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Abstract— Decentralized control strategies aim at achieving a
global control target by means of distributed local controllers
acting on individual subsystems of the overall plant. In this
sense, decentralized control is a dual problem to compositional
analysis where a global verification task is decomposed into
several local tasks involving components of the overall system.
In this paper we apply recently developed compositional rea-
soning techniques to decentralized control problems for linear
systems. We assume the global plant and global specification
to be both given as series of feedback interconnections. In this
setting compositional and assume-guarantee reasoning schemes
can be shown to be valid. Provided the local controllers are such
that the locally controlled subsystems of the plant satisfy their
respective sub-specifications the network of locally controlled
plants is then guaranteed to satisfy the global specification.

I. INTRODUCTION

Decentralized control [6], [4], [11] is the attempt to control

a global plant by locally controlling its subsystems in such

a way that the overall controlled system satisfies a given

global specification. Decentralized control has several impor-

tant advantages. Restrictions due to limited communication

and controller action between component systems can be

incorporated naturally in the design of decentralized control

schemes. Likewise, distributed sensor and actuator locations,

such as in structural monitoring [7], process control [10], and

distributed robotic networks [2], restrict the communication

and information flow between subsystems, thus also requir-

ing decentralized control strategies. Furthermore, compared

to the closed loop system using a global controller, the design

procedures and consequently the hardware requirements for

the network of locally controlled plants are less complex.

However, the challenge of decentralized control strategies is

to guarantee that the interconnection of locally controlled

subsystems of the plant satisfies the desired global control

target. In this respect, decentralized control can be seen

as a complementary notion of compositional analysis for

verification of complex systems. In this paper we want to

make use of compositional analysis techniques for linear

systems as developed in [5] for guaranteeing the validity of

decentralized control schemes.

Originally developed to verify properties of transition

systems [8], [3], formal methods based on (bi)simulation

relations have recently been adopted to dynamical control

systems [1], [9], [13]. The main principle of compositional

and assume-guarantee reasoning is to split a global verifi-

cation goal formulated for the overall system into several
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tasks for the components involved. Thus, the complexity

of the original problem can be reduced significantly. This

makes these techniques well-suited for decentralized control

problems. Assuming that the global specification can be

decomposed according to the decomposition of the overall

plant system, the global control target can be split into

several local targets involving subsystems of the plant and

their respective sub-specifications. In this paper, we present

two different strategies based on compositional and circu-

lar assume-guarantee reasoning, respectively. We prove that

these reasoning schemes hold true in a decentralized setting

for series of feedback interconnections of linear systems. As

a result, we obtain conditions under which a network of

locally controlled subsystems of the plant satisfies the global

specification.

II. PROBLEM SETTING

We consider the global plant system ΣP to be an intercon-

nection of k component systems ΣPi
, i = 1, . . . ,k,

ΣP := ΣP1
‖ . . .‖ΣPk

, (1)

where each plant subsystem ΣPi
is of the form (see Figure

1)

ΣPi
:

ẋPi
= APi

xPi
+BPi

uPi
+GPi

ePi

yPi
= CPi

xPi

zPi
= HPi

xPi

(2)

where uPi
,yPi

are pairs of variables used for interconnec-

tion with local controller systems, and ePi
,zPi

are pairs

of external variables used to interconnect the subsystems

of the plant with each other. All variables take values in

ΣPi

uPi

uPi

ePi

ePi

yPi

yPi

zPi

zPi

ΣCi

ΣQi

Fig. 1. Plant, specification and controller subsystems.

vector spaces of appropriate dimensions, xPi
∈ XPi

,uPi
∈

UPi
,ePi

∈ EPi
,yPi

∈ YPi
,zPi

∈ ZPi
. The global specification,

denoted by ΣQ, is assumed to be similarly decomposable

into local sub-specifications ΣQi
, i = 1, . . . ,k, corresponding

to the respective plant subsystems ΣPi
, i.e.,

ΣQ := ΣQ1
‖ . . .‖ΣQk

(3)
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Each component ΣQi
of the global specification ΣQ defines

the desired external behavior of the respective component of

the plant and is given as

ΣQi
:

ẋQi
= AQi

xQi
+GQi

eQi

zQi
= HQi

xQi

(4)

The topology of the global system model is determined by

the type of interconnection between the individual compo-

nents. In the remainder of this paper, we consider series

of feedback interconnections with respect to the external

variables ei,zi to model decompositions of the overall plant

system, as well as of the global specification.

