
On the dissipative analysis and control of state-space symmetric systems

Gabriela Iuliana BARA

Abstract— This paper addresses the quadratic dissipativity
analysis and static output feedback control of linear time-
invariant systems which are state-space symmetric. By consid-
ering particular weighting matrices, we present a necessary
and sufficient inequality condition for checking asymptotic
stability and quadratic dissipativity for this class of systems.
Our analysis condition involves only system state matrices
and known weighting matrices. Therefore, this condition is
easy to check numerically and particularly suitable in the
case of large-scale symmetric systems. The application of our
analysis result to symmetric static output feedback (SSOF)
control design is also reported in this paper. An easily tractable
numerically, necessary and sufficient condition for the existence
of a SSOF control law and an explicit parametrization of all
SSOF controllers guaranteeing the asymptotic stability and the
quadratic dissipativity of the closed-loop system is given. Note
that the results presented in this paper generalize some results
already proposed in the literature to a more general case of
quadratic dissipativity analysis and control.

Index Terms— Linear systems, state-space (internally) sym-
metric systems, dissipativity analysis, static output feedback,
large-scale systems.

I. INTRODUCTION

The symmetry, which characterizes various phenomena,
naturally arises in many fields such as quantum mechanics,
bifurcation theory, chemistry and crystallography. The role of
symmetry has also been investigated in the field of dynamical
systems and control theory. Examples such as the twin lifting
concept [1], the discretized partial differential equations [1]
and dynamical systems composed of interconnected sub-
systems [1]–[3], show that linear models for such systems
exhibit certain group-theoretic symmetries. The structure
involved by these symmetries is central to the system and
must be preserved when developing synthesis methods. Many
group-theoretic approaches, using the representation theory,
have been proposed in the literature for linear systems. In [4]
and [1] the realization problem has been addressed while
in [5] and [6] the stability has been investigated based on the
decomposition of a symmetric system into smaller uncoupled
systems. The latter results have been extended, in [7], to H∞
performance analysis by showing that the H∞ norm of a
symmetric system can be determined from the H∞ norms
of the uncoupled systems. The group-theoretic methods have
been used in [8] for studying fault tolerance properties of
arrays of symmetric systems. In [9], the group-theoretic
symmetry has been exploited to reduce the computational
effort required for control synthesis whenever the design
specifications are expressible via semi-definite programming.
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Representations by symmetric transfer functions / ma-
trices, also called externally symmetric models, appear in
many electrical engineering applications such as electrical
and power networks [10] and large-space structures with
collocated sensors and actuators [11], [12]. As a particular
subclass of symmetric transfer matrices, systems with state-
space symmetry, also called internally symmetric systems,
are used for modeling systems with zeros interlacing the
poles [13] or physical systems with only one type of energy
storage capability [12], [14]. Conditions when symmetric
transfer matrices admit a symmetric state-space realization
have been presented in [12], [15]. Various problems for
state-space symmetric systems have been addressed such
as: model reduction by optimal Hankel norm approxima-
tion [16]; stabilizability by decentralized controllers [12];
control design by using colored Petri nets and symbolic
reachability graphs [17]; stabilization by symmetric static
output feedback (SSOF) control [15], [18]; H∞ norm char-
acterization, positive real analysis and SSOF control [18]
as well as mixed H∞ / positive real performance analysis
and SSOF control [14]. Note that the obtained results show
that exploiting the symmetry property allows to reduce the
numerical complexity of the analysis and synthesis results for
the class of state-space symmetric systems. This is particu-
larly suitable in the case of very large-scale systems where
the classical analysis and design methods using LMI formu-
lation or Riccati equalities are computationally prohibitive.
For instance, an explicit formula for computing H∞ norm
of the system and an explicit expression of the optimally
achievable closed-loop H∞ norm and of the optimal control
gains has been presented in [18]. The extension of these
results to mixed H∞ / positive real performance analysis
and SSOF control has been achieved in [14].

