Ψ[w1 + w2 + w3] = 1.75
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Fig. 1. This figure depicts the time-averaged cumulative distribution
function ΦS(w) and value v(S) associated with each coalition S in the
power set of N . The shaded blue area depicts the value v(S) for each
coalition.

As indicated in Theorem 4.3, this coalitional game is bal-
anced and, consequently, has a nonempty core. However, this
game is not convex, as the value function is not supermodu-
lar. Take for example,

v({1, 2, 3})− v({1, 2}) = 0.50

< v({1, 3})− v({1}) = 0.75,

which contradicts the supermodularity property defined in
equation (16).

We now show that the imputation given by the Shapley
value is not in the core. An imputation x =

[
x1 x2 x3

]T
is in the core if it satisfies the following conditions, as defined
by equation (14).

xi ≥ v({i}) = 0.5, i ∈ {1, 2, 3} (23)
x1 + xi ≥ v({1, i}) = 1.25, i ∈ {2, 3} (24)
x2 + x3 ≥ v({2, 3}) = 1.0 (25)

x1 + x2 + x3 = v({1, 2, 3}) = 1.75 (26)

The imputation given by the Shapley value can be easily
computed using the closed form expression in equation (19):

χ1(v) =
2

3
, χ2(v) =

1.625

3
, χ3(v) =

1.625

3

It is straightforward to see that the Shapley value violates
condition (24):

χ1(v)+χ2(v) =
3.625

3
= 1.2083 < 1.25 = v({1, 2}).

Hence, the imputation given by the Shapley value is not in
the core for this particular game. �

2) The Nucleolus and Minimizing Worst-Case Excess:
With respect to the coalitional game for wind energy ag-
gregation, the previous counterexample 4.4 proves that the
game not convex and, consequently, the imputation given by
the Shapley value is not guaranteed to belong to the core.
The strength in application of the Shapley value resides in
its closed form characterization – providing computational
efficiency. However, as the Shapley value for a non-convex
game is not guaranteed to belong to the core, one must
seek alternative solution concepts to obtain imputations in
the core.
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As noted in Section III, the nucleolus is guaranteed to
belong to the core for a balanced game. However, as the
nucleolus is defined as the imputation with the lexicograph-
ically minimal excess vector, its computation requires the
solution of a sequence of o(2N ) linear programs [16]. This
can be computationally demanding.

To surmount this difficulty we propose the use of a
candidate imputation that minimizes the worst-case excess
for every coalition. This imputation is defined as follows:

e∗ = min
x∈RN

max
S∈2N

e(x,S) s.t

{
e(x,N ) = 0

v({i})− xi ≤ 0 ∀ i ∈ N
In contrast to the nucleolus solution concept, computation of
the imputation that minimizes the worst-case excess can be
recast as a single linear program:

e∗ = min
x∈RN , e∈R

e s.t.


v(S)−∑i∈S xi − e ≤ 0,∀S ⊂ N
v(N )−∑i∈N xi = 0

v({i})− xi ≤ 0, ∀ i ∈ N
(27)

Although the imputation that minimizes the worst-case ex-
cess in problem (27) is not guaranteed to belong to the core,
it is a simple matter to check feasibility with respect to the
core.

Lemma 4.5: A feasible imputation x∗ achieving the min-
imal cost e∗ in problem (27) belongs to the core if e∗ ≤ 0.

The following example depicts an instance where this
imputation that minimizes worst-case excess belongs to the
core and the Shapley value does not.

Example 4.6: Consider again the coalitional game corre-
sponding to the Example 4.4 in Section IV. Recall that the
Shapley value of this game does not belong to the core.
Since the coalitional game is balanced, it has a nonempty
core. Using problem formulation (27), we can solve a linear
program (LP) to compute an imputation that minimizes the
worst-case excess for any possible coalition in the game.
Such an imputation is computed by solving the following
LP corresponding to our game.

Minimize e

subject to e+ xi − 0.5 ≥ 0, i ∈ {1, 2, 3}
e+ x1 + xi − 1.25 ≥ 0, i ∈ {2, 3}
e+ x2 + x3 − 1.0 ≥ 0

x1 + x2 + x3 = 1.75

xi − 0.5 ≥ 0, i ∈ {1, 2, 3}
The minimal cost e∗ and corresponding imputation x∗ are
given by

e∗ = 0, x∗1 = 0.75, x∗2 = 0.5, x∗3 = 0.5.