Definition 1: Consider k systems Σi, i = 1, . . . ,k, of the

form (2) or (4) with external variables ei,zi, and control

interconnection variables ui,yi. Then define the series inter-

connection Σ1‖ . . .‖Σk with respect to the external variables

e,z using feedback interconnections as follows:

z−i = e+i−1

e−i = z+i−1

,

z+i = e−i+1

e+i = z−i+1

, i = 2, . . . ,k−1

z−1 = z1

e−1 = e1
,

z+1 = e−2
e+1 = z−2

,

z−k = e+k−1

e−k = z+k−1

,

z+k = zk

e+k = ek

The matrices Gi and Hi corresponding to the external inputs

ei = (e+i ,e
−
i and outputs zi = (z+i ,z

−
i are partitioned accord-

ingly into submatrices

Gi =

[

G+
i

G−
i

]

, Hi =

[

H+
i

H−
i

]

, i = 1, . . . ,k

ΣP1

ΣP2

ΣPk

ΣQ1

ΣQ2

ΣQk

ΣC1

ΣC2

ΣCk

e−P1
z−P1

e+P1
= z−P2

z+P1
= e−P2

e+P2
z+P2

e+Pk
z+Pk

e−Pk
z−Pk

uP1
= yC1

uP2
= yC2

uPk
= yCk

yP1
= uC1

yP2
= uC2

yPk
= uCk

e−Q1
z−Q1

e+Q1
= z−Q2

z+Q1
= e−Q2

e+Q2
z+Q2

e+Qk
z+Qk

e−Qk
z−Qk

Fig. 2. Decompositions of the global closed loop system
(

ΣP1
‖u,yΣC1

)

‖ . . .‖
(

ΣPk
‖u,yΣCk

)

and of the global specification
ΣQ1

‖ . . .‖ΣQk
.

The controller systems ΣCi
, i = 1, . . . ,k, are defined as linear

systems

ΣCi
:

ẋCi
= ACi

xCi
+BCi

uCi

yCi
= CCi

xCi

(5)

Plant-controller interconnections ΣPi
‖u,yΣCi

are defined by

relating the control interconnection variables ui,yi of the

plant components to inputs and outputs of the controller

systems by means of standard output feedback

ui = yCi
, uCi

= yi, i = 1, · · · ,k , (6)

leading to the closed loop components
[

ẋPi

ẋCi

]

=

[

APi
BPi

CCi

BCi
CPi

ACi

][

xPi

xCi

]

+

[

GPi

0

]

ePi

zPi
=

[

HPi
0
]

[

xPi

xCi

]

(7)

denoted by ΣPi
‖u,yΣCi

, i = 1, · · · ,k.

The resulting system (ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

con-

sisting of k locally controlled plant subsystems ΣPi
‖u,yΣCk

interconnected in series by output feedback is depicted in

Figure 2.

Analogous to the decomposition of the global plant, the

global specification ΣQ is assumed to be given as a series of

k sub-specifications ΣQi
interconnected by output feedback.

The performance targets are expressed in terms of the exter-

nal variables e
+,−
i ,z

+,−
i , i = 1, . . . ,k. Roughly speaking, the

closed loop system (ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

meets its

specification ΣQ1
‖ . . .‖ΣQk

if the behavior of the closed loop

system with respect to these external variables is contained

in the external behavior of the global specification. The

formal definition of when the plant behavior is included in

the specification behavior (i.e., when the plant satisfies the

specification) will be given by means of simulation relations,

see Section III.

Remark 2: Although we restrict ourselves in this paper

to series of feedback interconnections of linear systems, the

results can be shown to hold for other network topologies as

well.

Within this setting, we formulate the following decentralized

control problems:

Problem 3: Which conditions do the local controllers ΣCi

have to fulfill in order to guarantee that the closed loop

system (ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

satisfies the global

specification ΣQ1
‖ . . .‖ΣQk

?

Problem 4: What are necessary and sufficient conditions

such that there exist local controllers ΣCi
that satisfy the

conditions determined by Problem 3?

In this paper, we concentrate on solutions to Problem 3. A

follow-up version of this paper will deal with the solution of

Problem 4.

III. SIMULATION THEORY FOR LINEAR SYSTEMS

In this section we recall compositional analysis techniques

for linear systems based on simulation relations.