In this paper, we address the quadratic dissipativity analy-
sis and control of state-space symmetric systems. By consid-
ering particular weighting matrices, we present a necessary
and sufficient inequality condition for checking asymptotic
stability and quadratic dissipativity of symmetric systems.
This analysis condition requires only the computation of
eigenvalues of a decision matrix involving system state
matrices and weighting matrices. Therefore, this analysis
condition is easy to verify numerically and is particularly
appropriate for very large-scale symmetric systems. Then,
an easily tractable numerically, necessary and sufficient con-
dition for the existence of a SSOF control is derived and an
explicit parametrization of all SSOF controllers guaranteeing
the asymptotic stability and the quadratic dissipativity of the
closed-loop system is given. Despite the nonlinearity of the
SOF control design [19], exploiting the state-space symmetry
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allows to obtain an analytical solution to the SSOF synthesis
problem. Note that our results generalize the ones proposed
in [18], for H∞ analysis and control, and in [14], for mixed
H∞ / positive real performance analysis and control, to
the more general case of quadratic dissipativity analysis
and control with respect to a particular class of weighting
matrices.

Notations: The notations used throughout the paper are
standard. The relation A > B (A < B) means the matrix
A−B is positive (negative) definite. The superscript T stands
for matrix transposition. The matrix I stands for the identity
matrix of appropriate dimension. ? is used for the blocks
without any importance. λmax(A) denotes the maximum
eigenvalue of the symmetric matrix A. M⊥ represents the
orthogonal complement of M ; for a real matrix M ∈ IRn×m

of rank m, M⊥ ∈ IR(n−m)×n is such that M⊥M = 0. M+

represents the Moore-Penrose generalized inverse of M . M∗

is the conjugate transpose of M . Herm{M} is the Hermitian
part of matrix M i.e. Herm{M} = 1/2(M +M∗). Ln

2 is the
space of square integrable functions on IR+ with values in
IRn. Ln

2e is the extended Ln
2 space of measurable functions

on IR+ . < u, v >T =
∫ T

0
uT v dt for u, v ∈ Ln

2e.

II. PROBLEM STATEMENT

Consider the class of linear time-invariant systems de-
scribed by

ẋ(t) = Ax(t) + Bw(t), x0 = 0 (1a)
z(t) = Cx(t) + Dw(t) (1b)

where x(t) ∈ IRn is the state vector, w(t) ∈ IRm is the
exogenous input vector and z(t) ∈ IRp is the controlled
output vector. The matrices A, B, C and D are known
constant matrices of appropriate dimensions and are assumed
to be a minimal state-space realization of the system. In the
following, we also assume that the system is internally or
state-space symmetric i.e.

A = AT , B = CT and D = DT . (2)

This means that the system is square i.e. the input and
output vectors have the same dimension m = p. The internal
symmetry implies the external one i.e. G(s) = G(s)T , where
G(s) = C(sI − A)−1B + D is the system transfer matrix,
but the converse is not necessarily true.

Let us associate to the system a quadratic energy supply
rate

q(w(t), z(t)) =
[
zT (t) wT (t)

] [
Q S
ST R

] [
z(t)
w(t)

]
(3)

where Q and R are symmetric matrices. Then, the energy
supply function associated to the system is

E(w(t), z(t), T ) =
∫ T

0

q(w(t), z(t)) dt.

The notion of dissipativity with respect to the quadratic
supply rate q(w(t), z(t)) or (Q,S,R)-dissipativity is defined
as follows (see [20]–[22] for a detailed presentation of the
dissipativity concept).

Definition 2.1: Given symmetric matrices Q, R and a
general matrix S, a system with quadratic supply rate (3)
is called (Q,S, R)-dissipative if there exists a nonnegative
storage function V : IRn → IR+, V (0) = 0 such that

V (x0)+E(w(t), z(t), T ) ≥ V (x(T )) ∀w(t) ∈ Ln
2e, ∀T ≥ 0.

When this dissipation inequality is strict, we say that the
system is strictly (Q, S,R)-dissipative.