Moreover, in contrast to the Shapley value for this game, the
imputation x∗ belongs to the core as e∗ = 0. �

C. Sharing of Realized Coalition Profit

We have thus far focused our attention on the computa-
tion of payoff allocations that fairly distribute the optimal
expected profit among coalition members. This approach

stems from our formulation of the coalitional game (N , v)
as having a value function v defined in the metric of optimal
expected profit,

v(S) = max
C≥0

E Π(C,wS , q, λ) for all S ⊆ N .

Consequently, an imputation x∗ ∈ RN belonging to the
corresponding core C, represents the payment that each WPP
(coalition member) should receive in expectation. In practice,
however, the realized profit for the grand coalition will vary
day to day, as the profit (6) is inherently a random variable
given its dependence on the random wind power process wS
and imbalance prices (q, λ). A natural question thus arises.
Does there exist a profit allocation mechanism to distribute
the realized profit among the coalition members, such that
the payment that each member receives – averaged over
an increasing number of days – approaches the imputation
x∗ ∈ C? Under certain assumptions, the answer is yes.
A6 We assume that the wind power process wk

S (for all
S ⊆ N ) and imbalance prices (qk, λk) are iid across
days indexed by k.

wkS(t) ⊥⊥ wjS(t), qk ⊥⊥ qj , λk ⊥⊥ λj

for all times t ∈ [t0, tf ] and days k 6= j.
It follows that the optimal profit (28), corresponding to any
coalition S ⊆ N , is likewise an iid sequence

{
Πk
S
}

across
days.

Πk
S := Π(C∗S ,w

k
S , q

k, λk), where C∗S = F−1S (γk) (28)

Remark 4.7: (Cyclostationarity) The assumption of distri-
bution stationarity, across days, is motivated by the empirical
observation of strong diurnal periodicity in the underlying
wind speed and price processes [20]. �

Remark 4.8: (Negative Profit Realization) Whereas the
expected optimal profit is guaranteed to be nonnegative, it
is important to note that realized optimal profit can take on
negative values. Consequently, there may occur a day such
that certain members of the coalition have to pay for their
contribution to the cost of contract imbalance. �

1) A Consistent Approach to Daily Profit Allocation:
Denote the allocation of the profit realized on day k by

%k =
[
%k1 · · · %kN

]T ∈ RN ,

where coalition member i receives %ki of the realized profit
on day k.

Definition 4.9 (Budget Balanced): A profit allocation
%k ∈ RN is budget balanced with respect to the profit
realized on day k if

N∑
i=1

%ki = Πk
N .

Definition 4.10 (Consistency): A mechanism for daily
profit allocation %k is strongly consistent with respect to a
fixed allocation x ∈ RN if

1

K

K∑
k=1

%ki
a.s.−→ xi.
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Consider the following naı̈ve mechanism for daily profit
allocation. Let x∗ ∈ RN be an imputation in the core
C for the coalitional game defined by the value function
(22). Given a realization of profit Πk

N on day k for the
grand coalition N , distribute the profit among the coalition
members according to the following rule:

%ki = βi Πk
N , where βi =

x∗i∑N
j=1 x

∗
j

(29)

Theorem 4.11: The naı̈ve profit allocation mechanism
(29) is both budget balanced and strongly consistent with
respect to the corresponding imputation x∗ ∈ C on which it
is based.

Remark 4.12: (Defection in the Short Run) The sharing
of the realized coalition profit in accordance with (29) –
although fair in the long run – may lead to the defection of
certain coalition members in the short run if said members
consistently receive payments that are below that which
would have been attainable through independent participation
in the market, i.e., if the event

%ki < Π(C∗i ,w
k
i , q

k, λk) (30)

occurs with a sufficiently high frequency.
We are currently exploring alternative formulations of the

coalitional game to discourage defection of coalition mem-
bers in the short run. For example, consider a formulation
where the value function is defined as the realized optimal
profit (31), rather than the expected optimal profit (22):

v(S) = Π(C∗S ,wS , q, λ), for all S ⊆ N . (31)

Working with such a stochastic formulation of the coalition
game (N , v), one can directly compute stabilizing profit
allocations explicitly as a function of the realized wind power
production and imbalance prices. Moreover, assuming the
existence of a nonempty core for such a game, a daily payoff
allocation given by %k = x∗,k, where x∗,k is an imputation
in the core associated with day k, would guarantee that event
(30) never occurs – among other beneficial properties. �

V. CONCLUSION

Using coalitional game theory as a vehicle for our analysis,
we have analyzed the benefits of aggregation attainable
through the formation of a willing coalition among wind
power producers (WPP) to pool their variable power to
jointly offer the aggregate output as single entity into a
forward energy market. Having assumed transferable payoff
and a value function defined as the maximum expected profit
attainable through competitive bidding, we have shown that
the associated coalitional game is superadditive and bal-
anced. Consequently, the core of such a game is necessarily
nonempty – or more simply, there exists a stabilizing profit
sharing rule that is satisfactory from the perspective of every
coalition participant. To this end, we propose an sharing rule
– that minimizes worst-case excess for each coalition in the
game – to fairly allocate the expected profit among coalition
members.

Our results demonstrate that wind power aggregation and
coalitional bidding can serve as an effective means for
improving wind power profitability in the face of future
production uncertainty. However, our results are limited to
the setting in which all WPPs are connected to a common
single bus in the network. As the transmission network can
severely constrain a coalition’s ability to directly aggregate
wind power generated at different buses, we are presently
working on extensions of these results to the multi-bus
network setting to account for transmission effects.

REFERENCES

[1] E. Bitar et al., “Bringing Wind Energy to Market,” Submitted to the
IEEE Transactions on Power Systems, 2011.

[2] O. N. Bondareva, “Some applications of linear programming methods
to the theory of cooperative games,” Problemy Kybernetiki, vol. 10,
pp. 119-139, 1963.

[3] Committee on Stabilization Targets for Atmospheric Greenhouse Gas
Concentrations; National Research Council, “Climate Stabilization
Targets: Emissions, Concentrations, and Impacts over Decades to
Millennia,” The National Academies Press, Washington, D.C., USA,
2011.

[4] T. Driessen, “Cooperative Games, Solutions and Applications,” Kluwer
Academic Publishers, 1988.

[5] EnerNex Corp., Eastern Wind Integration and Transmission Study,
National Renewable Energy Laboratory, Report NREL/SR-550-47078,
January 2010.

[6] G. D. Eppen, “Effects of centralization on expected costs in a
multilocation newsboy problem,” Management Science, vol. 25, no.
5, pp. 498501, May 1979.

[7] GE Energy, Western Wind and Solar Integration Study, National
Renewable Energy Laboratory, Report NREL/SR-550-47434, May
2010.

[8] H. Holttinen et al., “Impacts of large amounts of wind power on design
and operation of power systems, results of IEA collaboration,” 8th

International Workshop on LargeScale Integration of Wind Power into
Power Systems, 14-15 Oct. 2009 Bremen.

[9] http://iberdrolarenewables.us/
[10] A. Müller, M. Scarsini, and M. Shaked, “The newsvendor game has

a nonempty core,” Games and Economic Behavior, vol. 38, no. 1, pp.
118-126, 2002.

[11] R. B. Myerson, “Game Theory: Analysis of Conflict,” Harvard Uni-
versity Press, 1991.

[12] North American Electric Reliability Corporation (NERC), “Accommo-
dating High Levels of Variable Generation,” Special Report, Princeton,
NJ, USA, April, 2009.

[13] J. von Neumann and O. Morgenstern, “Theory of Games and Eco-
nomic Behavior,” Princeton University Press, 1944.

[14] G. Owen, “A Course in Game Theory,” 3rd ed. Academic Press, 1995.
[15] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coali-

tional game theory for communication networks: A tutorial,” IEEE
Signal Processing Magazine, vol. 26, no. 5, pp. 77-97, September
2009.

[16] J. K. Sankaran, “On finding the nucleolus of an n-person cooperative
game,” International Journal of Game Theory, vol. 19, pp. 329-338,
1991.

[17] L. S. Shapley, “Cores of convex games,” International Journal of Game
Theory, vol. 1, 1971.

[18] L. S. Shapley, “On balanced sets and cores,” Naval Research Logistics
Quarterly, vol. 14, no. 4, 1967.

[19] S. Stoft, “Power System Economics: Designing Markets for Electric-
ity,” IEEE Press, John Wiley and Sons, Philadelphia, PA, 2002.

[20] G.C. Thomann, M.J. Barfield, “The time variation of wind speeds and
windfarm output in kansas,” IEEE Transactions on Energy Conversion
1988.

[21] T. Whitin, “Inventory control and price theory,” Management Science,
vol.2, no. 1, pp.61-80, October 1955.

3007