Originating from computer science, (bi)simulation rela-

tions have first been introduced for dynamical control sys-

tems in [1]. In [9], [12] the existence of a (bi)simulation

relation between two linear systems was reformulated as

a geometric control problem allowing for linear-algebraic

characterizations of (bi)simulation relations between linear
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systems. Intuitively speaking, bisimulation relations define a

concept of external equivalence. Applied to the decentralized

setting considered in this paper, equivalence by bisimulation

is expressed by requiring the external variables ei,zi to

remain equal.

Definition 5: A linear subspace S ⊂ XP ×XC ×XQ is a

simulation relation of ΣP‖u,yΣC by ΣQ with ΣP‖u,yΣC of the

form (7) and ΣQ of the form (4), if it satisfies the following

properties: Take any (xP,xC,xQ) ∈ S and any joint external

input function e(·) = eP(·) = eQ(·). Then the resulting state

trajectories xP(·),xC(·) and xQ(·), starting at xi(0) = xi0, i ∈
{P,C,Q}, satisfy

(i) : (xP(t),xC(t),xQ(t)) ∈ S ∀t ≥ 0

(ii) : zP(t) = zQ(t) ∀t ≥ 0

A simulation relation S is called full and denoted by

ΣP‖u,yΣC 4 ΣQ if the projection on the first state component

covers the whole state space, i.e., ΠXP×XC
S = XP ×XC.

A bisimulation relation R between ΣP‖u,yΣC and ΣQ,

Σi, i ∈ {P,C,Q}, like before, is a linear subspace R ⊂
XP × XC × XQ with the following property: R defines

a simulation relation of ΣP‖u,yΣC by ΣQ and R−1 :=
{(xQ,xP,xC) | (xP,xC,xQ) ∈ R} defines a simulation relation

of ΣQ by Σp‖u,yΣC. Moreover, R is full if ΠXi
R = Xi, i ∈

{P‖u,yC,Q}, which will be denoted by ΣP‖u,yΣC ≈ ΣQ.

Hence, the closed loop system satisfies the global specifi-

cation if

(ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

4 ΣQ1
‖ . . .‖ΣQk

. (8)

Informally this means that the controller action should be

such that any trajectory of the closed loop system with

respect to the external variables e
+,−
i ,z

+,−
i is matched (’sim-

ulated’) by a trajectory of the global specification.

Verifying the simulation (8) is in general a complex task.

However, using compositional analysis techniques the verifi-

cation task (8) can be simplified by splitting it in into several

subtasks involving components of the overall systems. In [5]

results for compositional and assume-guarantee reasoning of

two linear systems were derived. We state without proof the

main results of [5] that will be needed in the following.

These results are of two types: compositional reasoning and

circular assume-guarantee reasoning.

Compositional reasoning decomposes the global proof

obligation into proof obligations for the components.

Theorem 6: For linear systems Σi, i ∈ {P1,P2,Q1,Q2} of

the form (2) or (4), compositional reasoning

ΣP1
4 ΣQ1

ΣP2
4 ΣQ2

}

=⇒ ΣP1
‖ΣP2

4 ΣQ1
‖ΣQ2

(9)

holds true.

A more involved scheme is circular assume-guarantee rea-

soning, which deals with interconnections of the individual

components with the corresponding sub-specifications, see

[5] for a detailed description.

Theorem 7: For linear systems Σi, i ∈ {P1,P2,Q1,Q2} of

the form (2) or (4) circular assume-guarantee reasoning is

always1 valid, i.e., the implication

SI : ΣP1
‖ΣQ2

4 ΣQ1
‖ΣQ2

SII : ΣQ1
‖ΣP2

4 ΣQ1
‖ΣQ2

}

=⇒ S : ΣP1
‖ΣP2

4 ΣQ1
‖ΣQ2

(10)

holds true.

IV. DECENTRALIZED CONTROL USING COMPOSITIONAL

ANALYSIS TECHNIQUES

As a first result of this paper we extend compositional

reasoning, as treated in [5] for the interconnection of two

system, to an arbitrary number of systems. The resulting

deduction scheme then immediately yields a solution to the

decentralized control problem 3.