It is well known that a linear differential system is dissi-
pative with respect to the quadratic supply rate q(w(t), z(t))
if and only if there exists a quadratic storage function
V (x(t)) [23]. The time-domain dissipation inequality con-
dition of Definition 2.1 is equivalent to the following
frequency-domain condition:

[
G(jω)∗ I

] [
Q S
ST R

] [
G(jω)

I

]
≥ 0 ∀ω ∈ IR

where G(s) is the system transfer matrix.
Assumption 1: In the following, we consider that the

weighting matrices are given by

Q = β1I , S = β2I and R = β3I (4)

and, together with system (1), satisfy the assumptions

β1 ≤ 0 and (5a)
β3I + 2β2D + β1D

2 > 0. (5b)
Note that, for this particular structure of weighting matri-

ces, the strict (Q,S, R)-dissipativity is still general enough
to include as special cases:

• H∞ norm constraint which corresponds to

β1 = −γ−1, β2 = 0 and β3 = γ. (6)

• Passivity or strict positive real performance obtained
when

β1 = 0, β2 = 1 and β3 = 0. (7)

The notion of passivity is a special property of square
systems meaning that the system cannot produce energy.
The equivalence between the passivity of a system and
the positive realness of its transfer matrix is given by
the well known Kalman-Yakubovich-Popov lemma.

• Mixed H∞ and positive real performance for

β1 = −γ−1θ, β2 = 1− θ and β3 = γθ (8)

where θ is a weighting parameter that represents the
trade-off between H∞ and positive real performance.

• Sector bounded constraint which corresponds to

β1 = −1, β2 = (a + b)/2, β3 = −ab. (9)

We recall that, as defined in [24], a system is strictly
inside the sector [a, b] if Herm{[G(jω)−aI]∗[G(jω)−
bI] < 0} for all ω ∈ IR.

In the following section, we investigate the quadratic
dissipativity analysis for internally symmetric systems under
Assumption 1.
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III. DISSIPATIVITY ANALYSIS

A. New analysis result

Theorem 3.1: Consider the system (1) satisfying the sym-
metry property (2). Under Assumption 1, the system (1) is
asymptotically stable and strictly (Q,S, R)-dissipative if and
only if the following inequality condition is satisfied

A + B
(
(α− β2)I − β1D

)(
β3I + 2β2D + β1D

2
)−1

BT < 0
(10)

where α =
√

β2
2 − β1β3.

Proof: Based on the dissipative analysis result in [23]
and using (2) as well as Assumption 1, the system (1) is
asymptotically stable and strictly (Q,S, R)-dissipative if and
only if there exists a symmetric Lyapunov matrix P > 0 such
that


AP + PA PB − β2B

√−β1B
BT P − β2B

T −β3I − 2β2D
√−β1D√−β1B

T
√−β1D −I


 < 0. (11)

By Schur complement, this is equivalent to

AP + PA + B
(− β1I + M1M2M1

)
BT −BM1M2B

T P

− PBM2M1B
T + PBM2B

T P < 0 (12)

where M2 =
(
β3I + 2β2D + β1D

2
)−1

> 0 and
M1 = β2I + β1D.

Note that matrices M1 and M2 are symmetric and that, based
on basic matrix manipulations, the following relation holds:

M1M2 = M2M1. (13)

Moreover, based on this equality, we obtain

−β1I + M1M2M1 = (−β1M
−1
2 + M2

1 )M2

= (β2
2 − β1β3)M2.

Since any Lyapunov matrix P can be rewritten as αP0 with
the scalar α > 0 and the matrix P0 > 0, inequality (12) can
be rewritten as

αAP0 +αP0A+(β2
2 −β1β3)BM2B

T −αBM1M2B
T P0

− αP0BM2M1B
T + α2P0BM2B

T P0 < 0. (14)

Setting α2 = β2
2 − β1β3 and using (13), it follows from

Lemma 1.1 presented in the appendix that this inequality is
equivalent to

αA− αBM1M2B
T + α2BM2B

T < 0

which is exactly the condition (10).
Remark 3.1: From the proof of Theorem 3.1, we deduce

that the storage function ensuring the asymptotic stability
and guaranteeing the strict (Q,S, R)-dissipativity of system
(1) with symmetry property (2) is given by

V (x) = xT Px =
√

β2
2 − β1β3 ‖ x ‖2 .

This is an explicit formulation of the storage function which
facilitates the analysis of dissipativity property. Indeed, as
stated in Theorem 3.1, the problem of checking asymptotic

stability and (β1I, β2I, β3I)-dissipativity of symmetric sys-
tems reduces to checking the negative definiteness of the
decision matrix given by the left-hand side expression of
inequality (10). This can be done by simply computing the
decision matrix eigenvalues and checking the negativity of
its maximum eigenvalue. Therefore, the analysis condition
of Theorem 3.1 can easily be checked numerically and does
not require solving a LMI condition or a Riccati equality as,
in general, required for nonsymmetric systems.

B. Connections with previous results

In the context of internally symmetric systems, some
analysis and synthesis results have already been proposed
in [14], [18]. The H∞ performance as well as positive real
analysis and control design have been addressed in [18]
while the mixed H∞ / positive real performance analysis
and control has been dealt with in [14]. In this section, we
discuss our analysis result of Theorem 3.1 in connection with
the ones in [14] and [18].

When analyzing the H∞ performance, the weighting
matrices are given by (6). It has been shown in [18] (see
Lemma 2 in [18]) that an internally symmetric system has
an H∞ norm less than γ if and only if

γ2I −DD > 0 and (15a)
2γA + (γB + BD)(γ2I −DD)−1(γB + BD)T

+BBT < 0. (15b)

Using (6), condition (15a) is equivalent to our assumption
(5b). Based on the commutativity of the product between
(γ2I −DD)−1 and (γI + D) and rewriting BBT in (15b)
as

BBT = B(γ2I −DD)(γ2I −DD)−1BT ,

we obtain that condition (15b) is equivalent to

A + B
(
γI + D

)(
γ2I −D2

)−1
BT < 0 (16)

which is exactly the condition (10). Hence, our Theorem 3.1
covers Lemma 2 in [18]. Note that an explicit formula for
computing the H∞ norm has been given in [18] as:

γopt = max
(
λmax

(−D
)
, λmax

(
D −BT A−1B

))
.

This norm value can also been obtained from our Theo-
rem 3.1 by solving the following optimization problem:

Min γ such that (10), which is equivalent to (16), holds.

Note that this optimization problem can easily be solved,
despite the nonlinearity of (16) with respect to γ, by simply
iteratively decreasing the value of γ until checking condition
(16) fails.

In the case of passivity analysis, it has been proven in
[18] that a symmetric system is strongly positive real if and
only if A < 0 and D > 0. Using the weighting matrices
given by (7), our assumption (5b) reduces to D > 0 while
the condition (10) reduces to A < 0 since α = 1. Therefore,
our Theorem 3.1 covers also Theorem 15 in [18].
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Now, let us discuss the mixed H∞ / positive real perfor-
mance analysis. Based on Theorem 3.1, the following result
is obtained.

Corollary 3.2: For a given scalar θ ∈ (0, 1) in (8), the
mixed H∞/PR norm of stable internally symmetric system
(1) is given by

γopt = max
(
f(θ)−1λmax

(−D
)
, f(θ)λmax

(
D −BT A−1B

))
,

(17)

where f(θ) =
α + θ − 1

θ
and α =

√
(1− θ)2 + θ2, when-

ever Assumption 1 holds with β1, β2 and β3 given by (8).
Proof: Using weighting matrices (8), it follows from

the proof of Theorem 3.1 that the Lyapunov matrix in (11)
is P = αI where α =

√
(1− θ)2 + θ2. Hence, the stability

of internally symmetric system (1) is equivalent to



2αA θf(θ)B B
θf(θ)BT −γθI − 2(1− θ)D D

BT D − γ
θ
I


 < 0

where f(θ) =
α + θ − 1

θ
. Based on this definition of f(θ),

the following relations can be proved:

2
θ − 1

θ
+ f(θ)−1 =

α

θ
, (18a)

θ

2α

(
1 + f(θ)2

)
= f(θ). (18b)

Applying Generalized Finsler’s Lemma (see Lemma 1.2 in
the appendix), we deduce that the optimal γ is given by

γopt = λmax

[
θ
2αf(θ)2Ω + 2 θ−1

θ D θ
2αf(θ)Ω + D

θ
2αf(θ)Ω + D θ

2αΩ

]

where Ω = −BT A−1B. Using the relation (18a), the latter
matrix can be rewritten as[
f(θ) 0

I I

] [
θ
2αf(θ)Ω + 2 θ−1

θ f(θ)−1D θ
2αΩ + f(θ)−1D

f(θ)−2D −f(θ)−1D

]
.