4

4

4

4

4

4

⇓

ΣQ1

ΣQ1

eQ1

eQ1

zQ1

zQ1

ΣQ2

ΣQ2

eQ2

eQ2

zQ2

zQ2

ΣQk

ΣQk

eQk

eQk

e1

e1

zQk

zQk

ΣP1

ΣP1

zP1

zP1

ΣP2

ΣP2

eP2

eP2

zP2

zP2

ΣPk

ΣPk

ePk

ePk

zPk

zPk

ΣCk

ΣCk

ΣC1

ΣC1

ΣC2

ΣC2

Fig. 3. Decentralized control scheme based on compositional reasoning.

Theorem 8: Consider k plant-controller interconnections

ΣPi
‖u,yΣCi

, i = 1, . . . ,k, of the form (7) and k specifications

1Somewhat surprisingly no additional conditions, as is the case for
transition systems, need to be made.
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ΣQi
of the form (4). Then compositional reasoning holds true

for series interconnections of k control systems, i.e.,

ΣPi
‖u,yΣCi

4 ΣQi
, i = 1, · · · ,k

=⇒

(ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

4 ΣQ1
‖ . . .‖ΣQk

(11)

Proof: The proof uses induction over k. Theorem 6

contains the proof for the case k = 2. Assume now that

the series interconnection ΣP of k plant-controller systems

ΣP1
‖ . . .‖ΣPk

=: ΣP fulfills a composed specification ΣQ of

the form ΣQ := ΣQ1
‖ . . .‖ΣQk

, i.e.,

ΣP 4 ΣQ (12)

Moreover, let there exist a full simulation relation of ΣPk+1

by ΣQk+1
, i.e.,

ΣPk+1
4 ΣQk+1

(13)

Taking the product of the full simulation relations for (12)

and (13) yields, after reordering the state components, a full

simulation relation of

ΣP‖ΣPk+1
4 ΣQ‖ΣQk+1

(14)

This proves the induction step.

Theorem 8 immediately implies the validity of the follow-

ing decentralized control scheme.

Corollary 9: Given local controllers ΣCi
, i = 1,2, . . . ,k,

that are such that the locally controlled components ΣPi
‖ΣCi

satisfy the local specifications ΣQi
, i.e.,

ΣPi
‖u,yΣCi

4 ΣQi
(15)

then the global system consisting of series interconnections

of these locally controlled plant components is guaranteed to

fulfill the global specification given by the series intercon-

nection of the local specifications, see Figure 3.

An alternative requirement for the controllers ΣCi
, less strict

than (15), can be based on circular assume-guarantee rea-

soning. Rather than formulating conditions on the component

level as in Theorem 8, we formulate them for interconnec-

tions of locally controlled plants and sub-specifications.

Theorem 10: Consider k ≥ 2 plant-controller interconnec-

tions ΣPi
‖u,yΣCi

, i = 1, . . . ,k, of the form (7) and k corre-

sponding specifications ΣQi
of the form (4). Let k circularly

dependent conditions

S1 : (ΣP1
‖u,yΣC1

)‖ΣQ2
‖ . . .‖ΣQk

4 ΣQ1
‖ΣQ2

‖ . . .‖ΣQk

S2 : ΣQ1
‖(ΣP2

‖u,yΣC2
)‖ . . .‖ΣQk

4 ΣQ1
‖ΣQ2

‖ . . .‖ΣQk

...
...

...
...

Sk : ΣQ1
‖ΣQ2

‖ . . .‖
(

ΣPk
‖u,yΣCk

)

4 ΣQ1
‖ΣQ2

‖ . . .‖ΣQk

(16)

be satisfied. Then

(ΣP1
‖u,yΣC1

)‖ . . .‖
(

ΣPk
‖u,yΣCk

)

4 ΣQ1
‖ΣQ2

‖ . . .‖ΣQk
(17)

44

4

4

4

⇓

ΣQ1ΣQ1
ΣQ1

ΣQ1

eQ1
eQ1

eQ1

eQ1

zQ1zQ1
zQ1

zQ1

ΣQ2
ΣQ2 ΣQ2

ΣQ2

ΣQ2

eQ2
eQ2 eQ2

eQ2

eQ2

zQ2
zQ2

zQ2
zQ2

zQ2

ΣQk ΣQk
ΣQk

ΣQk

eQk
eQk

eQk

eQk

e1

e1

zQk
zQk

zQk

zQk

ΣP1

ΣP1

zP1

zP1

ΣP2

eP2

zP2

ΣPk

ΣPk

ePk

ePk

zPk

zPk

ΣCk

ΣCk

ΣC1

ΣC1

ΣC2

Fig. 4. Decentralized control scheme based on circular assume-guarantee
reasoning.