Since the spectrum of Γ1Γ2 is identical to the spectrum of
Γ2Γ1 for any square matrices Γ1 and Γ2, if follows based
on (18) that

γopt = λmax

[
f(θ)Ω + f(θ)D ?

0 −f(θ)−1D

]

which leads to (17).
Note that, based on relation (18a), our Corollary 3.2 covers
the formula proposed in [14], Theorem 7.

As far as we know, there are no analysis results with regard
to sector bounded constraints for state-space symmetric sys-
tems. Our Theorem 3.1 allows easily checking sector-bounds
for a given symmetric system. The next two particular cases
follow directly. Given a positive scalar b, the symmetric
internally system (1) is
• strictly inside the sector [−b, b] if and only if

b ≥ max
(
λmax

(−D
)
, λmax

(
D −BT A−1B

))

• strictly inside the sector [0, b] if and only if it is strongly
positive real, i.e. A < 0 and D > 0, and

b ≥ λmax

(
D −BT A−1B

)
.

IV. DISSIPATIVE OUTPUT FEEDBACK CONTROL DESIGN

Consider the system with the following representation

ẋ(t) = Ax(t) + B1w(t) + B2u(t) (19a)
z(t) = C1x(t) + Dw(t) (19b)
y(t) = C2x(t) (19c)

where x(t) ∈ IRn is the state vector, w(t) ∈ IRm1 is the
exogenous input vector, u(t) ∈ IRm2 is the control input
vector, z(t) ∈ IRp1 is the controlled output vector and
y(t) ∈ IRp2 is the measured output vector. We assume that
the system satisfies the symmetry conditions:

A = AT , B1 = CT
1 , B2 = CT

2 and D = DT . (20)

The symmetric static output feedback (SSOF) dissipative
control design problem consists in synthesizing a symmetric
gain K such that the static output feedback control law

u(t) = Ky(t)

guarantees the asymptotic stability and the strict (Q,S, R)-
dissipativity of the closed-loop system. The state-space rep-
resentation of the closed-loop system is given by:

ẋ(t) = (A + B2KBT
2 )x(t) + B1w(t) (21a)

z(t) = C1x(t) + Dw(t). (21b)

Note that, based on (20), the closed-loop system is state-
space symmetric.

Theorem 4.1: For the symmetric system (19), there exists
a symmetric static output feedback controller that guarantees
the asymptotic stability and the strict (Q,S, R)-dissipativity
of the closed-loop system if and only if condition (22) is
satisfied. When this condition holds, the set of all symmetric
output feedback gains K is given by (23).

Proof: Applying the result of Theorem 3.1 to the
closed-loop system (21) and using Generalized Finsler’s
Lemma (see Lemma 1.2 in the appendix), we obtain the
necessary and sufficient condition (22) for the existence of
a dissipative SSOF controller as well as the characterization
(23) of all SSOF controllers.

Remark 4.1: Our Remark 3.1 also applies to the SSOF
existence condition of Theorem 4.1. Note that Theorem 4.1
extends the results presented in [14] by firstly, considering a
larger class of weighting matrices Q, S and R, and secondly,
by considering a nonzero D matrix. Indeed, in the case of
mixed H∞ / positive real control ( see (8) for the weighting
matrices) and D = 0, Theorem 4.1 reduces to Theorem 8
in [14]. When D 6= 0, using condition (22), Lemma 1.3 and
similar arguments to ones of Corollary 3.2’s proof, we can
show that the level of mixed H∞ /PR performance optimally
achievable by symmetric output feedback is given by

γCL = max
(
f(θ)−1λmax

(−D
)
,

f(θ)λmax

(
D + BT

1 B⊥
2

T
(−B⊥

2 AB⊥
2

T
)−1B⊥

2 B1

))
(24)

when the trade-off parameter θ between H∞ and positive
real performances is given. This, together with Theorem 4.1,
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B⊥
2

(
A + B1

(
(α− β2)Ip − β1D

)(
β3Ip + 2β2D + β1D

2
)−1

BT
1

)
B⊥

2

T
< 0 where α =

√
β2

2 − β1β3 (22)

K ≤ −B+
2

(
Σ− ΣB⊥

2

T (
B⊥

2 ΣB⊥
2

T )−1
B⊥

2 Σ
)
B+

2

T
where

Σ = A + B1

(
(α− β2)Ip − β1D

)(
β3Ip + 2β2D + β1D

2
)−1

BT
1 with α =

√
β2

2 − β1β3 (23)

L1

R2 R3

L2 L3

+

−
Vd R1 R4

Fig. 1. RL circuit network

generalizes the results of Theorem 8 in [14] to non-null
matrices D.

V. NUMERICAL EXAMPLE

Consider a RL circuit network similar to the one in [14]
and shown in Figure 1. In addition, let us consider that the
inductor L3 is submitted to a magnetic field perturbation
which generates a perturbation w(t) in its current. By con-
sidering the currents of inductors L1, L2 and L3 as the state
variables and the voltage Vd as the control input, we obtain
the state space equation (19a) where:

A =



−R2/L1 R2/L1 0
R2/L2 −(R2 + R3)/L2 R3/L2

0 R3/L3 −(R3 + R4)/L3


,

B1 =
[
0 0 1

]T and B2 =
[
1/L1 0 0

]T .

The measured output is the current of resistor R1 while the
controlled output is the voltage of resistor R4. Therefore,
C2 =

[
1 0 0

]
, C1 =

[
0 0 R4

]
and D = R4. Assume

L1 = L2 = L3 = 1H and R1 = 0.5 ohm, R2 = 8 ohms,
R3 = 5 ohms, R4 = 1 ohm. Then, the open-loop system is
a symmetric state-space system as in (19)-(20).

Let us study mixed H∞ / positive real performance
analysis and control of this system with a trade-off parameter
θ = 0.5. Then, f(θ) = 0.4142 and the optimal γ is
computed, using Corollary 3.2 or [14], as being 1.2426.
The control input can be used in order to improve the value
of γ. Since the matrix D 6= 0, the control synthesis result
proposed in [14] can not be used. Based on our Theorem 4.1,
a symmetric output feedback controller can be synthesized.
Note that the optimally achievable level of mixed H∞/PR
performance for the closed-loop system is given by (24) i.e.
γ̄CL = 0.93. This represents an improvement of 25%. For
any γ ≥ γ̄CL, all feedback gains rendering the closed-loop
system stable with a mixed H∞/PR parameter less than γ are
given by (23). For instance, when γ equals the optimal level
γ̄CL = 0.93, the control gain corresponding to this optimal
level is K =

[−2.3593e + 004
]
.

Now, let us assume that the weighting matrices are given
by Q = −I , S = 2I and R = 3I . Then, the assumptions (5)
are satisfied. Using Theorem 3.1, it is easy to check that the
system is strictly (Q,S, R)-dissipative. When the weighting
matrices are Q = −I , S = 0.8I and R = 2I , Assump-
tion 1 is satisfied but the system is not strictly (Q,S, R)-
dissipative since condition (10) is not verified. As condition
(22) is verified, we can compute a SSOF gain rendering
the closed-loop system strictly (Q,S, R)-dissipative based
on Theorem 4.1. For instance, K =

[−2.4181
]

is a possible
choice for the control gain which guarantees the closed-loop
strict (Q,S, R)-dissipativity.