Thus the decentralized controlled plant fulfills the global

specification. Moreover, if (16) holds with bisimilarity then

(17) also holds with bisimilarity.

Figure 4 depicts the second decentralized control scheme

based on circular assume-guarantee reasoning. Each local

controller ΣCi
should be such that the global specification

ΣQ is satisfied, assuming that the other sub-specifications

ΣQk
,k 6= i, are already satisfied. Hence, the k conditions

S1,S2, . . . ,Sk are circularly dependent.

This circular dependence complicates the proof of Theo-

rem 8. We first need an auxiliary result that extends the proof

rule of Theorem 7 by interconnecting arbitrary systems from

the left and right.

Lemma 11: Consider six linear control systems Σi, i ∈
{P1,P2,Q1,Q2,L,R} of the form (4) or (7). Then the fol-

lowing reasoning is valid:

SI : ΣL‖ΣP1
‖ΣQ2

‖ΣR 4 ΣL‖ΣQ1
‖ΣQ2

‖ΣR

SII : ΣL‖ΣQ1
‖ΣP2

‖ΣR 4 ΣL‖ΣQ1
‖ΣQ2

‖ΣR

(18)

⇓

S : ΣL‖ΣP1
‖ΣP2

‖ΣR 4 ΣL‖ΣQ1
‖ΣQ2

‖ΣR

Proof: In order to prove this lemma, we extend Si, i =
I, II, in two steps. First, consider

S′I = {(xL,xP1
,xQ2

,xR,xL,xQ1
, x̄Q2

,xR) | ∃x′L,x
′
R :

(xL,xP1
,xQ2

,xR,x
′
L,xQ1

, x̄Q2
,x′R) ∈ SI}

S′II = {(xL,xQ1
,xP2

,xR,xL, x̄Q1
,xQ2

,xR) | ∃x′L,x
′
R :

(xL,xQ1
,xP2

,xR,x
′
L, x̄Q1

,xQ2
,x′R) ∈ SII}
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The fact that S′i, i = I, II, define full simulation relations is

a consequence of the results in [5]. Using ideas from [5],

we will furthermore add suitable subspaces to obtain the

relations
(

S′i + S̄′i
)sym

, where

S̄′I = {(xL,xP1
, x̄Q2

,xR,xL,xQ1
,−xQ2

,xL) | x̄Q2
∈ kerHQ2

,

xi ∈ kerHi, i ∈ {L,P1,Q2,Q1,R},

(xL,xP1
,xQ2

,xR,xL,xQ1
, x̄Q2

,xL) ∈ S′I}

S̄′II = {(xL, x̄Q1
,xP2

,xR,xL,−xQ1
,xQ2

,xL) | x̄Q1
∈ kerHQ1

,

xi ∈ kerHi, i ∈ {L,P2,Q1,Q2,R},

(xL,xQ1
,xP2

,xR,xL, x̄Q1
,xQ2

,xL) ∈ S′II}

and
(

S′I + S̄′I
)sym

= {(xL,xP1
, x̄Q2

,xR,xL,xQ1
,xQ2

,xL) |

(xL,xP1
,xQ2

,xR,xL,xQ1
, x̄Q2

,xL) ∈
(

S′I + S̄′I
)

},
(

S′II + S̄′II

)sym
= {(xL, x̄Q1

,xQ2
,xR,xL,xQ1

,xQ2
,xL) |

(xL,xQ1
,xP2

,xR,xL, x̄Q1
,xQ2

,xL) ∈
(

S′II + S̄′II

)

}

Similarly as before, construct S as

S = {(xL,xP1
,xP2

,xR,xL,xQ1
,xQ2

,xR) | ∃ x̄Q1
, x̄Q2

:

(xL,xP1
, x̄Q2

,xR,xL,xQ1
,xQ2

,xR) ∈
(

S′I + S̄′I
)sym

,

(xL, x̄Q1
,xP2

,xR,xL,xQ1
,xQ2

,xR) ∈
(

S′II + S̄′II

)sym
}

• The proofs that S′i + S̄′i, i = I, II, and (S′i)
sym are

full simulation relations of ΣL‖ΣP1
‖ΣQ2

‖ΣR and of

ΣL‖ΣQ1
‖ΣP2

‖ΣR by ΣL‖ΣQ1
‖ΣQ2

‖ΣR, respectively, are

analogous to the proofs of Lemma 1 and Lemma 2 in

[5], respectively.

• The proof that for every x ∈ kerHQ2
,y ∈ kerHQ1

, there

exist elements (0,0,x,0,0,0,x,0) ∈
(

S′I + S̄′I
)sym

and

(0,y,0,0,0,y,0,0)∈
(

S′II + S̄′II

)sym
is similar to the proof

of Lemma 3 in [5].

Finally, we have to prove that S as constructed in (19)

is indeed a full simulation relation of ΣL‖ΣP1
‖ΣP2

‖ΣR by

ΣL‖ΣQ1
‖ΣQ2

‖ΣR. To do so, the proof of Theorem 7 can be

repeated in all its steps.

We are now in the position to prove the validity of circular

assume-guarantee reasoning for feedback interconnections

of arbitrarily many linear systems. Proof: [Proof of

Theorem 10] The idea of this proof is to successively

combine the k conditions (16) and apply Lemma 11 at every

step. Let k simulation relations Si, i = 1, . . . ,k, as in (16) be

given, i.e.,

Si : ΣQ1
‖ . . .‖ΣQi−1

‖ΣTi
‖ΣQi+1

‖ . . .‖ΣQk
4 ΣQ

where for compactness of notation we have defined ΣTi
:=

ΣPi
‖ΣCi

, i = 1, · · · ,k. Starting with i = 1, consider ⌊ k
2
⌋ pairs

of two relations Si and Si+1, i = 1, . . . ,k−1 where ⌊x⌋ is the

greatest natural number less or equal to x. Apply Lemma 11

to each of the ⌊ k
2
⌋ pairs to obtain simulation relations Si,i+1

of the form

Si,i+1 : ΣQ1
‖ . . .‖ΣQi−1

‖ΣTi
‖ΣTi+1

‖ . . .‖ΣQk
4 ΣQ

After this first step, ⌈ k
2
⌉ simulation relations are left where

⌈x⌉ is the smallest natural number greater or equal to x,
{

{Si,i+1, i = 1, . . . ,k−1}, if ⌊ k
2
⌋= k

2

{{Si,i+1, i = 1, . . . ,k−2},Sk} , otherwise
(19)

Continue by forming ⌊⌈ k
2
⌉⌋ pairs of two simulation relations

S j,S j ∈ (19) to apply Lemma 11 on them. Repeating this

procedure ⌈ k
2
⌉- times in total, the desired result follows in

the last step. We formalize this approach in the following

Algorithm 12: Compute S from k simulation relations

Si, i= 1, . . . ,k of the form (16)

k = ⌊N
2
⌋

R = {Si, i = I, . . . ,k}
for i = 1 to ⌈ k

2
⌉ do

k = |R|
for j = 1 to ⌊ k

2
⌋ do

apply Lemma 11 to S2 j−1,S2 j,S j ∈ R to obtain the

relations S2 j−1,2 j as given by (19)

end for

if k
2
== ⌊ k

2
⌋ then

R = {S2 j−1,2 j, j = 1, . . . ,⌊ k
2
⌋}

else

R =
{

{S2 j−1,2 j, j = 1, . . . ,⌊ k
2
⌋},Sk

}

end if

end for

S = R

We illustrate Theorem 10 and Algorithm 12 with the follow-

ing example.

S1 S2 S3 S4

S5

S5

S5

S1,2 S3,4

S1,2,3,4

S

Fig. 5. Algorithm 12 applied to Example 13.

Example 13: Consider a plant system ΣP = ΣP1
‖ . . .‖ΣP5

and a corresponding global specification ΣQ = ΣQ1
‖ . . .‖ΣQ5

where all components ΣPi
,ΣQi

are of the form (2) and (4),

respectively. Assume that there exist full simulation relations

Si, i ∈ {I, . . . ,V}, as follows:

SI : ΣT1
‖ΣQ2

‖
(

ΣQ3
‖ΣQ4

‖ΣQ5

)

4 ΣQ1
‖ΣQ2

‖
(

ΣQ3
‖ΣQ4

‖ΣQ5

)

SII : ΣQ1
‖ΣT2

‖
(

ΣQ3
‖ΣQ4

‖ΣQ5

)

4 ΣQ1
‖ΣQ2

‖
(

ΣQ3
‖ΣQ4

‖ΣQ5

)