VI. CONCLUSION

In this paper, we have proposed explicit solutions for
dissipativity analysis and SOF control problems for state-
space symmetric systems. Our necessary and sufficient anal-
ysis condition reduces to checking the negative definiteness
of a decision matrix involving only system state matrices
and weighting matrices. This allows deriving a necessary
and sufficient existence condition for a SSOF controller. An
explicit parametrization of all SSOF controllers has also been
presented. The proposed solutions do not require solving
LMI conditions or Riccati equations as, in general, required
for nonsymmetric systems. Hence, they are applicable for
the case of very large-scale symmetric systems by exploit-
ing current developments in the area of largest eigenvalue
determination for large matrices. The results presented in
this paper generalize some results already proposed in the
literature to a more general case of quadratic dissipativity
analysis and control.

APPENDIX

Lemma 1.1: Consider the following quadratic matrix in-
equality with respect to the symmetric matrix parameter P

ΩΩT + PΞ + ΞP + PΩΩT P < 0 (25)

where the symmetric matrix Ξ and the general matrix Ω are
given. Then, there exists a symmetric positive-definite matrix
P0 solution to inequality (25) if and only if

ΩΩT + Ξ < 0.

Proof: Sufficiency: It is straightforward by choosing
P0 = I .

Necessity: Assume that P0 > 0 is a solution of (25). Pre-
and post-multiplying this inequality by P−1

0 , we obtain the
same inequality (25) with respect to P−1

0 . Therefore, P0 and
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its inverse P−1
0 are both solutions of this inequality. By Schur

complement, (25) is equivalent to
[
ΩΩT + P0Ξ + ΞP0 P0Ω

ΩT P0 −I

]
< 0. (26)

Now, the proof mainly follows the procedure employed in the
proof of Lemma 2 in [18]. The eigenvalues decomposition
of P0 allows to rewrite this matrix as

P0 = U∆0U
T , UT = U−1, ∆0 = Diag(σ1, . . . , σn) > 0.

Note that P−1
0 = U∆−1

0 UT . As σ1 > 0, there exists 0 ≤
λ1 ≤ 1 such that λ1σ1 + (1 − λ1)σ−1

1 = 1. Therefore, the
convex combination between (26) with respect to P0 and
(26) with respect to P−1

0 provides
[
ΩΩT + P1Ξ + ΞP1 P1Ω

ΩT P1 −I

]
< 0 (27)

where P1 = λ1P0 + (1 − λ1)P−1
0 =

U Diag(1, σ̄2, . . . , σ̄n)UT with σ̄i = λ1σi + (1 − λ1)σ−1
i

for i = 2, . . . , n. Using Schur complement for (27) and
then, pre- and post-multiplying the result by P−1

1 , we
obtain by Schur complement the inequality (27) this time
in P−1

1 . Hence, P1 and its inverse P−1
1 are both solutions

of (27). As σ2 > 0, there exists 0 ≤ λ2 ≤ 1 such that
λ2σ2 + (1− λ2)σ−1

2 = 1. The convex combination between
(27) with respect to P1 and (27) with respect to P−1

1

provides
[
ΩΩT + P2Ξ + ΞP2 P2Ω

ΩT P2 −I

]
< 0

where P2 = λ2P1 + (1 − λ2)P−1
1 = Diag(1, 1, σ̃3, . . . , σ̃n)

with σ̄i = λ2σi +(1−λ2)σ−1
i for i = 3, . . . , n. By repeating

this method, we obtain that Pn = UUT = I is a solution of
(25).

Lemma 1.2 (Generalized Finsler’s Lemma [18]):
Consider matrices M and Q such that M has full
column rank and Q = QT . Then, the following statements
are equivalent:

• There exists a symmetric matrix X such that

MXMT −Q > 0.

• The following condition holds: M⊥QM⊥T
< 0.

If the above statements hold, then all matrices X satisfying
the first statement are given by

X > M+
(
Q−QM⊥T

(M⊥QM⊥T
)−1M⊥Q

)
M+T

.

When X is a scalar µ then the latter relation reduces to

µ > µmin =

λmax

(
M+

(
Q−QM⊥T

(M⊥QM⊥T
)−1M⊥Q

)
M+T

)
.

Lemma 1.3 ( [25]): Consider the symmetric positive-
definite matrix ∆ and the full column rank matrix Γ. Then,
∆ ≥ ΓΓT if and only if λmax(ΓT ∆−1Γ) ≤ 1.
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