SIII : (ΣQ1
‖ΣQ2

)‖ΣT3
‖ΣQ4

‖ΣQ5
4 (ΣQ1

‖ΣQ2
)‖ΣQ3

‖ΣQ4
‖ΣQ5

SIV : (ΣQ1
‖ΣQ2

)‖ΣQ3
‖ΣT4

‖ΣQ5
4 (ΣQ1

‖ΣQ2
)‖ΣQ3

‖ΣQ4
‖ΣQ5

SV :
(

ΣQ1
‖ΣQ2

‖ΣQ3
‖ΣQ4

)

‖ΣT5
4

(

ΣQ1
‖ΣQ2

‖ΣQ3
‖ΣQ4

)

‖ΣQ5

2703



In the first step, we pair the relations SI ,SII and SIII ,SIV .

Applying Lemma 11 to each pair, we conclude that there

exist full simulation relations SI,II and SIII,IV such that

SI,II :

(ΣT1
‖ΣT2

)‖
(

ΣQ3
‖ΣQ4

)

‖ΣQ5
4 (ΣQ1

‖ΣQ2
)‖

(

ΣQ3
‖ΣQ4

)

‖ΣQ5

SIII,IV :

(ΣQ1
‖ΣQ2

)‖
(

ΣT3
‖ΣT4

)

‖ΣQ5
4 (ΣQ1

‖ΣQ2
)‖

(

ΣQ3
‖ΣQ4

)

‖ΣQ5

In the second step, Lemma 11 can now be applied to SI,II

and SIII,IV to obtain

SI,II,III,IV :
(

ΣT1
‖ΣT2

‖ΣT3
‖ΣT4

)

‖ΣQ5
4

(

ΣQ1
‖ΣQ2

‖ΣQ3
‖ΣQ4

)

‖ΣQ5

In the third step, consider the relations SI,II,III,IV and SV . As

a special case of Lemma 11, they fulfill the circular assume-

guarantee rule of Theorem 7. Hence, there indeed exists a

full simulation relation

S : ΣT1
‖ΣT2

‖ΣT3
‖ΣT4

‖ΣT5
4 ΣQ1

‖ΣQ2
‖ΣQ3

‖ΣQ4
‖ΣQ5

.

Finally, it is worth pointing out that conditions of the

form (11) and (16) can be combined in a triangular proof

rule to obtain a decentralized control scheme based on non-

circular assume-guarantee reasoning. Like for interconnec-

tions for two systems only, non-circular assume-guarantee

reasoning is always valid for more than two systems due to

compositionality of series interconnections and transitivity of

simulation, see [5] for more details. Not stating this formally,

we provide a simple example instead to illustrate this point.

Example 14: Consider three plant systems ΣPi
, i = 1,2,3,

and three specifications ΣQi
. Let local controllers ΣCi

, i =
1,2,3, be given such that the following conditions hold:

S1 : ΣP1
‖u,yΣC1

4 ΣQ1

SII : ΣQ1
‖(ΣP2

‖u,yΣC2
) 4 ΣQ1

‖ΣQ2

SIII : ΣQ1
‖ΣQ2

‖
(

ΣP3
‖u,yΣC3

)

4 ΣQ1
‖ΣQ2

‖ΣQ3

Combining S1 and SII by interconnecting the systems in-

volved in S1 with ΣS2
yields

S1,II :
(

ΣP1
‖Π1

u,yΣC1

)

‖
(

ΣP2
‖Π2

u,yΣC2

)

4 ΣQ1
‖ΣQ2

while by the same reasoning, S1,II and SIII result in

S :
(

ΣP1
‖Π1

u,yΣC1

)

‖
(

ΣP2
‖Π2

u,yΣC2

)

‖
(

ΣP3
‖Π3

u,yΣC3

)

4 ΣQ1
‖ΣQ2

‖ΣQ3

V. CONCLUSIONS

The aim of this paper was to demonstrate that compo-

sitional analysis techniques can be successfully applied to

solve decentralized control problems. In order to apply com-

positional analysis techniques based on simulation theory

we extended previous results on compositional reasoning

and (circular) assume-guarantee reasoning for two feedback

interconnected systems to series feedback interconnections

of arbitrarily many systems. A crucial assumption in our

approach is that the global specification should be decom-

posable according to the same interconnection structure as

the global plant.

A following paper will be devoted to Problem 4, by

deriving necessary and sufficient conditions for the existence

of local controllers satisfying the obtained conditions for the

solution of Problem 3.
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